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 EVOLUTIONARILY STABLE REPRODUCTIVE ALLOCATIONS

 IN HETEROSTYLOUS PLANTS

 PETER D. TAYLOR

 Department of Mathematics and Statistics, Queen's University, Kingston, Ontario K7L 3N6, Canada

 Received February 17, 1983. Revised June 8, 1983

 A model is presented for allocation of
 reproductive energy among ovules and
 pollen of different types in a heterosty-
 ous population of plants with three or
 more incompatibility types. I assume each
 flower produces one seed whose fitness
 depends on the amount of energy allo-
 cated to the ovule (which may be type-
 dependent). I assume pollen is type spe-
 cific and each flower produces pollen for
 all types other than its own. I assume the
 effectiveness of a flower as a pollinator
 of ovules of a certain type is a function
 of the amount of pollen of that type it
 produces. I apply the model to data ob-
 tained by Price and Barrett (1982) on
 Pontederia cordata.

 In recent years a considerable amount
 of theoretical work has been devoted to
 the problem of allocation of reproductive
 energy between the sexes. Rather than
 attempt to list references I refer the read-
 er to the book of Chamov (1982). Much
 of this work has been done with animal
 populations in mind, the general prob-
 lem being that of allocation of resources
 between male and female offspring. Less
 work has been done on plants, though in
 many ways plant populations offer a rich-
 er and more diverse source of evolution-
 ary tradeoffs in the allocation of repro-
 ductive resources.

 Dioecious plants provide the strict an-
 alogue of (most) animal populations and
 the problem remains that of allocation
 between male and female offspring. For
 monoecious plants in which all individ-
 uals are of the same type, the problem is
 essentially the same, but must be for-
 mulated in terms of allocation of re-
 sources between male and female ga-
 metes (pollen and seeds). But for
 populations showing any of the numer-

 ous intermediate behaviors, the alloca-
 tion problem becomes more complex and
 perhaps more interesting. Consider, for
 example, gynodioecy, in which there are
 two types of individuals: female, pro-
 ducing only ovules, and hermaphroditic,
 producing ovules and pollen. There are
 now two allocation parameters to be
 studied: (1) the proportion p of females
 and (2) the proportion r of reproductive
 energy devoted by the hermaphrodite to
 pollen. An evolutionary model for re-
 sources allocation will require both these
 parameters to be at equilibrium. For fixed
 r, the type frequency p will equilibrate in
 ecological time to a value which depends
 on r, but r itself can change in evolu-
 tionary time under the influence of mu-
 tations which shift energy between ovule
 and pollen production.

 More complex still is the allocation
 problem posed by heterostylous popu-
 lations. Suppose there are n types of in-
 dividuals and pollen is type specific, with
 each flower producing ovules of its own
 type and pollen for all other types. We
 now have to find the equilibrium type
 frequencies, and, for each type, the al-
 location of resources between ovule and
 pollen and among pollen of different
 types.

 In this paper I put forward a model for
 the reproductive allocation problem in a
 heterostylous population. I assume n
 types (n ? 3), with each type self-incom-
 patible. A general theorem of Lloyd
 (1977), discussed in Appendix I, asserts
 that under rather general assumptions on
 the genetic determination of types, type
 frequencies reach equilibrium when in-
 dividuals of all types have the same (ga-
 metic) fitness. Heuch (1979a) has shown
 that these genetic assumptions apply to
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 ENERGY ALLOCATION IN HETEROSTYLY 409

 those heterostylous populations in which
 the genetics is understood. I first interpret
 this equilibrium condition (6) for my
 model. I then derive conditions for the
 allocation of resources among ovule and
 pollen production in each type to be evo-
 lutionarily stable. Casper and Chamov
 (1982) have done this analysis for distyly.

 Equilibrium Frequencies

 Assume each individual has a fixed
 amount e of reproductive energy to al-
 locate, from which it must produce not
 only the gametes but also all supporting
 structures (style and stamen, etc.). Each
 type must decide what amount x of this
 energy to spend on ovules. Actually it
 must also decide, for a fixed expenditure,
 how large to make its ovules, and there-
 fore how many to make. To simplify
 matters let's assume each type of indi-
 vidual makes the same number of ovules
 (in P. cordata there is one per flower and
 number of flowers is independent of type),
 so that the choice of x is a choice of ovule
 size. On the other hand, let's suppose that
 for each j, pollen grains of type j are all
 of the same size regardless of the plant
 type which produced them. Thus differ-
 ent expenditures on type j pollen result
 in different numbers of pollen grains.

 Let us measure fitness as expected ge-
 netic contribution to the next generation.
 Suppose a plant which spends x units of
 energy on ovules has fitness W(x) through
 these ovules, and a plant which spends y
 units on type j pollen contributes a mass
 V,(y) of pollen to the type j pollen pool
 (from which all type j ovules receive pol-
 len at random). Suppose a type i flower
 spends x, on ovules and for each j #- i
 y, on type j pollen. Then for each i,

 xi + ; yl, = e, (1)
 j#I

 and a type i plant has fitness W(xi) through
 its seeds and contributes mass V19yl) to
 the type j pollen pool. Let fi be the fre-
 quency of type i in the population. Then
 the average fitness through ovules is

 W = : f W(x,) (2)

 and the average contribution to the type
 j pollen pool is

 VJ= z JV,(Y,J). (3)
 I#J

 Thus the fitness of a type i plant through
 pollen of type j is

 / W(XJ) VJ/(YI)/ PJ (4)
 and the total expected fitness of a type i
 plant is then

 F, = W(xI) + z ,f W(XJ) VJ(y J)/ J.
 j=#

 (5)

 A theorem of Lloyd and Charlesworth
 (Lloyd, 1977) and Heuch (1979a), which
 is discussed in Appendix I, says that at
 equilibrium of type frequencies, all in-
 dividuals have the same fitness. This
 means the fitnesses Fi in (5) are all equal,
 and equal to 2 W (since each seed is the
 union of two gametes). Thus for all i,

 W(xI) + 2/ f; W(XJ) VJ(YIJ)/ VJ = 2 W.
 J#I

 (6)

 These are the conditions for equilibrium

 of type frequencies. Given the xl, ylj and
 functions W and V,, (6) is a system of
 n - 1 independent equations for the

 equilibrium type frequencies f,.
 Let me remark that if all types allocate

 the same energy to ovule production, then
 W(xl) = W for all i, and for each type its
 total fitness through pollen,

 z / W(XJ) VJj(YI)/ VJ)i
 J#I

 must also equal W. Thus each type has
 the same fitness through ovules and pol-
 len.

 Evolutionary Stability

 Now I derive conditions for the allo-

 cations xi and ylj to be evolutionarily sta-
 ble. I assume they are under genetic con-
 trol and various mutant alleles can arise
 which shift the allocation in particular
 types i subject always to (1). Under evo-
 lutionary stability the fitness of any such
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 mutant can be no greater than its "wild
 type" (normal) allele. Fix attention on a
 particular i and consider a mutant allele
 whose allocation in type i flowers is xl

 and fl, where

 xi + y,=e. (7)
 J?#

 If the mutant allele is sufficiently rare
 that it does not alter the population pol-
 len pool, its fitness is

 F1= W(5tc) + f W(xJ) Vjic)/ Pi

 (8)

 This is the analogue of (2) and (3) in Cas-
 per and Chamov (1982) for distyly. A
 necessary condition for evolutionary sta-
 bility is that for each i this must not ex-

 ceed Fi in (5) for all (xl, 9)) satisfying (7).
 The standard Lagrange multiplier con-
 dition says that at an interior maximum
 of F, subject to (7) there is some X, for
 which

 AF,A/0, = aF l= X, (9)

 for all j =# i, at the point (x,, y,,). Thus, if
 I =# i,

 W(x,) = f/W(x1)J/)y,J)/V = Al (1 0)

 Equation (10) says that for each i the
 marginal fitness of a type i plant through
 its seeds is equal to its marginal fitness
 through type j pollen for all i 4# i. This
 marginal fitness X, has the units of fitness
 per unit energy.

 Given the fitness function W(x) and
 pollen effectiveness functions VJ(y), it
 should be possible to solve equations (1),
 (6) and (10) for the variables f, xl, yi, and
 X, Note that the equation If, = 1 together
 with the above equations provides

 1 + n + (n - 1) + n + n(n - 1)

 - n2 + 2n,

 independent equations in the same num-
 ber of unknowns. The equations in (10)
 are critical point conditions. They are
 necessary but certainly not sufficient for
 global or even local evolutionary stabil-

 ity. To examine the stability of any so-
 lution we need an ESS type condition
 (Maynard Smith and Price, 1973). This
 is discussed in Appendix II.

 The Case of Pollen Effectiveness
 Linearly Related to Expenditure

 If pollen effectiveness VJfy) is linear in
 y, the analysis of the equilibrium equa-
 tions is simplified. One way to model this
 is to assume that the production of type

 j pollen requires an expenditure of Zj on
 supporting structures (a fixed cost) and
 that all remaining energy can be con-
 verted to pollen at a fixed rate (mass per
 unit energy). Finally assume that the con-
 tribution of a plant to each pollen pool
 is proportional to the number of grains
 of that pollen type produced. Letting k1
 be the constant which converts energy
 spent on the pollen itself to mass m con-

 tributed, we have y = z, + m/kj and so

 Vj(y) = m = kjy-z). ( 1)

 Let mij = VJ8yj() be the mass of type j pol-
 len contributed by a type i plant. Then
 the average contribution is

 VJ= f fmj = (JM) (12)

 where we have introduced the matrix

 M = (min) and denoted by (fMl)j the jth
 entry of the product fM. Since Vj'(y) =
 kj, the equilibrium condition (10) be-
 comes

 W (x) = f W(xj)kj/(fA)j = X, ( 13)

 whenever i #& j. Since n > 3 (this step
 does not work for distyly!) it follows that

 allfW(xj)kj/(fMl)j are equal and hence all
 Xi must be equal, say to X. Thus for all i
 and j,

 W(xI) =f W(xj)kj/(fVl)j = X. (14)
 Equation (14) says that all marginal fit-
 nesses (per unit energy) are equal. That
 is, there is one number X which is the
 marginal fitness through ovule invest-
 ment for all types and is also the rate at
 which energy is converted to effective type
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 ENERGY ALLOCATION IN HETEROSTYLY 411

 TABLE 1. Pollen production of P. cordata morphs

 calculated from Price and Barrett (1982, Tables 3

 and 4). Note our table is the transpose of theirs, so

 that rows correspond to morphs. Thus the 3 x 3

 portion of our table contains the matrix M.

 Pollen production per anther
 (volume of grain (mm3) x nb.)

 Anther level
 Total

 Morph / m s m,

 I - .1218 .1505 .2723
 m .2093 - .1362 .3455
 s .1735 .1917 - .3652

 j pollen for all types which make type j
 pollen. In particular, if W is curvilinear,
 there is unlikely to be more than one sta-
 ble x with a fixed value of W(x), and we
 conclude all xi are equal and

 W(x) = W for all i. (15)
 We have already observed in connec-

 tion with the type frequency equation (6)
 that this implies that at equilbrium, each
 type has the same fitness through ovules
 and pollen.

 If all pollen types have the same mar-

 ginal effectiveness, i.e., if all k, are equal
 to some k, then (14) implies that

 ( Wk/X)fj = (fM)j, (16)
 which says f is a left eigenvector of the
 matrix M.

 Note that the assumption of linear pol-
 len effectiveness has introduced some de-
 generacy into our system of equations.
 The n + n(n - 1) equations (10) are re-
 placed by the 2n equations (14) and the

 n unknowns Xi are replaced by the single
 unknown X. The complete system now
 has 4n equations in n2 + n + 1 un-
 knowns (still counting the xi as n un-
 knowns). For tristyly (n = 3) this gives
 12 equations in 13 unknowns. There is a
 one parameter family of equilibrium
 states.

 Application to Pontederia cordata

 Price and Barrett (1982) have studied
 several populations of P. cordata, a pe-
 rennial aquatic with a tristylous breeding
 system. There are three quite distinct flo-

 ral morphs with long, medium and short
 styles. Anthers also come in three sizes,
 long, medium and short and produce pol-
 len which is specific for the style of cor-
 responding length. Each morph has three
 anthers of each of the other two lengths;
 there is virtually no possibility of self fer-
 tilization.

 Pollen grains are of different sizes, tall-
 er anthers producing larger pollen and
 usually fewer grains but grains produced
 by homologous anthers in flowers of dif-
 ferent types do not appear to differ sig-
 nificantly in size (Price and Barrett, 1982
 Table 3). The two types of long anthers
 (on short- and mid-styled plants) produce
 about the same amount of pollen as each
 other, as do the two types of short an-
 thers, but the two types of mid anthers
 produce different amounts, the short-
 styled morph producing almost twice as
 much as the long-styled morph. Price and
 Barrett (1982) discuss this anomaly and
 suggest that it may have no direct adap-
 tive value, but may be a consequence of
 developmental constraints. I summarize
 their pollen production data (Price and
 Barrett, 1982 Tables 3 and 4) in Table 1,
 and tabulate total volume of pollen pro-
 duced by a single anther, where the vol-
 ume of a pollen grain is calculated with
 a cylindrical measure: length x width2.
 Total pollen production is seen to differ
 substantially among morphs, actually de-
 creasing as style length increases.

 Seed data from this population show a
 slight trend for fruit size to increase with
 style length. Data from the population at
 Paugh Lake give mean fruit weights (? SD
 milligrams) to be long (style) = 157.9 +
 39.2, mid= 153.5 ? 52.8, and short =
 143.1 ? 33.1. But this difference did not
 seem to significantly influence a number
 of standard fitness measures such as ger-
 mination probability, inflorescences/in-
 dividual, or seeds/inflorescence.

 The P. cordata populations studied
 would appear to be at some definite evo-
 lutionary equilibrium (as evidenced for
 example by the absence of intermediate
 forms) and I ask whether my model is
 capable of describing this equilibrium. I
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 412 PETER D. TAYLOR

 must point out that it is not easy to check
 the model unless we have some idea of

 the form of the fitness functions W(x)
 and V,(y). If we have a population at type
 frequency equilibrium (satisfying (6)), we
 can always claim it to be at evolutionary
 equilibrium by choosing appropriate fit-
 ness functions W(x) and VJ(y) to satisfy
 (10). Experimental verification of such a
 claim is difficult because costs and fit-
 nesses are difficult to measure. What I
 will do is to assume the pollen effective-

 ness functions V,(y) are linear, estimate
 f, ml,, and W(x1) from data, and ask
 whether our model describes a popula-
 tion at evolutionary equilibrium.

 The seed data of Price and Barrett sug-

 gest that while seed size is not quite con-
 stant among morphs, varying between
 short and long by a factor of 15% (long
 being larger), seed fitness seems to be type
 independent, so it is reasonable to sup-
 pose the morphs are putting the same
 reproductive energy into ovule produc-
 tion. Their pollen data, summarized in

 Table 1, allow us to estimate the mii To
 obtain the theoretical type frequencies,
 we solve (6) which, since W(x1) = W, can
 be written as

 :Jfm1i/C/M) = 1, (17)
 J=#

 and obtain

 f(long,mid,short) = (.293,.343,.364).
 (18)

 These are comparable to data obtained
 by Price and Barrett (1982) by taking
 means over 74 populations of P. cordata.
 These populations exhibited significant
 heterogeneity in morph frequency, and
 many of them may not be at equilibrium
 for a number of reasons (Barrett et al.,
 1983), but the mean observed population

 values were

 J(long, mid,short) = (.255,.346,.399).
 (19)

 Barrett et al. (1983) did the same calcu-
 lation with the simpler matrix M which
 has equal pollen production on both types

 of long anther and on both types of short
 anther but twice as much mid-pollen from

 the short morph as from the long. Their
 results were f(lm,s) = (.267,.354,.379),
 and differ from the observed means in
 the same way but not as markedly as
 mine.

 To investigate evolutionary stability, I
 take the theoretical type frequencies in

 (18) and the ml from Table 1 and assume
 all W(xl) are equal. From the evolution-
 ary equilibrium condition (14) we obtain

 kj- ( -M)' (.461,.290,.249). (20)
 fi

 These are relative estimates of the mass
 of pollen of each type inserted into the
 pollen pool per unit energy allocated (af-
 ter fixed costs have been met). It is dif-
 ficult to imagine any reason why these
 should not be nearly the same, in partic-
 ular, why long-specific pollen should be
 so much cheaper to produce and get into
 the pollen pool than mid- or short-.

 Another way to look at (20) is to sup-

 pose for a moment that the kj are all equal
 and that the population is not at evolu-
 tionary equilibrium. If we still suppose
 all W(xl) equal then (20) (which estimates
 the (/AI)1/J,f) tells us that the marginal fit-
 ness j W(xj)kj/(fMj of the production of
 type j pollen (per unit energy) is signifi-
 cantly smaller forj = 1 (long specific pol-
 len) than for the other two types. Thus
 there should be evolutionary pressure on
 mid- and short-styled plants to shift al-
 location of energy away from long-spe-
 cific pollen.

 DISCUSSION

 There are a number of points that need
 further exploration.

 1) Heuch (1979b) and Barrett et al.
 (1983) have discussed the phenomenon
 of self-fertilization. There may well be
 some small but type-dependent proba-
 bility of illegitimate mating through self-
 fertilization. The consequences of this on
 the population equilibrium are slight. It
 should not be difficult to incorporate this
 into our model for evolutionary stability.

 2) The assumption of linear pollen ef-
 fectiveness which I made in the appli-
 cation of the model to P. cordata may
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 not be very good. If anything we might
 expect that a flower which increased its
 production of pollen of a certain type by,
 say, 10% would increase its paternity of
 seeds of that type by somewhat less than
 10%, especially if the flowers were insect-
 pollinated. An experiment of Barrett et
 al. (1 983 Table 7) suggests that this might
 be the case. We can incorporate this fac-
 tor into the P. cordata data by altering
 the matrix M so that the larger (non-zero)
 entry in each column is reduced in favor
 of the smaller. This will have a noticeable
 effect only on column 2. This may reduce
 somewhat the number (14)2, but will not
 do anything to resolve the problem posed
 by (20), that there seems to be too much
 long-type pollen produced.

 3) Barrett et al. (1983) have deter-
 mined that seeds from different morphs
 of P. cordata have the same fitness. This
 result must be looked at carefully. Have
 they accounted for all the important de-
 terminants of fitness in the field (such as
 effects of competition and maturation
 date)?

 4) The size of pollen grains increases
 with anther level from short to long by a
 factor of 7. Can we find an evolutionary
 explanation for this? Ganders (1979) has
 suggested that this is an adaptation to
 increase the number of pollen grains
 available to reach short styles which are
 less accessible than long styles. To in-
 corporate this phenomenon we would
 need a model in which seed fitness de-
 pended not only on seed size but on
 amount of pollen available at the corre-
 sponding anther level.

 5) Price and Barrett (1982) state that
 in most tristylous species similar amounts
 of pollen are in fact produced, among
 morphs, at the same anther level. In terms
 of M this means the (off-diagonal entries

 of the) columns are constant m,j = b, for
 i =# j, m, = 0. This is not the case for P.
 cordata, and they are interested in the
 reason. My model gives no evolutionary
 reason for expecting the columns of M
 to be constant. If I assume for example
 that seed fitnesses W(x,) are all equal and
 marginal pollen costs kj are all equal, then

 (16) and (1 7) together imply the row sums
 m, of Mare all equal. If the columns were
 constant, mi, = b, for i #- j, then m, =
 z bj, and constant mi implies constant

 J#A1

 bj, so all off-diagonal entries would have
 to be the same. Also (16) would imply
 all f equal (isoplethy).

 6) Price and Barrett ( 1982) suggest that
 pollen production differences may some-
 times have no direct adaptive value but
 be a consequence of different develop-
 mental constraints in different rnorphs.
 Certainly in order to have much confi-
 dence in the standard type of ESS mod-
 elling done in this paper, we must have
 a reasonable idea of how such develop-
 ment constraints might function. This is
 an important but difficult problem.

 SUMMARY

 A number of papers, for example
 Heuch (1 979a, 1 979b), have studied type
 frequencies of heterostylous plant pop-
 ulations at equilibrium. Barrett et al.
 (1983) have adapted Heuch's (1979a)
 analysis to a system, such as that in P.
 cordata, in which pollen is type-specific
 and each flower produces pollen for all
 types other than its own. I adopt this as-
 sumption, and suppose the proportion of
 reproductive energy the flower allocates
 to the production of its ovule and to each
 type of pollen is under evolutionary con-
 trol. Casper and Chamov (1982) have
 studied this question for distyly with a
 somewhat simpler model. The assump-
 tion that the allocation is at evolutionary
 equilibrium leads to the conditions (10).
 These conditions together with the con-
 stant energy equation (1) and our version
 of Heuch's population equilibrium equa-
 tion (6) determine the allocations and the
 type frequencies. It is not easy to analyze
 these equations without making some
 simplifying assumptions on the form of
 the cost functions. To give an example
 of what such an analysis can produce, I
 assume pollen effectiveness is propor-
 tional to the variable component of en-
 ergy invested in pollen and deduce the
 ESS conditions (14).
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 I apply my model with this assumption
 of linear pollen effectiveness to the data
 of Price and Barrett (1982) on P. cordata,
 and find that the fit is not particularly
 good. A population with equal seed fit-
 nesses, with their observed values ml of
 pollen production, and with marginal

 pollen effectiveness k, all equal, could not
 be at evolutionary equilibrium. There
 should be evolutionary pressure to re-
 duce the production of long-specific pol-
 len.

 There are a number of extensions of
 the model which may be worth exploring.
 More general models of pollen effective-
 ness should be examined as well as more
 general cost functions. The model could
 be extended to allow selfing and inbreed-
 ing depression. My feeling is that before
 it is worthwhile analyzing too many vari-
 ations, we must have some better idea of
 the form of fitness functions (for ovule
 and pollen) and cost functions (for re-
 productive resources) in plant popula-
 tions.
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 APPENDIX I. Equal type fitnesses at equilibrium.

 I formulate and prove a slight generalization of
 a theorem of Lloyd (1977) on equal phenotypic
 fitness at equilibrium, and indicate that a general
 equilibrium theorem of Heuch (1979) for hetero-
 stylous populations is a special case of this theorem.

 Let there be m phenotypes Pi, . . . Pm in a pop-
 ulation at non-zero frequencies p . p.. Pm, and n
 alleles al, ... , a, at a number of loci controlling
 these phenotypes. Assume discrete, non-overlap-
 ping generations and measure fitness of a genotype
 by counting the expected number of gametes that
 a zygote of that genotype will contribute to next
 generation zygotes. Different genotypes may cor-
 respond to the same phenotype and in that case
 assume that for each j all genotypes having phe-
 notype P, have the same fitness w,. Let v = V p,w,
 be mean population fitness.

 Let G, be the vector of length n whose ith com-
 ponent g, is the probability that an allele drawn
 randomly from a random (controlling) locus of a
 type-j individual is a,. Let G = (g,) be the n x m
 matrix whose jth column is G,. Assume G has a
 rank m, that is, the "allelic composition" vectors

 G. are linearly independent. (This certainly requires
 n >- m.) With these assumptions the result is that
 at equilibrium (of the type frequencies p, under nat-
 ural selection) all phenotypes have the same fitness:
 w, = wv for each j.

 The proof I give is a slight modification of that
 of Brian Charlesworth (Lloyd, 1977). Let q, = 2 p,,
 be the probability that a random allele at a random
 (controlling) locus is a,. Next generation, q,' = 2
 g,,p,w,/w. At equilibrium, q,' = q, and so, 2 g,,p,(w,
 - iwv)/wv = 0 for all i. Letting x, = p,/w, - iv)/O, this
 can be written as the vector equation 2 x,G,= 0.
 Since the G, are assumed linearly independent we
 deduce x, = 0 for all j. Since p. #0 O, it follows that
 w=7V

 Let me make two remarks. The equation for q,'
 assumes that at each locus zygotes receive alleles
 from their parents in correct Mendelian propor-
 tions. This is a hidden assumption which I now
 make explicit. Phenomena such as meiotic drive
 and lethal genotypes may violate this. Secondly, it
 is zygotic fitness of phenotypes which we conclude
 is equal. If there is differential mortality of phe-
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 notypes between zygote and adult stage, adult fit-
 nesses may not be equal.

 Heuch (1979a Prop. 1) has provided a simple

 condition which guarantees the linear indepen-
 dence of the G, and which often obtains in those
 heterostylous populations for which we understand

 the genetics. Suppose the phenotypes P1 .... Pm,
 and the alleles a,, . . ., a, have been arranged so
 that for eachj, allele a, occurs only in P, and possibly
 P1, . . , P,. Then the matrix G is lower triangular

 (in the first m rows) and the columns G. are linearly
 independent. Heuch's result is actually formulated
 in terms of adult frequencies and fitnesses, but he
 assumes no selective differences among phenotypes
 between zygote and adult stages. I must also assume

 this to apply the result. This assumption should not
 be confused with the possibility that seeds of dif-
 ferent size may have different fitness. Seed size is
 dependent on maternal, not seed, phenotype. My

 assumption is that there are no fitness differences
 between seeds that depend on seedphenotype. With
 this assumption, (6) follows from the result of this
 Appendix.

 APPENDIX II. Analysis of stability.

 I analyze the stability of the equilibrium deter-
 mined by our equations using a standard ESS ap-
 proach (Maynard Smith and Price, 1973; Taylor
 and Jonker, 1978). A complete analysis is rather
 complicated, and I feel the model is rather young
 for this to be worthwhile. The restricted analysis I
 give here certainly conveys the character of the ar-
 guments.

 The idea behind an ESS analysis is to take a
 population at equilibrium and introduce a mutant
 subpopulation with non-equilibrium parameter
 values at a low frequency e > 0. The presence of
 the mutant subpopulation perturbs the population
 parameters. Calculate the fitness of the normal and
 the mutant individuals in this perturbed popula-
 tion. The ESS condition for the stability of the equi-
 librium is that for sufficiently small e> 0, the nor-
 mal fitness must strictly exceed the mutant fitness.

 In any such argument one must specify which
 types of mutants are to be considered. Thus the
 result of any ESS analysis is always that the equi-
 librium is stable under certain types of mutation.
 The analysis given below is restricted because I
 have restricted attention to mutants which alter the
 parameters for one type only. In particular, I as-
 sume the mutant allele is in linkage equilibrium
 with the loci controlling the heterostyly and ex-
 presses itself only in type i. Also I consider only
 mutants which are structurally similar to the cor-
 responding normal type. A mutant which decided
 to eliminate one anther level completely would save
 both fixed and variable costs. The calculation of the
 relative fitness of such a mutant involves a com-
 parison of these two types of costs and I do not
 consider this. To make calculations simpler I also
 assume the linear pollen effectiveness (11). It fol-
 lows, in particular, that W(x,) = W for all 1.

 So let us take a fixed i and suppose a proportion
 e of type i plants are mutant and invest x, in ovules

 and y, in type j pollen contributing m,, = V,(y,) to
 the type j pollen pool. We assume that e is small
 enough that the existence of the mutant does not
 affect the type frequencies f, but it does affect the
 composition of the pollen pool. Thus in the per-
 turbed population the size of the type j pollen pool
 (for j :# i) is no longer (fA) but equals

 $= z fkmkJ + Ef(ml, - m,). (Al)
 k:oj

 Thus mutant fitness is

 W(Ac,) + l thJW(xj)/S,, (A2)
 j:#

 and normal fitness is

 W(x,) + M ml/ W(x)/S,. (A3)

 Note that (A2) differs from (8) because (A2) cal-
 culates fitness in the perturbed population whereas
 (8) uses the unperturbed population. The fitness
 difference is

 i(e) = W(x,t) - W(x,) + z (ml,h - ml)
 po I

 *ft W(X,)/Sj (A4)
 We must show the following ESS condition:

 For any feasible set of

 values (xk,, 5,J)
 different from (x,, Y4,), (A5)
 A(e) < 0 for
 sufficiently smalle > 0.

 We first remark that if for some mutant we have
 A(0) < 0, then (A5) will certainly hold (by conti-
 nuity). Let us calculate A(0).

 A(0) W(k,) - W(x,)

 + z (m, - m')
 J21

 *fjW(x,) I ,m
 - W(O) - W(xi)
 + XI(rh,1 - mj)/k, by (16)

 M-W(x)- W(x,)
 + XW(9, - yl) by(ll)

 W(O) - W(x,)
 - W(x,)(k - x,) by (1), (7) and (14).

 This will be <0 if for all feasible x,

 KO - W(x1) (A7)
 XI1 - X

 depending on whether xf, t x,. Condition (A7) com-
 pares the slope of the graph of W at x, with the
 slope of the secant from x, to x,. It will be true for
 all ., if W is concave-down (W' < 0). If W is
 S-shaped and x, lies well into the concave-down
 part of the curve, it will be true for all x, which lie
 in, or reasonably near, the set where W' < 0. As-
 suming this to be the case, we have shown that any
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 mutant which alters the allocation to type i ovules,
 is selected against.

 It remains to consider mutants for which A(O)

 0. For these mutants x = x,, from what I have just

 shown, and

 A(E) = (ml, - m3,)f, W(x,)/S, (A8)

 Using the fact that dS/dE =f('k, - m,), we cal-
 culate

 dA/dE -l (lq - Mn)2
 J+l

 *fJf W(x,)/ (fA4)2 (A9)

 at E > 0, and ifmh m,#,, for some j this is < 0.
 Condition (A5) follows, and we are finished.

 The general (and more realistic) analysis, in which

 a mutant is permitted to alter the parameters of
 more than one type, is more difficult because the
 mutant fitness depends on the relative mutant fre-
 quencies in each type, and it is not easy to determine
 these.

 Let me observe that for the case of linear pollen

 effectiveness I do not expect an equilibrium cal-
 culated by (1), (6), and (14) to be stable for all
 mutants, because the equilibria are not isolated. For
 example for tristyly, n = 3, there is a one parameter
 family (a curve) of equilibrium points in the con-
 straint surface. We do not expect any one of these
 to be stable to movements along this curve. This
 phenomenon deserves closer scrutiny. It may be

 that the best way out is to assume a more general
 law of pollen effectiveness.
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