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A general matrix equation for evolutionary equilibrium of sex allocation 
is derived. The equation allows calculation of ESS values of behavioural 
parameters in sex allocation models, and provides a conceptual framework 
in which such models can be viewed. A careful discussion is given of a 
number of examples from the literature. An attempt is made to clarify the 
assumptions behind different models and relate different results which 
have been obtained. 

1. Introduction 

Charnov's (1982) book brings together, and provides a unified treatment 
of, a wide range of  examples of  sex allocation problems and discusses the 
biological evidence available to support  the models. The objective in this 
paper is to provide the framework for a corresponding unification at the 
mathematical level. A proper  mathematical theory can be expected to 
provide clarity and simplification both conceptually and computationally 
and the author  believes that this is true of  the theory provided in this paper. 
The theory will be illustrated with a few examples from the literature. It 
will be seen that the theory is capable of  revealing the relationship between 
various models and clarifying the assumptions and the conclusions of  each. 

It is not intended in this paper to provide a lot of  details or to be 
comprehensive in discussion of  the existing models. Such a treatment will 
come later. The purpose is to outline as clearly and simply as possible the 
general framework. The main result is a completely general equation for 
evolutionary equilibrium (the EEE equation (9)) from which a large number 
of  particular equilibrium conditions can be derived. 

Some themes will be highlighted briefly, and some notation introduced. 
One theme is the importance of  distinguishing between equilibrium of  type 
frequencies and equilibrium ofbehavioural  parameters. In any sex allocation 
model there will be a number n of  types of  individuals (genotypes or 
phenotypes),  usually genetically determined, and a vector a of  behavioural 
parameters,  also genetically determined, which specifies the reproductive 
behaviour o f  the different types. If  a is fixed, the populat ion type frequencies 
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q = (q~, q2 , . . . ,  q~) will reach an equilibrium which depends on or. This is 
an equilibrium of existing genes (at the type-determining loci) and will be 
reached fairly rapidly, in what is often called ecological time. The 
behavioural parameters ai are assumed to be genetically controlled and are 
capable of being altered by the introduction of new genetic material (muta- 
tions). Over evolutionary time, under the influence of natural selection, we 
expect these parameters to reach equilibrium values. By my way of thinking, 
the sex allocation problem should be regarded as one which finds a stable 
evolutionary equilibrium of a. Sometimes the literature is confusing on this 
point; an example is given in the discussion. 

Another theme will concern this measurement of fitness. It will be shown 
that there are four different measurements in the literature which can loosely 
be described as counting children, grandchildren, great grandchildren and 
asymptotic number of descendents. The relationship between these will be 
examined, and it will be shown that they fit into a simple scheme. The 
relevence to this of a general result of Lloyd (1977) and Heuch (1979) that 
under some circumstances, at type-frequency equilibrium, each individual 
has the same gametic fitness, regardless of type, will be discussed. 

Also discussed will be the Shaw-Mohler equilibrium equation 

d m ~ - ~  = 0 m  (1) 

(so designated by Charnov, 1982) and it will be made clear the special 
circumstances under which it applies. More general forms of this equation 
can be derived from the EEE. 

One important aspect not discussed is that of stability, both of the type 
frequency equilibrium q, for a fixed a (ecological stability) and of the 
behavioural equilibrium a (evolutionary stability). This is an important 
topic which can be handled nicely in the general framework, but it is left 
to another time. Thus the equilibrium conditions formulated for a will be 
critical point conditions setting differential fitness changes to zero. They 
are necessary but not sufficient for evolutionary stability. In practice they 
are strong enough to allow us to find any interior ESS. 

2. The Model 

The reproductive behaviour of a population will be specified by a number 
of behavioural parameters, for example, number or size of offspring or 
gametes produced of different types, time spent in various activities, age of 
maturity, etc. Let a = (c~, a2,- • . ,  ak) be the vector of behavioural para- 
meters of interest. There will be trade-offs between various a~ and the 
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objective of  the model is to find an a which is evolutionarily stable subject 
to these trade-offs. The standard method for doing this is to introduce a 
(mutationally feasible) alternative d and to compare  the fitness of  t~ and 

in the a -popula t ion  when t~ is rare. Roughly speaking, a is evolutionarily 
stable when the fitness of  all feasible alternatives t~ is less than that of  a. 

The fitness of  ~ may not be so easy to write down. As a rule, there will 
be different types of  individuals in the populat ion (male, female, her- 
maphodite,  or different genotypes of  each, or different ages of  each, etc.) 
and fitnesses will depend on the type frequencies. These may vary but will 
usually approximate some stable type frequency equilibrium which will 
generally depend on populat ion behaviour a. It is customary, when writing 
down the fitness of  d to assume that the populat ion is at this type frequency 
equilibrium. Assuming this, fitness of  d will be measured by counting, in 
some way, descendents of  t~ individuals. This count may depend on the 
type of the mutant individual. The overall fitness of t~ must be some average 
of  its fitness in different types, and to be able to calculate this average, we 
have to know how t~ is distributed among different types. 

Suppose these complexities can be overcome and the fitness of  t~ can be 
found. Let W(&, or) be the fitness of  a rare behaviour & in an o~ population. 
Then W(2, a )  measures the fitness of a rare mutant who happens to act 
normally (a mutation with no phenotypic effect) and can be taken as the 
standard o f  populat ion fitness. A weak condit ion for evolutionary stability 
of  a is then 

W(~, a)<_ W(a, a) for all feasible & (2) 

If  this holds at an interior point o~ of  the feasible region then we expect 
the differential condition 

d W = 0  a t ~ = a  (3) 

to hold. It is this equilibrium condition that will be worked with in this 
paper. The differential fitness d W corresponds to a differential shift in 
behaviour away from ot (c~ = a + d a )  in the feasible region. There may be 
many independent  directions in which such a shift can occur, each one 
following an independent  trade-off curve. We will get a differential condition 
(3) for each such trade-off. The solution of  all such equations will give us 
any interior evolutionary equilibrium a. 

Discrete, but not necessarily non-overlapping, generations are assumed. 
(If  behaviour  is age dependent  we can incorporate age and genotype into 
our  notion of  type.) Thus the populat ion has a periodic character and we 
keep track o f  numbers of  individuals by taking a count  at the beginning of  
each cycle. 
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Assume there are n different types of mutant individuals and the fitfless 
of  ~ is measured by counting offspring of  each type. An important assump- 
tion which makes this possible is that there is no sexual interaction between 
mutant individuals. This assumption allows each mutant individual to be 
assigned to a unique mutant ancestor one cycle back and permits counting 
of  mutant offspring. The assumption of rarity of the mutation will usually 
accomplish this in outbred populations. Even with simple forms of inbreed- 
ing it is often possible to defne  "individual" in such a way that sexual 
interaction between mutants is absent. For example in Hamilton's (1967) 
model, where there is sib-mating, mated pairs can be designated as 
individuals (Taylor & Bulmer, 1980; Taylor, 1985), and the count keeps 
track of different pairs of mutant genotypes. 

The key to counting mutant individuals lies in the n x n t rans i t i on  m a t r i x  

A = A(d, a)  whose (i,j) entry a~j is the number of mutant offspring of type 
i contributed to the next stage by one indi-gidual of type j. The a U will 
depend, in general, on both t~ and a. If there are mj mutant individuals of 
type j at one stage, the number mj next stage can be found from the matrix 
equation 

m ' =  Am. (4) 

Thus the dominant eigenvalue h = h(~, a)  of A measures the asymptotic 
growth rate of  the mutant population, that is, the growth rate observed 
when the mutant behaviour is in equilibrium proportions among types 
(given by the dominant right eigenvector of  A). Thus the measure of  mutant 
fitness should be 

w(&  a) = ?~(~, a). (5) 
Equation (2) becomes 

h(t~, a)--<h(a, a )  for all feasible 4, (6) 

and the equilibrium conditions (3) becomes 

d h = 0  a t ~ = a .  (7) 

The trouble with this form of the condition is that A depends in a complicated 
way on the entries of A and can rarely be found explicitly. It may be difficult 
to analyze directly unless A has a special form (such as the Leslie matrix 
form in models with age structure; see Charnov, 1979). 

A form of equation (7) which is conceptually and computationally simpler 
is found by working with the dominant eigenvectors of A. Let v = v(a)  and 
u = u ( a )  be the left and right dominant eigenvectors of A ( a ,  a ) .  Then some 
simple algebra (Taylor & Bulmer, 1981) shows that at ~ = a, 

dA and v d A u  have the same sign. (8) 
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It follows that condition (7) for evolutionary equilibrium of  a can be written 

vdAu=O a t t ~ = a .  (9) 

Equation (9) will be referred to as the evolutionary equilibrium equation 
(EEE). The differential here corresponds to a differential change of  
behaviour away from a in some feasible direction. What makes this equation 
very useful is that v and u are eigenvectors of  A(a, a) and do not depend 
on ~. They are, thereby, often quite easy to obtain and have a simple 
biological interpretation. Also, different mutants will give different matrices 
A(~, c~) and different A, but the same v and u will always work. Thus 
different trade-offs can be looked at, or for a given trade-off, different levels 
of  mutant dominance or different sources of  control (female, male, worker, 
etc.) all with the same A(a, a) and hence the same u and v. 

Note that equation (9) is a necessary, but not sufficient, condition for 
evolutionary stability at an interior point (of  the feasible domain of  a) .  In 
practice it is strong enough to enable us to find interior ESS's. Stability 
must be checked separately. 

3. Heuristic interpretation of the EEE 

First the eigenvectors u and v are interpreted; of course they are only 
determined up to a Constant multiple. Since they belong to the case d = o~, 
the mutant behaviour in the following discussion is assumed normal. If we 
allow mutant individual to occur in equilibrium proportions among different 
types then it turns out that uj measures the relative number  of  individuals 
of mutant type j, and vi is the asymptotic number of mutant descendents 
of one individual of  mutant type i. The force of the word "asymptot ic"  is 
that this is the contribution to the indefinite future. This may be stated as 
vi = l im v~ ') where v~ '~ is the contribution after t cycles and the limit (as t 
approaches infinity) may have to be normalized. Thus u measures type 
frequency and v measures type "fitness". 

These results are not difficult to demonstrate,  though a careful mathemati- 
cal derivation requires the assumption, which we henceforth make, that A 
have a unique positive eigenvector. It is a standard result of  non-negative 
matrices that primitive matrices (some power has entries >0)  have this 
property, and the matrices which arise in our models seem always to be 
primitive. 

These interpretations of  v and u are reminiscent of  and closely related 
to the interpretation of  the dominant eigenvectors of  a Leslie matrix, the left 
as the vector of  reproductive values and the right as the vector of  relative 
frequencies of  the age classes at stable age distribution. 
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As an important  example suppose behaviour ot is determined by an 
autosomal gene, and the population is outbred. Then ~ is determined by 
a mutant allele and a mutant individual has one such allele at the locus in 
question. If qj is the equilibrium frequency o f t y p e j  in the normal populat ion 
then 

uj~ Trjq~ (10) 

where zr~ is the ploidy o f type j .  In particular, in a diploid population, uj - qj. 
Now the EEE will be interpreted. Consider a mutation which is rare but 

has reached equilibrium proportions (among types) in the population. 
Suppose the mutant has normal behaviour a, so that different mutant types 
have relative frequency u~. Now let the mutation cause altered behaviour 

for one cycle and then revert to normal. The expected relative number  of  
individuals of  each mutant type at the end of  this cycle is given by the 
appropriate entry of  the vector A(k, ot)u. Since the mutant is now normal, 
individuals of  mutant type i contribute vi mutant descendents to the future. 
Thus the expected fitness of  the mutant is measured by the product  
vA(d, a)u. 

By this heuristic, the ESS condition (2) would be formulated as 

vA(d, a)u<-vA(a, a)u for all feasible ~. (11) 

The EEE equation (9) is in fact the differential condition corresponding to 
this maximization condition. 

It must be emphasized that equation (11) is a heuristic only and is based 
on the assumption that the mutation exhibits deviant behaviour for one 
generation only. It is not true that A = vAu or even that the condition (6) 
is equivalent to (11). What is true is the local condition (8), that dA and 
vdAu have the same sign, and the EEE equation (9) follows from that. 

The heuristic of this section is important, because it has guided much of  
the pathbreaking work in the modelling of  sex allocation. This will now be 
related to some of  the classical literature. Suppose that, instead of  using v 
to measure the fitness of  different mutant types, another vector w is used. 
Then, in the heuristic, expected mutant fitness would be wAu and the 
differential condition for evolutionary equilibrium would be 

w dAu = 0. (12) 

Most of  the classic sex ratio results follow from such an equation. The 
arguments used were often vague, but can be readily translated into precise 
genetical arguments at autosomal loci with no inbreeding. The fitness vector 
w is arrived at by implicitly making an assumption that at some point in 
the future each type (as a whole) makes the same contribution to the next 
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stage. For example, in case there are two types, female and male, it is 
assumed that at some stage total female and male contributions are equal. 

Suppose, following the heuristic, it is the F0 generation in which the 
mutation produces deviant behaviour. Then the vector Au counts the F1 
mutant types. If we assume that each Ft type makes the same contribution 
to the F2 generation, then the fitness of a type j F1 individual is inversely 
proportional to type j frequency. Thus 

wj= l/qj .  (13) 

This choice of w, which will be called 1) (27 essentially counts grandchildren 
(contribution to F2) of the original mutant individuals. This is the argument 
used by Fisher (1930) and Shaw & Mohler (1953) and will be called the 
grandchild argument. It shall be seen in the examples that it gives the right 
answer for the basic diploid and haplodiploid models. 

Trivers & Hare (1976), in modelling a more complex system, with 
haplodiploid genetics and the possibility of worker control of sex ratio and 
worker-laid males, used, implicitly, another w. Suppose we assume that all 
F2 mutant types contribute equally to F 3. Then the expected contribution 
to F3 of an Ft type j mutant is 

w~=~ l a ~ ( ~ = a ) .  (14) 

This vector w is designated as 1)o) because it essentially counts great 
grandchildren of the original mutant individuals. The arguments used by 
Trivers & Hare (1976) were based on relatedness coefficients, but if they 
are interpreted in our matrix framework it is seen that they are using the 
fitness vector v ~a). Certainly the formulae they get (their p. 25 l) for queen, 
worker, and laying-worker control, are obtained in each case from the 
condition v ~3) dAu = 0 for the appropriate matrix A. 

Notice that v ~3) = 1)(2)A for t~ = a. One could imagine a great c,) grandchild 
argument using the fitness vector, 

v °+2) = v~2)A ' (t -> 0). (15) 

It turns out that 

v ¢~) = lim v °) (16) 
t ~ O O  

(the limit may have to be normalized) is the dominant left eigenvector v of 
A, so that, in general, the larger you take t the better will be your formulae. 
(Roughly speaking, since v ~°°)~ v<Z)A ~, vt°:')A ~ v<2)A~'A ~ vC°°).) The for- 
mulae obtained by Trivers & Hare using v C3) were wrong (which is why one 



806 p .D.  TAYLOR 

can be sure they used vt3)!) but they were numerically close to the correct 
formulae obtained from v. Equation (16) gives one way to calculate v; but  
it is considerably easier to calculate it directly from the matrix A. 

The idea of  using the objects v (t) to measure fitness seems to have been 
suggested by Oster, Eshel & Cohen (1977) and the role of  v C°°) as an 
eigenvector was suggested by Benford (1978) who with Charnov (1978) 
pointed out the discrepancies in the Trivers-Hare  formulae for laying 
workers. 

One other candidate for w which does not fit into the scheme (15) but 
which shall be called v °) because it is obtained by valuing each F l individual 
equally regardless of  mutant type must be mentioned. Under  this scheme 
mutant fitness is simply a count of  F~ mutant indivi~tuals, so is 1Au where 
1 = v ~1) is the constant vector. In a sense this was the measure used by 
Darwin (1871) and indeed Darwinian fitness usually refers to number  of 
offspring. As can be verified in the examples which follow, the condition 
obtained using v °) in the standard male-female sex-ratio model (with 
constraint equation (20)) is vaccuous. This may account for Darwin's 
difficulty in perceiving the evolutionary reason for 50-50 sex ratio. 

Actually Darwin came close to, but did not actually get, the grandchild 
argument. In the standard male-female situation considered by Darwin, 
the grandchild argument is essentially a count not of  offspring but of  number 
of  matings of  offspring. Darwin did realize that an offspring that didn' t  
mate was worth nothing and this allowed him to find Fisher's argument for 
monogamous species. In such species, he argued (1871, Part II, Chapter  
VIII), an excess of  one sex would mean some members of  the other sex 
couldn't  mate, and would give increased fitness to those who produced 
more of the rarer sex. But he failed to come to grips with the fitness advantage 
associated with multiple matings. For example, in the polygamous species, 
he felt that an excess of  females would be corrected by natural selection 
only if the excess were "inordinately great" (Part II, p. 317). 

4. Basic Examples 

The technique will be illustrated with a number  of  examples. In each 
case, having found the matrix A, the fight and left eigenvectors u and v of  
A at d = a must be calculated. This could be done directly with the 
appropriate system of linear equations, but there are often shortcuts. Assume 
an autosomal mutant with outbreeding so that u can be obtained by equation 
(10). In case A is 2 x2,  one eigenvector can be obtained directly from the 
other. For example, it is always true that 

V = (azlul, a12u2). (17) 
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There is an interesting interpretation of  this. Use the names female and 
male to designate type 1 and type 2 respectively. In the following examples 
Q = ql/q2 is used to denote the population female/male  ratio. Then, using 
equation (10) 

v = (a21 "a't ql, al2~r2q2) ~ (a21 ¢rl, al2cr2/Q). (18) 

Since -'rJ" 1 i s  female ploidy, v~ = a21 ¢r~ is total gametic contribution per female 
to next generation males. Similarly al2.n" 2 is the same per male to females. 
In the case of  random mating and all offspring "produced"  by the female, 
each male expects Q mates and I)2 = al2"rr2/Q is the total gametic contribu- 
tion of  a male to female offspring per mate. 

E X A M P L E  l, S T A N D A R D  M A L E - F E M A L E ,  D I P L O I D  

Assume two types, female and male, with female autosomal control of  
the sex o f  her offspring, non-overlapping generations, and outbreeding. 
Each female must choose the number of  female and male offspring to have, 
so let f and m denote the numbers of  each kind she contributes to the 
next generation. Thus the behavioural parameters are a = (f, m) and the 
trade-off between f and m is mediated by some underlying allocation of 
resources, and can usually be written in the form 

C(f ,  m) = g (19) 

and interpreted as requiring the total cost of  f females and m males to 
equal some given resource level R. The trade-off curve (19) is often concave 
clown reflecting the possibility of  some penalty, in numbers of  offspring, 
attached to heavily biased sex ratios. The classic sex ratio arguments used 
linear trade-off curves of  the form 

f +  m = K, (20) 

the total number  K of  offspring being given. Feasible mutants ~ = (f,  th) 
can occupy any point on the curve. In an a population the equilibrium 
type frequency is 

q= q(c l )~ ( f  m) 

and Q = f / m  is the populat ion female/male  ratio. The mutant types are 
female and male, and the transition matrix is 
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since every male expects Q mates. By equation (18), since both zrj =2 ,  

Since "hats"  only appear in the first column of A, the EEE (equation (9)) 
becomes 

d f + d m = o ,  (22) 
f m 

the classical Shaw-Mohler (1953) equation. Written in the form 

d f  _ f (23) 
dm m 

it can be interpreted as saying that at any evolutionary equilibrium of 
t~ -- (f, m), the slope of the trade-off curve (19) must equal - f / m .  In the 
classic case, equation (20), d f /dm  = - 1  and equation (23) gives f =  m. 
Equation (21) suggests that the coefficients l / f  and 1/m in the Shaw-Mohler  
equation should be regarded as measuring relative value (in terms of 
asymptotic fitness) of placing a gene in a female or male offspring. 

EXAMPLE 2. STANDARD M A L E - F E M A L E ,  H A P L O D I P L O I D Y  

Make all the assumptions of Example l, but with a haplodiploid genetic 
system. The matrix is 

A 2 

and since ~'1 = 2, ~'2 = 1, equation (18) gives v ~ (2m, 2f) - ( l / f ,  1/m). Again 
we get the classical Shaw-Mohler  equation (20). 

EXAMPLE 3. H A P L O D I P L O I D - W O R K E R  CONTROL 

Assume each female makes sterile daughters who function as workers to 
raise the reproductive offspring. If  it is assumed that they have control over 
the sex ratio (genes at the mutant locus affect worker behaviour) the matrix 
becomes 

0j 
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Implicit in this is the assumption that if only half  the workers in a family 
are mutant,  then only half  the reproductive resources will be allocated in 
the mutant way. The matrix A is of course the same as for Example 2 and 
v = (re, f )  and u = [2y] (which we now need) are the same. The EEE (equation 
(9)) gives 

d f  = - 3 f  (24) 
dm m 

In case of  a linear trade-off with f = 1 - F, ~ = ~, r = 1/4 is obtained. This 
result was first obtained by Trivers & Hare (1976). 

In all these examples v ~2)- v and the grandchild argument gives the right 
answer. This property of  standard diploid and haplodiploid genetic systems 
was first pointed out by Hamilton (1967, p. 477). The following result 
generalizes this. Suppose there are two types with autosomal control of  sex 
ratio, outbreeding and non-overlapping generations. Let type j ploidy be 
rr~ and let a typical type i offspring obtain ~r o chromosomes from type j 
parents. (It follows that ~ri = ~i~ + ~ri2.) Then the grandchild argument will 
work provided ~r~2 = 7r2~. To prove this let zi denote the number of  type i 
offspring (after one cycle) per type 1 parent  and let Q =  qJq2 = zi/z2 be 
the type 1/type 2 ratio at breeding. The transition matrix is 

A=F z'zr''/Tr' Oz' "n"2/"tr21 (S  = or). 
L z2"/T21/7rl Qz27r22/Tr2J 

and from equation (18), 

which is - v  (2) if ~2t = 1r~2. 
In standard male-female diploidy and haplodiploidy,  Ir~2 = 1r21 = 1 and 

the grandchild argument works, as has been seen. This result continues to 
hold with worker control, but not if there is some laying of  males by workers. 
If  workers lay a proport ion 1 - p  of  males, then (under haplodiploidy) the 
expected female to male chromosome contribution is 

~r2~ = p. 1 + ( 1 - p ) ( 1 / 2 )  

which is different from the male to female contribution ~rt2 = 1, when p < 1, 
and the grandchild argument fails. As another  example Charnov (1982, p. 
94) presents an overlapping generation model in which there is some adult 
survival to the next cycle. This can be treated in the present framework by 
regarding surviving adu!ts as special kind of  offspring for which ~ri~ = ~r~. 
This causes ~t2 # ~2~ and the grandchild argument fails. Finally, an example 
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in which the above result does hold is found in distyly with no within-type 
crosses. 

E X A M P L E  4. P O L L E N - O V U L E  T R A D E - O F F  I N  G Y N O D I O E C Y  

Assume the female produces xt seeds and the "male"  produces x2 seeds 
and Y2 pollen grains. Assume outbreeding and diploidy with autosomal 
control of  behaviour. Suppose proportions rt of  the female's seeds and r2 
of  the male's seeds are male. Then the behaviour is parameterized by 

= (r,, r2, x2, Y2) and there are three ESS problems to consider: what is r~, 
what is r2, and what is x2 and Y2. Each will be given by an equilibrium 
equation which will involve all variables. For each problem the same matrix 
A is used: 

a=~[(1-r , )x l  2(1-r2)x2+Q(1-rl)x,] ( ~ = a )  (25) 

rtxt 2r2x2 + Qrtxt 
where Q =  Q(ot) is, as usual, the female/male ratio at type frequency 
equilibrium. From the fact that [0] is a right eigenvector of  A an implicit 
formula for Q is obtained 

( 1 - r , ) Q + ( 1 - r 2 ) x  
O = , (26) r~Q+ r2x 

where x = x2/x~ is the male/female fecundity ratio through seed. From 
equation (18) is obtained 

v ~ (r  I Q, 2( 1 - r2)x + (1 - r,)Q). (27) 

Examine the pollen-ovule trade-off for the male. Then 

a=2I(1-r , )x ,  (1-r2)x2+(f2/y2)((1-r2)xz+O(l-r,)x,)] 
rl xl r2x2 + (Y2/ Y2) ( r2x2 + Qrw xw) 

and the EEE equation (a) gives 

dx2 = --~2x2[ l+ Q'-(l-r')v'+r'v2]x - -  (28) 
dy2 (1 - r2)vl + r2vz J 

where v~ are given in equation (27). This is a rather general formula for 
pollen-ovule trade-off in gynodioecy. 

A few special cases are obtained by making assumptions about  the r~. 
With female heterogametic genetics and Mendelian product ion and accept- 
ance of  gametes, r~ = 1/2 and r2 = 1 are expected. Then equation (26) solves 
to give the equilibrium ratio of  types 

Q = 1 - 2x (29) 
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(Lewis, 1941) and equation (27) gives v - ( 1 ,  1). Then equation (28) gives 

dx2 xl - x2 (30) 
dy2 Y2 

This has a nice geometric interpretation illustrated in Fig. 1. 

X 2 

O 

yz 
Pollen 

FIG. 1. The trade-off curve gives the feasible ovule-pollen choices (x2, Y2) for the hermaph- 
rodite in  a gynodioecious population. The p o i n t  x t is  the ovule production of the female; it 
is above the curve because she does not have to pay the fixed costs of pollen production. The 
evolutionary equilibrium point (x2, Y2) given by equation (30) is the point at which the tangent 
from xj meets the trade-off curve. 

It is important  to emphasize the status of  equation (29) in this argument. 
It is not a condition for evolutionary equilibrium of  behaviour. It is simply 
the type frequency equilibrium which results from assumptions we made 
about behaviour  (on the ri). To emphasize this, it is pointed out how the 
ESS value of  rl should be found. The matrix A for this problem is just A 
of  equation (25) with hats on the rl in column 1. The EEE condition then 
becomes vl = v2 which becomes, using equation (27) 

2r~ = I +2(1 - r2)x/Q. (31) 

Then r~ is obtained by solving equations (26) and (31), given r2 and x. In 
the special case of  female heterogamy, r2 = 1, equation (31) solves to give 
r~ = 1/2 and equation (29) does indeed hold. It has been shown that in this 
case, the female has no reason to bias her ovule genotype ratio. 

Another interesting special case of  equation (28) obtains by assuming 
male heterogamy (Mm) with MM lethal. I f  we assume Mendelian formation 
of  zygotes (with MM zygotes being resorbed) then r~ = 1/2 and r2 = 2/3, 
and equation (26) gives 

x = 3Q(I  - 0 ) / ( 2 0 - 1 ) .  (32) 

This was first obtained by Lloyd (1973, equation 16). Note that Lloyd's F 
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is relative ovule production counting the MM lethals. So x = 3F/4.  Also 
his p =  Q / ( I + Q ) .  The ovule-pollen trade-off condition, equation (28) 
becomes 

dx2 x2 2 Q 2 - Q + I  
= - (33) 

de:  Y2 (1 - Q ) ( E Q +  l)" 

If the rl equilibrium analysis is carried out, it turns out that with r2 = 2/3, 
the ESS value of rj should not be 1/2. The two equilibrium equations which 
give the ESS values of  the ri are not easy to solve, and in any case presumably 
require some assumptions about the costs involved in discriminating gamete 
genotypes. 

5. Lloyd's Equal Fitness Result 

A result of  David Lloyd (1977) will now be placed in the context of  the 
general model. Loosely stated, Lloyd's result gives conditions under which, 
at type-frequency equilibrium, all individuals, regardless of  type, have the 
same expected gametic fitness. More precisely, assume non-overlapping 
generations, and let wj be the number of  gametes which bear a random 
autosome, contributed by an individual of  (wild-) type j to the next gener- 
ation. Then the total individual gametic contribution is 75w i and in case all 
types have the same ploidy ~r (the case that Lloyd considered), the wj are 
measures of total gametic contribution. Lloyd's result is that under  certain 
assumptions about the type determining genetics and gamete formation, 
the wj are all equal, at type frequency equilibrium, for all (feasible) 
behaviours oz. 

To tie this in with the EEE, note that in a sex allocation model with 
outbreeding and autosomal behaviour, wj is the j th  column sum of  A (at 

= a ) :  in symbols w=  1A. If it is known that  w~ =constant ,  this means 
that 1 is a left eigenvector of A, and so v = 1. Thus under  the conditions 
of  Lloyd's result, the simple Darwinian heuristic v = v (1) mentioned at the 
end of  section 3 will solve sex allocation problems. It is emphasized that 
Lloyd's result is not about  ESS values of  a, but about type frequency 
equilibrium q. It is this that makes it useful when it applies; one can use 
the fact that v =  1 for all a, to simplify the EEE, and hence find the 
evolutionary equilibrium of  a. 

This point can be illustrated with the example of  tristyly. There are three 
phenotypes,  short, mid, and long, but many genotypes, at least under  the 
standard two locus S-M system (Heuch, 1979), and it is no easy matter  to 
calculate frequencies of  different offspring types for a given type, whether 
we take " type"  to be phenotype (with a 3 x3  A) or genotype (with a large 
A). But this is precisely what is required to write down A. Suppose the 
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conditions of Lloyd's result are such that at type frequency equilibrium 
v = I. Let ~ denote the vector of column sums of A(~, a). Then vA(dt, or) = 
1A(c~, o~) = ~ and the EEE equation (9) becomes 

(dw)u =0. (34) 

To solve the ESS problem it is not necessary to know A; all that is needed 
is ~j, the total mutant gamete contribution of type j mutants. Of course the 
type frequency equilibrium q is still needed, but this can usually be obtained 
from the equations w i = constant. So such a result is potentially of great 
utility for ESS calculations. 

Unfortunately, the result has limited applicability. The central hypothesis 
required is that gametes are made, distributed and accepted in proper 
Mendelian proportions. In sex allocation models in which individuals are 
manipulating the type of their offspring by altering genotype frequencies 
of gametes, this hypothesis is certain to fail. 

Situations where it may hold are those in which individuals are manipulat- 
ing not genotype, but size, of gametes, for examples situations in which 
hermaphroditic individuals are shifting allocation between production of 
macro- and micro-gametes. Thus Lloyd's result tends to be applicable more 
to plant than animal models. 

As an example, recall section 4, example 4 of gynodioecy. For the simplest 
case, equation (30), of the general result, v = 1 was calculated. This was the 
case of Mendelian zygote formation and v could have been obtained from 
Lloyd's result. But for the more complicated case of male heterogamy, 
equations (32) and (33), the assumptions for Lloyd's result fail. 

Now Lloyd's result is formulated. Suppose the population contains n 
types (which are regarded as phenotypes), genetically determined, with 
possibly several genotypes corresponding to the same phenotype. Suppose 
for a fixed mode of reproductive behaviour oe, the population is at type 
frequency equilibrium q. Note that the entries q~ are phenotype frequencies 
which are determined by an underlying genotype frequency equilibrium. 
Now let {Bk} be a list of some of the alleles which assort at the type- 
determining loci. Let fkj be the probability that an allele selected at random 
from a random type j individual at the Bk lOCUS is in fact Bk. Thus if, for 
example, all typej  individuals are identical at the Bk locus and heterozygote 
Bkb with some other allele b, then fkj = 1/2. If type j individuals are 
genetically variable at the Bk locus, then fk~ must be an average over all 
participating genotypes (weighted by equilibrium genotype frequencies). 

The main hypothesis of Lloyd's result is: 
(1) fkj equals the probability that a random gamete, contributed to the 

next generation by a type j individual, is Bk. 
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That is, if a random allele at the Bk lOCUS is taken, then fkj must equal the 
probability that it is Bk, conditional on its ancestor one generation back 
being in a type j individual. (This restatement of (1) is more general and 
makes sense in an overlapping generation model.) In practice (1) will be 
guaranteed if both (l') and (1") hold: 

(l') The gametic contribution of each genotype to the next generation 
contains Bk in the correct Mendelian proportion. 

(l") All genotypes belonging to the same type have the same gametic 
contribution to the next generation. 

Lloyd's (1977) result on equal fitness of phenotypes at type frequency 
equilibrium is the following. 
Lloyd's Result. Suppose it is possible to choose n alleles Bk at the type 
determining loci for which, at type frequency equilibrium, (1) holds and 

(2) The matrix (fkj) is non-singular. 
Then wj -- constant. 

Condition (2) is a technical condition concerning the genetics at the type 
determining loci. It requires the n alleles to be "linearly independent". In 
particular it requires at least as many alleles as types at the type determining 
loci. Heuch (1979) proved a version of Lloyd's theorem in which he essen- 
tially assumed (1) and a stronger version of (2): 

(2') For all k, Bk appears in type k with probability >0, but appears in 
no previous type. This condition requires (J~i) to be upper triangular with 
non-zero diagonal, and therefore nonsingular. Thus (2 ' )0 (2 )  and Heuch's 
result is a corollary of Lloyd's. It is often possible to choose and order the 
alleles Bk so that (2') holds. In particular this can be done for the S-M 
system in tristyly. So in practice (2') is the useful condition. 

In summary, for sex-allocation problems with autosomal control and 
outbreeding, Lloyd's result says that v ~ l if (l) and (2) hold. Furthermore, 
(l) can be replaced by both (l') and (1") and (2) can be replaced by (2'). 
Lloyd's result was proved by Charlesworth (Lloyd, 1977) and reformulated 
by Taylor (1984). 

As an example, consider section 4, example 4, with male heterogamy and 
MM lethal. If Lloyd's result is applied i~ must be decided what to choose 
for "types". If we choose phenotype (female and male, the latter with two 
genotypes Mm and MM) then (l") fails. If we choose genotype then there 
are three "types" determined by 2 alleles and (1") holds but (2) fails. Of 
course we know in advance something will fail, because in this case, from 
equation (27) 

v ~  (Q/E, 2x/3+ Q/2); ~ (1, 1). 

Lloyd's result is used in Taylor (1984) to obtain the ESS pollen-ovule 
trade-off in tristyly. Occasionally, in the sex allocation literature a 
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"Darwinian fitness" analysis is used (v = v t~) without any explicit justifica- 
tion. Often Lloyd's result is what is needed to provide this justification. 

This section is concluded by mentioning that there are results o f  quite 
another  kind which conclude that v - 1. Such results say that under  suitable 
assumptions, when a is at evolutionary equilibrium, v ~ I. Thus Lloyd's result 
requires (type-frequency) equilibrium of  q, but admits a range of  ct (one 
of which will be the evolutionary equilibrium we are seeking), whereas this 
second kind of  result requires (and follows from) the EEE. 

As an example of  such a result, if the mutations under  consideration only 
affect type j behaviour,  then equation (9) becomes v dAj = 0. Consider a 
mutant which differentially shifts resources from type i to type k offspring. 
Then r i d % +  Vkdak)= 0. This says that value (asymptotic fitness) gained 
through type k must equal value lost through type i. If  offspring types are 
equally expensive (at margin) and genetically related in the same way to 
the type j parent, then dau/dak j = - l  and one can conclude v~ = Vk. I f  this 
holds for any pair of  offspring types we deduce v ~ 1. 

For example, this can happen in example 1 of  section 4. If the (f, m) 
trade-off curve (19) is symmetric about the diagonal f =  m, then equation 
(22) has the solution f = m and at this point it is indeed the case that v -- 1. 
But it would be logically incorrect to assume v ~ t (without some justification 
such as symmetry) and deduce f =  m at equilibrium. (If  v ~  1 the EEE 
becomes d f + d m  = 0  which would solve to give f =  m in this case.) But a 
result such as Lloyd's which relies only on type frequency equilibrium, can 
be invoked at the outset in the formulation of  the EEE. 

6. Discussion 

A glance at the literature testifies that mathematics has become an impor- 
tant ingredient in the modelling of  sex allocation problems. Indeed it has 
a lot to offer this field, not only for its capacity to calculate, but more 
importantly for its capacity to make precise and simplify our  thought 
processes and, through abstraction, to provide some structural unity to a 
collection of  models. For mathematics to play this role effectively i t  must 
be used with great care and integrity and even some skill. Otherwise it 
almost certainly appears to make things more, rather than less, complex. 
Hand in hand with this, is the need for careful exposition o f  all results 
which use mathematics. 

In any field, at the beginning of  the modelling process, there will be many 
special mathematical results, each new one requiring some pioneering 
ingenuity to find. After some critical mass of  such examples has been 
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obtained, the time is ripe for the real work of  mathematics to begin: the 
provision of  a general conceptual and computational framework within 
which past examples can be understood and future examples formulated. 
The modelling of  sex allocation is ready for such a framework and this 
paper represents attempts to put one forward. The ideas behind this formula- 
tion are not new; they already appear  in the literature in a great variety of  
papers. But they have not yet been assembled at this level of  generality. 

As an example of  the way in which a general model such as this can be 
used to aid in the understanding of existing models, the interesting and 
mathematically complex paper of  Uyenoyama & Bengtsson (1981) is con- 
sidered. They treat a wide range of  sex ratio control mechanisms, but 
we  restrict attention to haplodiploidy with "'sister" control of  brood sex 
ratio. Thus we have the situation of  example 3 of  section 4. Also assumed 
is the linear trade-off, equation (20), between f and m. But instead of  the 
one wild-type sex ratio gene of  example 3, Uyenoyama & Bengtsson suppose 
a polymorphism at the sex-ratio locus with two alleles A and a. Then there 
are 5 wild types, 3 female, AA, Aa and aa, and 2 male, A and a (given in 
order). Departing from the past notation let (sl, s2, s3) be the female type 
frequencies and (h,  t2) be the male. So Y. s~ =Y~ t~ = 1. Suppose genotypes 
AA, Aa and aa (in sisters) make proportions r~, rE and r3 of sons, respectively. 

Uyenoyama & Bengtsson show that there is a "symmetr ic"  type frequency 
equilibrium at which the frequency of  A in females and males has a common 
value p = st  + s f f 2  = t~, provided there is overdominance,  r : >  r~, r3 (which 
is now assumed), or underdominance r2 < r~, r3. Furthermore, in this case, 

pr~ + q r  2 = pr2 + qr3 = r 

where r is the overall proport ion of  males in the population, and q = 1 - p .  
They also give a condition (p. 67, equation 7) for the stability of  this 
equilibrium. 

This is as far as they go with the analysis. They observe in the discussion 
4.4 that the equilibrium sex ratio is not in general l :3 (the case r =  1/4) 
and in fact may vary considerably depending on the values of  the r ,  

Indeed it may, but it must be pointed out that what they have done in 
the paper is a type-frequency analysis with fixed assumptions about 
behaviour a = (r~, r2, r3). They should now proceed with the ESS analysis 
of  a. 

This is not hard to do, the argument is sketched because the result is 
interesting. Focus on a rare mutant form A of  the allcte A and suppose ,~A 
females have ~, sons and ~,A females have ~2 sons. There are three mutant 
types: AA, Aa and A, in order, the first two female, the third male. The 
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transition matrix for sister control, works out to be 

1 
4 = -~ 

p(2 - r, - ~,) p(2 - ~ l -  r2) 

q ( 2 -  r2-  ~2) q ( 2 -  ~2- r3) 

P ( r , + ~ , ) + q ( r 2 + ~ 2 )  p ( ~ , + r 2 ) + q ( ~ 2 + r 3 )  

817 

- - r  ^ t T -  [4s,( 1 - r, ) + s2(2 - ~, -- F2)l 

! 
1 - r  

r [s2(2- ~1- r2)+4s3(1 - k'2)] / 

A 0 

and the eigenvectors of A for the eigenvalue h = 1 - r are 

( 
v =  l - r ' l - r  r l  

L pr  J 

Two equilibrium conditions are obtained, one with a A / a r l  and the other 
with a A / a r 2  in place of dA in equation (9). Both conditions reduce to 
r =  1/4. One concludes that even when sex ratio is determined by a one 
locus polyorphism, it will still evolve, under sister control, to the standard 
1:3 ratio. Uyenoyama and Bengtsson are misleading on this point. Space 
has been taken with this rather special example as it illustrates rather well 
the value of  a general conceptual framework which distinguishes type- 
frequency and evolutionary equilibria. 

Much of  sex allocation theory is concerned with the special case of two 
types, female and male. The basic evolutionary equilibrium equation in this 
case is the Shaw-Mohler  equation (1). There are a number of assumptions 
behind this equation about the mating and genetic structure of the popula- 
tion and the mechanisms of  sex ratio control. If  these assumptions are 
relaxed, a number of interesting generalizations of the equation can be 
formulated. For example, a more general treatment of  control leads to forms 
of  this equation involving coefficients of  relatedness, from which special 
results such as "worker control" (section 4, example 3) can be obtained. 
In another direction in a separate paper (Taylor, 1985) the phenomenon 
of inbreeding is treated and a form of equation (1) is derived for more 
general mating systems. The important thing to note is that such general 
forms are special cases of the EEE equation (9), and, within the framework 
of  the general model, this equation can always be used directly to obtain 
particular results. 

Another branch of  sex allocation theory is concerned with two gamete 
types, macro and micro. This branch, too, has its "Shaw-Mohler"  equation 

d__x + d_._y = 0 
x y 
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which  can  be o b t a i n e d ,  for  a p o p u l a t i o n  o f  h e r m a p h r o d i t e s ,  by  se t t ing Q = 0 
in equa t ion  (28) and  d r o p p i n g  the subsc r ip t  2. In te res t ing  gene ra l i za t ions  
o f  this,  such  as equa t ion  (30) are o b t a i n e d  when  there  is more  than  one  
type  in the  p o p u l a t i o n s .  Behav iou r  can now b e c o m e  c o m p l e x  and  o rgan i sms  
mus t  m a k e  f e m a l e - m a l e ,  as well  as m a c r o - m i c r o  gamete ,  dec is ions .  Each  
t rade-off  we are  in te res ted  in can be f o r m u l a t e d  with an e v o l u t i o n a r y  
equ i l i b r i um equa t ion ,  bu t  each  equa t ion  m a y  con ta in  m a n y  b e h a v i o u r a l  
pa rame te r s ,  and  the resul t ing  ESS is the  so lu t ion  to severa l  s i m u l t a n e o u s  

equa t ions .  A n  i m p o r t a n t  genera l  idea  which  s impl i f ies  the  s i tua t ion  is the  
resul t  o f  L l o y d  d i scussed  in sec t ion  5 which  s u p p o s e s  tha t  a cer ta in  na tu ra l  
p robab i l i s t i c  p rocess  makes  the  type  f r equency  ( " m a l e - f e m a l e " )  a l l oca t i on  
dec is ions ,  a n d  the f o r m u l a t i o n  o f  the resu l t ing  m a c r o - m i c r o  game te  equi l i -  
b r ium c o n d i t i o n  is s impl i f ied .  

The author owes a debt to the students of Math 838 for their sustained insistence 
that he make everything clear and understandable, and to Ric Charnov, Michael 
Bulmer, John Maynard Smith, and Doug Dillon for helpful comments. This research 
was supported by a grant from the Natural Sciences and Engineering Research 
Council of Canada. 
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