Heredity 54 (1985) 179-185
© The Genetical Society of Great Britain

Received 5 July 1984

Sex ratio equilibrium under partial

sib mating

Peter D. Taylor
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Queen’s University, Kingston, Ontario, K7L 3Né.

A general equation for equilibrium sex allocation is provided which models asymmetries between son and daughter in
the costs of offspring production, the genetic relatedness to the controlling genotype and the amount of competition for
mating opportunities and reproductive resources. A genetic proof is given which is valid for diploid and haplodiploid
systems with a variety of modes of sex allocation control, provided sib mating is the only source of inbreeding. By

way of example, some variations of Hamilton’s (1967) model are discussed.

INTRODUCTION

Hamilton (1967 and 1979) discussed a sex alloca-
tion model in which there was partial sib-mating
and a variety of genetic sex ratio control mechan-
isms. My purpose is to provide a condition (3) for
equilibrium sex allocation which generalises both
his work and the standard Shaw-Mohler (1953)
formula

4, dm_

o (1)
Roughly speaking, the equilibrium equation is that
which would be obtained from a non-genetic,
game-theoretic analysis of the problem, using
relatedness coeflicients. Indeed I will point out
that if w is the fitness function belonging to such
a model then the equilibrium equation is simply
the condition, dw =0, that w be stationary. The
equilibrium condition allows identification of the
three principal factors which cause sex ratio bias,
these being son-daughter asymmetries in 1) off-
spring production, 2) offspring genotype, 3) breed-
ing opportunities. The magnitude of the last two
may be affected by the level of inbreeding, but
inbreeding per se has no effect on sex ratio equili-
brium. I provide a precise genetic proof of the
result. I do not consider in this paper the question
of stability.

Population structure

Suppose we have an infinite population with
discrete, non-overlapping generations, and two

types of individuals, female and male. T assume
diploid genetics with the standard X-Y sex deter-
mining system. [The important phenomenon of
haplodiploidy is obtainable by restricting attention
to the X-chromosome.]

I assume the life cycle has two stages. In stage
one, offspring are produced by what I will call
mated females. Genetically, this term refers to the
combined (tetraploid) genotype of female and
mate. Each mated female produces f daughters
and m sons where there is a negative tradeoff
between f and m. A simple way to model this is
with a parameter r, 0= r= 1, which can be thought
of as the proportion of reproductive energy allo-
cated to production of sons. Then f=f(r) and
m=m(r) and the feasible pairs (f, m) lie on a
tradeoff curve in f—m space. The classic case
considered by Fisher (1930) of a linear tradeoft
curve is f=1—r, m=r.

_ In stage two, the offspring generation mates to
produce next generation mated females. I denote
by P the probability that a female at the end of
stage one breeds, and by Q the expected number
of mates which breed of a stage one male. Then
Q= Pf/m if the whole population employs the
allocation (f, m). For simplicity I assume a mated
female has only one mate, but this restriction is
lifted in the discussion.

I assume that a female chooses her mate either
from her brothers or at random in the population.
Thus sib-mating is the only source of inbreeding.
I assume offspring are made from the mated female
genotype in the standard way: one haploid gamete
from each parent. Thus our assumptions rule out
more general forms of inbreeding, such as first
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cousin or father-daughter, and such phenomena
as laying workers.

Control of sex allocation

The value of the allocation parameter r employed
by a mated female is determined as follows. She
first manufactures a control genotype using genetic
material of herself and her mate, following fixed
selection rules, and the value of r is then deter-
mined by the genotype of the control individual
at a single locus, which we refer to as the control
locus, which may be autosomal or sex-linked. The
control genotype may be simply one of the parents,
or may be a duaghter or a son or some probabilistic
mixture of these. For example, to model the much
studied phenomenon of worker control of sex ratio
in a haplodiploid population, we take a daughter
as the control genotype and the control locus to
be on the X-chromosome. We will assume the
control genotype is either haploid or diploid.

|1 denote by R, and R,, the specific (to the
control locus) relatedness of the control genotype
to the daughters and sons respectively of the mated
female. Thatis, R, is the expected number of copies
(identical by descent) in a daughter, of a random
allele at the control locus in the control genotype,
and R,, is the same for a son. R, and R, depend
on the level of inbreeding.

These relatedness coeflicients are not in stan-
dard usage, but they are the most natural objects
for our model. They are closely related to
Falconer’s (1960) coancestry, the probability that
two alleles drawn at random from each of two
individuals are identical by descent. If we let ¢,
and ¢, be the specific (to the control locus) coan-
cestry of the control genotype and a daughter and
son respectively, then R,=c¢,m, and R,, = c,m,
where 7, and m,, are the specific (at the control
locus) ploidies of female and male.

The inbreeding coefficient

Define the inbreeding coefficient F to be the proba-
bility that uniting gametes are identical by descent
at a random locus. I remark that for partial sib-
mating, it does not matter whether the locus in
question is autosomal or X-linked; in both cases
F=s/(4—3s) where s is the probability of sib-
mating (Li 1955). At equilibrium F is also the
probability that the two alleles at a random (auto-
somal or X-linked) locus in a diploid individual
are identical by descent.

As an example of the relatedness coefficients,
consider the case of X-linked control (isomorphic
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to haplodiploidy). A standard calculation shows
R,=(3F+1)/2 R, =(F+1)/2
maternal or son control

Ry=1+F R,=F

paternal control (2)

R,=(5F+3)/4 R, =(3F+1)/4

daughter control

Mother and son control are equivalent here, since
an X-allelein asonisthe same as a random X-allele
in the mother. The daughter coefficients are straight
averages of the previous two, since a random X-
allele in a daughter is in mother or father each
with probability 1/2.

It is of interest to observe the effect of F on
the R;/R,, ratio. In the case of control by the
mother, the ratio is near 1 for small F and increases
to 2 at F'=1. For control by father or daughter,
the ratio is larger for small F and decreases to 2
at F=1.

The equilibrium equation

Suppose the entire population is employing a cer-
tain allocation r which is an interior point of the
range [0, 1]. The equilibrium condition (3) is a
necessary condition for this strategy to be
evolutionarily stable, that is, resistant to invasion
by any rare mutant strategy r’. It is a local condi-
tion, assuming not only that r’ is rare, but that it
1s close to r. | formulate the condition in differential
form.

Specifically, I assume a single wild type allele
at the control locus coding for strategy r, and a
rare mutant allele which codes for r'. I consider r
fixed and imagine r’ to be variable, and near r.
The case ' =r, for which the mutation causes no
phenotypic change, will be important.

A mated female will be called mutant if she
has at least one mutant allele in her (tetraploid)
genotype, but she may or may not employ strategy
r', depending on the control genotype. If she does
use r’, she will be called deviant. In this case she
makes f” daughters and m’ sons, and I will denote
by P’ the probability that each of her daughters
breed and by Q' the expected number of breeding
mates of each of her sons. In general P’ and Q'
will depend on both r’ and r.

To get the equilibrium condition, let ' be a
differential change from r, ¥'=r+dr, and let df,
dm, dP and dQ be the corresponding differential
changes of [, m’, P’ and Q' from f, m, P and Q.
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Note that dP and dQ measure the differential
increase in breeding probability of a daughter and
number of breeding mates of a son of a deviant
female.

Then the equilibrium equation, which is
derived in the Appendix, is

df dP d d
) ()

I emphasize this is a necessary condition for an
evolutionarily stable interior value of the sex allo-
cation parameter r. In practice it allows us to locate
all interior stationary points, and stability is then
checked separately.

Let me remark that in a game-theoretic model
we would try to write down an expression for the
fitness w' of the control of a deviant female, and
the most obvious candidate would be w' = R, f"P'+
R,,m’'Q’. Then, noting that fP = mQ, (3) is just the
condition dw = 0.

Three factors causing sex ratio bias

The objective of the evolutionary game is to project
genes into future generations, and in a sexual
population, one has a choice between placing ones
genes, initially, in daughters or sons. Sex ratio bias
may be caused by any son-daughter asymmetry in
this process. In this model, I class the asymmetries
which lead to sex ratio bias into three types.

The first type belongs to stage one and is reflected
by asymmetry in the f—m tradeoff curve (about
the line f= m). This type is accounted for already
in the Shaw-Mohler equation (1). The classic
linear tradeoff f=1—r, m=r, is symmetric and
leads to a ratio of r=1/2.

The second type of asymmetry is genetic and is
tied to the locus of control. In our equilibrium
equation (3) this asymmetry is measured by the
relative size of the relatedness coefficients R, and
R,,. For example, when the control locus is auto-
somal, R, = R,, regardless of control genotype, and
(3) becomes

4 4P\ (dm dQ)
<f+P)+<m+Q)_O' @

But sex chromosomes are put into sons and
daughters in different quantities, and the asym-
metries resulting from sex-linked control are
reflected in the R values. The size of this effect
depends on the level of inbreeding, sometimes
increasing the bias, sometimes not, as we can see
in (2). For example if R,> R,, (as is the case for
X-linked control), a simple geometric argument

shows that the equilibrium point of (3) is shifted
away from that of (4) towards higher f values, for
most tradeoff curves, certainly for those which are
linear (df/dm =constant) or concave-down
(df/dm decreasing with m).

An important special case of X-control is, as |
have pointed out, haplodiploidy. If there is no
inbreeding then under maternal control R;=R,,
and under daughter (“worker”) control R, =3R,,.
But if there is some inbreeding then these relation-
ships change as in (2).

The third type of asymmetry belongs to the
mating and breeding phase, and measures sex
differences in breeding opportunities. This factor
is measured by dP/P and dQ/Q and may be
referred to as local mate competition or more gen-
erally, local (reproductive) resource competition.
If all females mate and if males disperse to mate,
then dP =0=d(Q and (3) beomes

R,— 4 +R,, ——=O (5)

f m

But if a shift in allocation towards sons, of a
deviant female, results in fewer mates per son, then
dQ/dm <0, and (3) will yield a higher f value
than (5). Similarly, if a shift towards daughters
results in fewer breeding opportunities for each
daughter, then dP/df <0, and (3) will yield a
higher m value than (5).

Example: variations on Hamilton’s model

To calculate Q" we need to know the mating struc-
ture; it is not enough to know the level of inbreed-
ing. For example in Hamilton’s (1967) model, N
unrelated mated females colonise a patch and pro-
duce offspring who mate at random before the
females disperse to find new colonies. Then a
deviant mated female will be the only one in her
patch, and, assuming all females mate (P'=P =1)
the number of mates of each of her sons is
,_ AN-Df+Sf

Q (N-1)ym+m” (©)
and Q = f/ m, the female/male ratio. Note that Q'
depends on both r' and r. Taking differentials
(r'=r+dr) we get

4.2

dP=0 d0=%<f —

and (3) becomes

df m/Rf d_m< _L)A
Rff<1+ " )+R,,,m 1-—)=0 ®
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giving, in general, a female bias compared with
(5). For the linear tradeoff case f=1—rand m=r,
and maternal control, (8) solves to give

,N_—_l (Aut al 1
r= N utosomal contro

9)
_@N-1)}N-1)

N@N -1 (X-control)
obtained by Hamilton (1967 and 1979) and Taylor
and Bulmer (1980).

I now mention two or three variations of
Hamilton’s model to assist in the understanding
of local resource competition. First we remove all
local mate competition, but retain some inbreed-
ing. Suppose some fixed proportion g of all males
are winged and disperse to breed. (Hamilton 1979
offers some evidence for such male dimorphism.)
The remaining males each mate with a single
female (assuming there are always enough to go
round) and the unmated females disperse to mate
at random with the winged male population. Then
the number of mates per son of a deviant female is

Q' =(-p)+p(f=(1=p)m)/pm=f/m

and is equal to Q. So dQ =0, there is no local mate
competition, and (5) applies. But there is still par-
tial sib-mating, and hence inbreeding.

As another variation suppose the males mate
on the patch when small and the mated females
continue to grow on the patch until dispersal, so
that each patch can only produce a fixed number
M of females. Then

, M - M
Q*(N—l)m+m' P#(N—l)f+f’
(1

0)

and (3) becomes

R,-%(l—%)%—R,,,%(l—TIV—) =0. (1)

Cancelling the | —1/ N, we get equation (5) again,
but we should not say there is no local resource
competition, but rather that there is no male-
female asymmetry in this regard. The differentials
dP and dQ are both non-zero, but their contribu-
tions cancel.

This second variation also provides a model
for a finite population (with M breeding sites) and
random mating. Of course, eventually, such a
population is completely inbred, but the equili-
brium sex ratio (in the absence of genetic or pro-
duction asymmetries) is still 3. Indeed Fisher’s
classicial sex ratio argument (1930) does not
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require either an infinite population, or outbreed-
ing, but only random mating.

As a third variation suppose the females are
still limited to M per patch, but the males disperse
early to breed. So there is no inbreeding and Q' =
Q, but P’ is still given by (10), and

R,~%(<l—%>+Rmd?m=0 (12)

giving a male bias over (5). Another example of
local resource competition in females (in primates)
has been described by Clark (1978).

Thus while the magnitude of the local resource
competition often depends on the level of inbreed-
ing, the inbreeding should in no way be regarded
as causing this component (or any other!) of sex
ratio bias.

DISCUSSION

Nonacs (1985) has reviewed sex allocation
phenomenon in ants and has argued that genetic
relatedness asymmetries (differences between R,
and R,,) appear more significant than local mate
competition (differences in P and Q) in causing
sex ratio bias in these populations. A model such
as (3) which combines these phenomena into one
equation, should make it easier to compare their
significance in a quantitative manner. The determi-
nation of the amount of inter-colony breeding in
these populations is seen to be rather important,
as it has an effect on both factors.

The equilibrium equation (3) can be written
d(Pf), . d(Qm)_

P Qm
where Pf and Qm are numbers of daughters and
sons contributed to the next generation population
of mated females. This is an interesting simplifica-
tion but less useful both practically and concep-
tually. In practice it is usually more natural to get
hold separately of constraints on the production
and mating stages of the life cycle. And concep-
tually, the separation of P and Q from f and m
allows us to analyse the important phenomenon
of local resource competition.

My assumptions are quite restrictive and it
would be nice to generalise the equilibrium
equation. Let me mention some possible directions.

(1) More general systems of inbreeding. The
terms of (3) all make sense for more general sys-
tems than sib-mating, and we can ask if (3) still
applies. I would guess yes, but the genetic proof
will be more complex. My method of argument

R,

0 (22)
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relies on having “individuals” (they are my mated
females) whose offspring do not interact with the
offspring of other genetically related individuals
during the course of development up to the time
of formation of the next generation of individuals.
This is more difficult to accomplish with inbreeding
that crosses sib boundaries.

(2) Multiple mating. 1 assumed every mated
female had a unique mate, but this assumption can
be removed by expanding our notion of type of
mutant mated female. For example, if we assume
every female has two mates with equal contribu-
tion, then a mated female has a ploidy of 6 (or 4
with X-control) and we have many more mutant
types. The relatedness of the control to the off-
spring will now change and must be carefully
worked out. Even variable numbers of mates can
be handled in this way. So our equation (3) is valid
for multiple matings, but care must be taken with
R, and R,

(3) Multiple controls. This problem is more
difficult. If a large population of control
individuals is constructed (e.g., workers) then some
assumptions must be made on how different con-
trol genotypes will interact. The assumption of
“behavioural additivity””, that each control
individual gets an equal fraction of the reproduc-
tive resources and uses its own r on that fraction,
leads to our equation, but only really makes sense
for the linear tradeoft case f=1—r, m=r. In the
absence of behavioural additivity things can get
complicated. Some recent work is discussed by
Bulmer (1983).

(4) Laying workers. 1 have assumed offspring are
made in the standard way: one gamete from each
parent. If this assumption is relaxed, equation (3)
may fail. The assumption is needed in the argument
that identifies the left eigenvector v. An example
which demonstrates the failure of equation (3) is
found in the phenomenon of laying workers in
haplodiploidy, under queen control of sex alloca-
tion. This has been studied by a number of authors,
Trivers and Hare (1976), Charnov (1978) and
Taylor (1981), to name but a few. It is equivalent
to diploid X-control in which a daughter is per-
mitted to use a portion of the colony’s resources
to make male offspring of her own. Following
Taylor (1981), suppose the daughter gets 8 males
for every oftfspring made by the mated female. With
a linear tradeoft, f=1-~r and m=r+pg are the
female and male outputs. An examination of the
argument for the equation (3) shows that the values
of R, and R,, used should be those which apply
to the extra df and dm oftspring. Thus R, =R, =
1/2. Then assuming outbreeding, equation (3)

gives —1/(1—=r)+1/(r+B)=0,and r=(1-8)/2,
whereas the correct answer (Taylor, 1981) is r=
(1/2)~(B/4).

Finally I emphasise that any solution of (3)
must be checked for stability and this is often not
easy analytically, and may require reverting to the
technicalities of the genetic model and working
with the matrix A, something (3) has circumvented.
In many applications, a computer check may be
reasonable.
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APPENDIX

Derivation of the equilibrium equation (3)

We keep track of the frequency of the mutant allele
by keeping track of the population of mutant mated
females from one generation to the next. Our
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assumptions that the mutation is rare and sib-
mating is the only source of inbreeding, allow us
to assign each mutant mated female to a single
mutant mated ancestor one generation back, and
this effectively allows us to count mutant genes.

There will be different types of mutant mated
females depending on the configuration of mutant
alleles. For example, under X-control, there are S
types which we designate by (2, 1), (2,0), (1, 1),
(1,0) and (0, 1), the first and second entries being
the number of mutant alleles in mother and father
respectively. Denote by a; the number of mutant
mated females of type i which derive from a single
type j, in one generation, and let A" denote the
matrix of the a; The entries of A" depend on r
and r’ and the rate of increase of the mutant allele
frequency is given by its dominant eigenvalue A’
If r=r+dr,then A’=A+dA and A"’ = +dA and
the condition that r be stationary is dA = 0. This
is equivalent to

vdAu =0 (13)

where v and u are the left and right dominant
eigenvectors of A (Bulmer and Taylor 1981). For
example, with X-control, A" is 5x5 and, for the
case of sib-mating with probability 1/ N, is given
by Taylor and Bulmer (1980).

I now interpret the eigenvectors v and u of A.
These interpretations are strongly analogous to the
interpretations of the right and left eigenvectors
of the Leslie matrix in demography as stable
age structure and reproductive value vectors
(Goodman, 1967). First if n; is the number of
mated females of type i, then the number after one
generation is A, =) a;n. At asymptotic propor-
tions A, = An; (we assume r' = r), which tells us that
u;, the frequency of type i mutant mated females
is the dominant right eigenvector of A, Au=Au

The key lemma behind the identification of v
is thatif r' = r, then at asymptotic proportions every
mutant allele in a mated female genotype con-
tributes the same expected number of copies to
the next generation. This result, first observed by
Hamilton (1967), is verified by direct calculation
for each type of control locus. For example, for
X-control, an allele on the female side contributes
(f/2)+(f/m)(m/2)=fcopies (every son gets f/ m
mates) and an allele on the male side contributes
f+0=1 copies as well. I can now identify v. Let
v, be the number of mutant alleles in the genotype
of a mutant mated female of type j. Then the
number of mutant alleles contributed to the next
generation by a type j mated female is ¥ va;. If
each of her v; alleles make the same number A of
copies, then this equals Av, and vA=Av. For
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example, for X-control, with the types listed above,
v=1(3,2,2,1,1).

These interpretations of the eigenvectors allow
me to formulate an important heuristic. Suppose
the mutant gene behaves normally (r' = r) and has
reached asymptotic proportions u. Let it express
altered behaviour (r'# r) for a single generation.
Let E’ be the expected mutant gene contribution
to the next generation of a random mutant mated
female. Then

E'=vA'u (14)
The equilibrium condition (13) can now be written
dE =0. (15)

This is an important result, both conceptually and
computationally. It says that for purposes of writ-
ing down a local equilibrium condition, we can
regard the mutant allele as if it operates in an
altered manner for one generation only.

I now derive an alternative expression for E'.
Let p; be the probability that a mutant mated
female of type j is deviant, that is, actually
expresses the mutation, and makes (f", m’) ofi-
spring instead of (f, m). The p vector will depend
on the control mechanisms, both locus and
genotype, and on dominance assumptions about
the control genotype. For example with maternal
X-control, we have p= (1, 1,1, 1,0) fora dominant
mutationand p=(1, 1,0, 0, 0) for a recessive muta-
tion. For sister control, p=(1,1,1,3 1) and p=
(1,0,1,0,0) are the dominant and recessive p-
vectors respectively. Also let x; and y; be the
expected number of mutant alleles in a daughter
and son, respectively, of a type j mutant mated
female. For example, with X-control, x(2, 1, 3, 1,
1) and y=(1, 1, %, 3, 0). Then

E'=2(pPf +(1=p) P)xuy
+(pQm +(1-p)Qm)yu;.  (16)

Now let z, be the expected number of mutant
alleles in a type j control genotype. It is easy to
argue that for any haploid control (such as paternal
X- or Y-control), z; = p, and for a diploid control,
z;=pj+p; where p" and p” are the deviant proba-
bilities for a dominant and recessive mutation
respectively. Let £, and E be the dominant and
recessive versions of E’. Note that (forr'=r) E,; =
E.=E = Pfx+ Qmy, where x and y are the average
numbers of mutant genes per daughter and son of
mutant mated female (the average taken with the
type frequencies u; corresponding to the case r'=
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r). It follows that
(E4—Eq)+(E,—E,)
=(Pf—P YL Zxu;+(Q'm' — Qm) ¥, Z;y;u;.
(17)

Now define 7=} zu; to be the average (with
r'=r) number of mutant genes in a control
genotype, and notice that

Ry =% zx;u;/z
and

R,=%Y zyu;/Z

Indeed this follows from the observation that a
random mutant allele in a control genotype will
be in a type j control with probability zu;/z
(assuming, of course, 7= r). Then (17) becomes

(Ey—E )+ (E,—E,)=ZR/(P'f - Pf)
+ZR, (Q'm —Qm)
=zZ(w —w) (19)

where w' = R,P'f'+ R,,Q'm’ is the game-theoretic
fitness function introduced earlier. An equilibrium
value of r must be stationary for both dominant
and recessive mutants, that is, indifferential form
(r'=r+dr), (15) must hold for both E; and E,,
and (19) gives dw =0 which is equivalent to (3).

The question of dominance

The key to the simplification of (17) was that for
a diploid control, an ESS value of r must be at
equilibrium for the introduction of both dominant
and recessive mutations. But for any specific
assumption about dominance, we can work out
the p, and work directly with (17). The question
arises of when various dominance assumptions will
all give the same equilibrium value of r. That is,

when is

2 PiXiY; _ X pixy;

L Py L Py
where p’ and p” belong to dominant and recessive
mutations respectively? If (20) holds then both
sides will equal R;/R,, and any solution to (3) will
give a candidate for an ESS. If (20) does not hold,
the solutions of (3) will not be biologically mean-
ingful and there will not in general (for general
f—m tradeoff curves) be an ESS r whichis a “pure
strategy” for the population. In this case we expect
the ESS to be mixed; at equilibrium two or more
values of r will be found in the population, and
the analysis becomes more difficult.

Note that for the case of autosomal control,
x;=y; and (20) holds trivially. For the case of
X-control, the 5 X5 matrix A (Taylor and Bulmer,
1980) has right eigenvector

u=QF* F(1-F),2F(1-F),2(1-F),1-F)"
(21)

and it can be directly verified that (20) holds for
both mother and daughter control. Also all types
of paternal and fraternal sex linked control are
haploid and the problem does not arise.

An example in which (20) fails is obtained with
X-control and when the control genotype is a
daughter or son each with probability 3. That is,
the first offspring is male or female with equal
probability, and controls the sex ratio of the brood.
For this case the p values are averages of the
daughter p values (given above) and the (haploid)
son values p=(1,1,% 3 0). Since (20) fails, the
equilibrium point given by (3) is meaningless. For
such a population there is no single ESS. This
example is not of much biological interest because
we might expect son-controlled broods to have
different sex ratios from daughter-controlled
broods. But that is another model. Even if we
suppose the control gene cannot tell the sex of its
bearer, we still could not have a pure state ESS.

(20)



