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We reason that natural selection acting under conditions imposed by physical factors (e.g., geometric constraints on growth 
rate) and community organization (e.g., persistent finite population sizes, equal total biomass of organisms in proportionately 
equal size ranges) should lead to certain life history features. The initial size of resource-capturing young should be the smallest 
that permits growth rate to exceed mortality rate so that the age cohort will start to increase in biomass. Production of such 
young must be an inefficient use of biomass because of metabolism, predation of embryos, the cost of males, and other losses. 
Mortality rate during juvenile growth should be a power function like growth rate, but always a bit lower so that the age cohort 
continues to increase and ultimately to compensate for the inefficiency of reproduction. In a constant environment, the 
individual should stop growing at the size of greatest expected excess of future reproductive resources over size, and thereafter 
devote all expendable resources to reproduction. Any given size range of animals, such as 1-2 mg or 1-2 kg, should consist 
of both mature and immature individuals in any community and should be devoting about a third of its investable resources 
to reproduction and the rest to growth. We use our equations to generate sample life histories. The simple form of our equations 
organizes these life tables into families of similar schedules with variable generation time. 
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Voici la theorie que nous proposons: la selection naturelle, dans des conditions imposees par certains facteurs physiques 
(p.ex.. les contraintes geometriques qui affectent le taux de croissance) et par I'organisation de la communaute (p.ex., 
populations d'effectifs finis et persistants, biomasse totale d'organismes Cgale dans des classes de taille de proportions Cgales), 
devrait eventuellement entrainer I'existence de certaines caracteristiques dans la dynamique des populations. La taille initiale 
des jeunes capables d'utiliser les ressources doit ttre la plus petite taille qui permette au taux de croissance d'exckder le taux 
de mortalite, de f a ~ o n  a ce que la biomasse de la cohorte puisse augmenter. La production de ces jeunes doit nkcessairement 
entrainer une utilisation inefficace de la biomasse a cause des pertes par metabolisme, par predation des embryons, par dipense 
Cnergktique des miles etc . . . Le taux de mortalite durant la croissance des jeunes devrait ttre une fonction exponentielle a 
I'image du taux de croissance mais legkrement inferieure, de f a ~ o n  a permettre a la cohorte de continuer sa croissance et, 
eventuellement, compenser I'inefficacite de la reproduction. Dans un environnement constant, on devrait s'attendre a ce que 
I'individu cesse de croitre au moment oh il atteint la taille qui determine le plus grand ecart entre les ressources reproductives 
futures et la taille, et a ce qu'il consacre alors toutes ses ressources utilisables a la reproduction. Une classe donnee d'animaux, 
par exemple 1-2 mg ou 1-2 kg, devrait contenir a la fois des individus immatures et des individus adultes et allouer le tiers 
de ses ressources disponibles a la reproduction, le reste a la croissance. Nos equations permettent de generer des modeles de 
dynamique de populations. La forme simple de nos equations permet d'organiser ces tables de survie en categories de strategies 
semblables, mais oh la duree d'une generation peut varier. 

Introduction 
Some quantitative generalizations about groups of organisms 

in nature seem to have wide acceptance, but their formulations 
may be vague and their logical connections with each other 
have not been seriously considered. The following gener- 
alizations are some examples. (1) Populations always remain 
finite despite a universal capacity for indefinite expansion 
(r,,, > O), but often persist for an enormous number of gener- 
ations ( r  = 0). (2) Biological rates are power functions of 
organism size. They are often assumed to depend on surface 
area or the two-thirds root of the mass. (3) Exothermic orga- 
nisms have higher rates of metabolism and other processes at 
higher temperatures, but different processes remain func- 
tionally coordinated within a sometimes broad temperature 
range. (4) The biomass of age cohorts increases on average at 
least until maturity (Cushing 1975; Ware 1975; Alverson and 
Carney 1975). (5) Specific mortality and growth rates are 
directly related (Williams 1966; Cherepanov 1967; Ware 
1975). (6) Natural selection optimizes resource allocation and 
the timing of events in the life cycle. 

'Contribution No. 494, Department of Ecology and Evolution, 
State University of New York at Stony Brook. 

Generalizations Nos. 2 and 5 jointly imply that as an animal 
grows larger, its absolute growth rate increases but its rates of 
specific growth and mortality decrease. A continuous increase 
in cohort biomass (generalization No. 5) implies that specific 
growth continuously exceeds mortality. 

This change in mortality with a large increase in size 
between zygote and maturity must be enormously greater than 
any change in the opposite direction from senescence. Larval 
plaice may have instantaneous annual mortality rates about 180 
times as great as those of adults (Gulland 1977), while an 
increase in mortality from senescence is difficult to detect 
(Cushing 1975). 

The power-function dependence of biological rates has been 
recognized as ". . . one of the few manifestations of a universal 
law in biology" (Platt and Silvert 198 1). Unfortunately there is 
no consensus on any universal value for the exponential con- 
stant. Platt and Silvert ( 198 1 ) argue from dimensional consid- 
erations that rates should depend on size to the power 213 for 
aquatic mammals and to the power 314 for terrestrials. Some- 
times the 213 exponent of surface-area dependence is support- 
ed by experimental data, e.g., Jobling (1982) on plaice metab- 
olism, Economos ( 1979) on cetacean metabolism, and Hutch- 
ings and Budd (198 1) on nutrient capture by plants. More often 
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a higher value is suggested, e.g., about 0.75 by Banse (1976) 
for phytoplankton growth, by Economos (1979) for land mam- 
mal metabolism, and by Sebens ( 1982) for biomass capture by 
sea anemones. Values well above 0.8 are often observed for 
fish metabolism (Brett and Groves 1979; Kudrinskaya 1979; 
Tarby 198 1). 

In this paper we make use of simplified versions of the 
generalizations above and two others. We assume that the size 
ratio of adults to zygotes in a community is large and indepen- 
dent of absolute size (discussed in the interaction of size 
ranges). We also accept a suggestion of Sheldon et al. (1972) 
that proportionately equal size ranges of particles in the ocean 
have about the same total mass. If the only particle between 
100 and 200 t in a cubic kilometre of seawater is one 150-t 
whale, that same cubic kilometre would be expected to contain 
about 150 t of objects between 1 and 2 kg, 150 t of objects 
between 1 and 2 mg, and so on. We assume that almost all 
particles in pelagic waters are either organisms themselves or 
must be closely correlated with organism abundance (exo- 
skeletal fragments, fecal pellets, etc.). Platt and Silvert ( 198 1 )  
discuss related generalizations about sizes of organisms. 

This paper is a preliminary attempt to rationalize these gen- 
eralizations and to derive more explicit formulations for some 
of them than have been suggested before. The extremely sim- 
plified assumptions that we use are unlikely to be accurate, but 
may be sufficient for an exploratory venture. Consequences of 
the relaxation of some of our assumptions are examined briefly 
after the initial analysis, especially the substitution of season- 
ally rhythmic change for constant conditions. Our approach 
differs from other recent modelling of life history evolution 
(e.g., Leon 1976; and Schaffer 1983), in that we make size 
rather than age the basic independent variable. In this respect 
we follow Western (1979), Roff (198 l ) ,  and Hughes (1984). 
This approach has a number of advantages. Size is more easily 
measured than age and may be more closely correlated with 
survival, maturity, and fecundity. Also, the use of size leads in 
places to simplifications in the modelling and allows stronger 
conclusions. 

Size-range specialization in the life cycle 
In what might be conceived as a stable and homogeneous 

environment, such as a large mass of seawater, organisms vary 
in size over many orders of magnitude. A given kind is reliably 
viable over only a part of the total range. A bluefin tuna, for 
instance, starts life at a substantial fraction of a milligram and 
most likely ends it weighing less than 1 t. This is a mere 
billionfold increase in biomass, a limited part of the total range 
(bacteria to whales). We interpret this to mean that each spe- 
cies' adaptations permit growth to exceed mortality within a 
special size range (Fig. l ) ,  and that this is the size range on 
which the life cycle depends for its completion. Similar rea- 
soning was used by Roff ( 198 l )  and applied to vital processes 
in Drosophila. Mathematically we define the range of special- 
ization as that in which a female organism of size s can gather 
resources for growth at rate sg(s) and can thereby grow 
according to the differential equation dsldt  = sg(s) if she uses 
all investable resources for growth. If she is reproducing, she 
can produce resource-capturing offspring at rate sg(s)E, where 
E is efficiency, independent of s. Size-dependent mortality, 
p (s ) ,  within the range of specialization is less than g(s) ,  but 
the reverse is true outside this range. 

Taylor and Williams (1983) showed with a geometric argu- 
ment that an optimal life history under the above assumptions 

>I 
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FIG. 1 .  Plots of unit growth rate ( g )  and mortality ( k )  against size 
(s)  of an organism. The life cycle of the organism is expected to 
remain in the range (so,s , )  in which g > k + r. 

(and with a constant population size) has the following simple 
form: an organism should grow without reproducing to a 
certain size y and then, remaining at that size, convert all 
resources for growth to offspring of some size x. The optimum 
values of x and y are found by maximizing w(x,y), the total 
expected number of offspring of a zygote. 

Here we indicate how the analysis is modified for increasing 
or decreasing population size ( r  # 0). Let l(x,s) be the sur- 
vivorship from size x to size s assuming the organism puts all 
investable resources into growth between x and s. Then a 
zygote survives to maturity with probability l(x,y) and, when 
mature, has a constant mortality, p(y), and so is still alive time 
t after maturity with a probability of e-k"')'. While mature, it 
gathers resources for propagules at rate yg(y). The present 
value (at age of maturity) of all such resources gathered is 

and these are converted, with efficiency E, into offspring of 
size x. The reproductive value of a zygote is then 

where T(x,y) is the time from zygote to maturity. We can 
regard v(x,y) as the present value of the expected number of 
offspring of a zygote (of size x) or as the present value of the 
expected total mass of offspring produced by a yet undif- 
ferentiated unit mass of ovarian material. With this last inter- 
pretation we can imagine the unit mass as choosing first the size 
x of the immediate zygotes (of which it then gets 1 /x)  and then, 
later, choosing the size y of maturity. With this interpretation 
it is clear that natural selection will choose x and y to maximize 
v. 

We show in the Appendix that v is maximized when ( i )  
g(x) = p(x)  + r and (ii) R(s) - s is maximized at y. Condi- 
tion ( i )  gives the optimal zygote size x and condition (ii) gives 
the optimal mature size y. 

The differential condition corresponding to condition (ii) is 
dR/ds = 1 at s = y. The interpretation of this is that growth 
should cease when an extra unit, 8s, of resources into growth 
no longer produces as large a gain in present value as the gain, 
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FIG. 2. The same plot as Fig. 1 except on log-log scale. The 
optimuy zygote size x and the optimum mature size y occur at sizes 
so and s , respectively. 

6 R ,  of putting it into reproduction. In other words, growth 
should cease when the benefitlcost ratio falls below one. Opti- 
mal values of x and y are indicated in Fig. 2. We remark that 
y always falls between the point s*, where g/(p + r )  is max- 
imized, and the point s l  where g = p + r. Seasonality and 
other factors may favour growth beyond y as discussed below. 

The interaction of different size ranges 
The previous section limited discussion to the life history of 

a single species. Now we fasten attention on a wide range (20 
orders of magnitude) of individual organisms in a continuous 
medium such as the sea, here assumed homogeneous. Each 
size category has contributions from species at different life 
history stages. There will be a steady flow of mass from one 
size category into others because of growth, predation, and 
reproduction. Our objective is to quantify this flow in ways 
consistent with our initial list of generalizations. The results we 
obtain should be regarded as crude estimates of general aver- 
ages. We adopt temporarily the assumption of constant popu- 
lation size ( r  = 0), to simplify the equations. The main effect 
of nonzero r on life history parameters is expected to occur 
through its effect on optimal values of zygote size x and mature 
size y given by conditions ( i )  and (ii). We discuss later the 
possible magnitude of this effect. 

Living organisms will be of two kinds, mature and imma- 
ture, defined, as above, by the use of investable resources for 
either growth or reproduction. We will use q to denote the ratio 
p(s) /g(s)  of specific mortality and growth rate. Now q will 
vary between species and over the size range of any given 
species. In our model, q will appear in two versions: 

the value at maturity, and 
p(s)  ds  

- - [dl i j  = 

a convenient average value of q over the immature portion of 
the life cycle. We expect 4 and i j  to be reasonably close, but 
it is not clear which should be larger; since y exceeds that value 
of s which maximizes g (s ) /p (s )  (a consequence of condition 
(ii)), ij will be an average of q values some of which exceed rj 
and some of which do not. We will assume that 4 and i j  are 
independent of species size and somewhat less than 1.  

Let N(s) denote community density at size s, so that by 
definition, there are N(s)ds individuals in the interval 
(s, s + ds)  for small ds. We estimate N(s) from the gener- 
alization, discussed above, that the total biomass between s and 
a s  is independent of s ,  that is, biomass density with respect to 
log size is constant. Taking a = 1 + E for small E, the biomass 
is sN(s) (ES). If this is independent of s 

for some constant n. Thus, the community density (on the size 
axis) varies inversely with size squared. 

Our assumption that the ratio k = y/x of adult to offspring 
size is independent of size is no doubt inaccurate for at least 
part of the size spectrum (examples discussed later), but may 
be justified as a first approximation. From the fact that repro- 
ductive value of a zygote must be unity, we can estimate 
reproductive efficiency. Setting v(x,kr) = 1 in Eq. 2, with 
r = 0, we get 

We can estimate 1 from the formula, obtained by integrating, 
Eq. 2A, 

where we replace p/g by its average i j  defined in Eq. 4. Thus, 
survivorship from zygote to maturity is 

and, from Eq. 6, reproductive efficiency is 

When p - g, q = 1 and E = 1 as expected. Unless repro- 
duction is perfectly efficient, g must exceed p for juveniles. 

For calculating cohort biomass increase during juvenile 
growth, we let C(s)  = l(x,s)s/x be biomass of a cohort of unit 
mass starting at size x. Since l(x,s) = ( ~ 1 s ) ~  from Eq. 7, 

(this is the same as Ware's (1975) equation 2), the cohort 
biomass increase over the juvenile phase is 

from Eq. 9. 
We also want to know the proportion of mature individuals 

of any size s. Let I ( s )  and M(s) be the density (along the s axis) 
of immature and mature individuals, respectively, of size s. We 
produce an equation for I in terms of M using the fact that every 
immature individual of size s came from a mature individual of 
some size z for s r z ks. A mature individual of size z 
produces Ezg(z)/(z/k) = ikqg(z)  offspring per unit time 
(from Eq. 9), and these survive to size s with probability 
l(z/k,s) = ( z / k ~ ) ~  (from Eq. 7), and remain in (s,s + ds) for 
the period ds/sg(s).  Thus, the number of immature individu- 
als in (s,s + ds) is 

ks 

I ( S ) ~ S  = j ( ~ s / s ~ ( s ) )  ( z / x s ) * P x ~ ~ ( z ) M ( z ) ~ z  

Hence, 
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To solve this for M, we invoke the power function gener- 
alization (No. 2) on the form of g, so that 

[I31 g(s )  = as-" 

for some constants a and a. If growth rate is proportional to 
surface area, then dsldt  - s2/' and g(s )  is of this form with 
a = 113. As noted above, growth and other vital rates are 
often found to increase with size more quickly than surface 
area. Thus, we can expect a to be somewhat less ,than 113 but 
well above 0. With this assumption on g(s )  it can be verified 
immediately that M(s) = m/s2 solves Eq. 12 (using the fact 
that I ( s )  = N(s) - M(s)  where N is given by Eq. 5) with the 
constant m given by 

the approximation valid if k is large. This is an expression for 
the proportion of mature individuals of any size. It is seen to be 
independent of s. If we assume that the rate at which an individ- 
ual captures resources is not greatly affected by the use to 
which these resources wil be put, we can interpret m/n as the 
proportion of resources beyond maintenance spent by the com- 
munity for reproduction. The fraction 1 - m/n would be 
invested in growth. These fractional rates of resource invest- 
ment would be valid even if some mature individuals are con- 
tinuing to grow. 

We can now get an expression for the birth rate in terms of 
mature size where birth rate is the number of young born per 
unit time per individual in the population. Mature individuals 
produce young at rate Eyg(y)/x = Eaky-" from Eqs. 1 and 13 
where k = y/x is assumed independent of size. Since mature 
individuals comprise a fraction m/n of the population, also size 
independent by Eq. 14, then 

birth rate = E ~ k ( m / n ) ~ - "  

and depends on size to the power -a. 
Finally, we derive a formula for the time taken for a zygote 

to reach maturity, under the assumption of Eq. 13 on the form 
of the growth function. Letting T(x,s) be the time taken to 
reach size s, we integrate Eq. 4A to get 

and time to maturity is 

1 
[16I T (x ,~x )  = - (k" - 1)x" 

aa 

and is proportional to size to the power a. With growth rate 
proportional to surface area, a = 113 and time to maturity is 
proportional to the length difference between parent and off- 
spring. If a < 113, growth in length would accelerate with 
increasing size, as long as no reproductive investments are 
being made. 

Note that since mature life-span is given by 

using Eqs. 3 and 13, then total life-span, being the sum of time 
to maturity and mature life-span, should also depend on size to 
the power a. 

Various demographic parameters must depend on the value 
of reproductive efficiency E. We have limited all previous 
discussion to females. If males are produced in equal numbers 
and compete equally with females for resources, E must 
include the factor 112 (cost of males), typical for many ani- 
mals. Note also that reproduction in our modelling means the 
production of resource-capturing young. Usually there will be 
an interval following the zygote stage when the young are not 
yet feeding, but are metabolizing and suffering predation. 
Vetter et al. ( 1983) found a 30% loss of lipids and other bio- 
mass reductions in developing drum eggs, and the mortality of 
fish eggs can sometimes exceed 90% (Harding 1974; Williams 
et al. 1973). To account for all this the reproductive efficiency 
E can hardly exceed 114 and may often be 1 / 10 or less. Sup- 
pose we take k = lo6, E = 1 / 10, and a = 113 (surface area 
growth). Equation 9 then allows us to find any number of pairs 
of values for cj and ij. Three such pairs (cj,ij) are 0.80, 0.85; 
0.845,0.845; and 0.93,0.84. They all give values of m/n (the 
proportion of mature individuals, from Eq. 14) of roughly 
0.35. Thus, approximately one-third of expendable resources 
are invested by the community in reproduction, two-thirds are 
invested in growth. Finally, from Eq. 1 I cohort biomass should 
increase from initial resource capture to maturity by a factor of 
104, somewhere between 8 and 10. 

A pair of sample life histories (for r = 0) are calculated in 
Table I, for organisms which take 34 1 and 786 days to mature 
and during this time increase in size by a factor k of approxi- 
mately 1.5 x lo5 and 1.5 x lo6, respectively. The growth and 
mortality functions g(s)  and p ( s )  both have approximately the 
form as -'/"or some constant a ,  and, following Fig. I, g = p 
at x and s ,  , and g > p in between. Indeed, we assumed 

where 
1 

f (s)  = In (PO) - - (In (s)  - In 0)) 
3 

[I81 
h(s)  = B(ln ( s )  - In (x)) (In ( s , )  - In (s)) 

The constants x, b, B, and s ,  are to be specified: Note that 
ko = p(x) = g(x) is mortality immediately after birth and B is 
a positive constant which measures the separation between g 
and k .  Values of s at different times were calculated by 
inverting the integral formula, Eq. 15, and survivorship was 
calculated as l(x,s) from Eq. 7. Biomass increase C(s )  was 
calculated from Eq. 10. For both life histories we used x = 0.25 
mg and ko = 0.4. The size y at maturity was calculated by 
maximizing R(s) - s (see condition (ii)). Our values (cj,q) for 
k /g  were 0.89,0.75 and 0.93,O. 82 for the 1 - and 2-year tables 
(Tables 1 A and 1 B, respectively) and reproductive efficiency 
values were 0.045 and 0.07, respectively. We did other simu- 
lations varying B and s l  and always found cj > ij. 

Notice that all equations in our model except the above 
equation for the time T(s) to size s ,  depend not on k and g 
separately but only on their ratio, which in turn is independent 
of ko. A consequence of this is that any life history generated 
by our equations gives rise to a whole family of similar life 
histories with po multiplied by any constant A and all ages 
multiplied by 1/A. Thus, in Table 1, by multiplying all entries 
in the first column by two, we get a pair of life histories with 
times 682 and 1572 days to maturity and mortality at birth 
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TABLE 1. Sample life histories calculated with the growth and mortality functions 
of Eqs. 17 and 18. In both cases (A and B) x = 0.25 mg and ko = 0.4 

Age Size, s Mortality, ~ ( s )  Survivorship, Relative cohort 
(days) (mg) (per day) I($) biomass, c ( s )  

(A) s , =  I@, B = 0.005, age at maturity = 341 days, mature size (y) = 38 g 
0 0.250 0.400 I I 
I 0.366 0.344 0.69 1.009 
2 0.516 0.301 0.50 1.032 
4 0.943 0.238 0.29 1.1  I 
8 2.47 0.165 0.13 1.32 

16 9.69 0.100 0.05 1.86 
32 53.0 0.055 0.015 3.17 

100 1 239 0.0 19 0.0018 9.07 
365 45 396 0.0067 0.0001 1 20.3 

(B) sl=106, B = 0.0025, age at maturity = 786 days, mature size (y) = 387 g 
0 0.250 0.400 1 1 
1 0.365 0.348 0.689 1.005 
2 0.513 0.307 0.497 1.019 
4 0.925 0.247 0.287 1.061 
8 2.36 0.176 0.125 1.18 

16 8.82 0.1 10 0.04.1 1.46 
32 45.9 0.062 1.13X 2.07 

100 1 049 0.021 1 . 1  x 4.45 
365 43 772 0.0065 5.0X lo-' 10.1 
730 314 350 0.0036 1 .OX lo--" 13.0 

FO = 0.2 per day. 
The first life history (Table ]A), with an age of maturity of 

341 days, was used to estimate the effect of small r # 0 on x 
and y which for r = 0 are 0.25 and 38 000, respectively. Using 
a first-order analysis at r = 0 and conditions ( i )  and (ii), we 
calculated that for a population that increases by a fraction 6 
each generation, so that r = ln(1 + 6)/341 - 8/34], we have 
fractional changes 

dx 
- -  dy 

- 0.076 and - = -4.16 
X Y 

in the zygote and mature sizes. Thus, a population changing in 
size by 10% every generation (6 = k0.1) would experience a 
selective pressure to change zygote size by ?0.7% and mature 
size by T4  1 %. The effect on mature size seems substantial. We 
remark that our first-order analysis assumed r << F (for exam- 
ple, we replaced ln(1 + r / ~ )  by r /  F). The above value of 6 
gives an r of 0.0003, whereas the value of F at maturity is 
0.007. The approximation seems reasonable. 

Seasons and other complications 
High and middle latitudes are subject to an annual rhythm of 

temperature change that would affect all of the rates under 
consideration. For our conclusions to be valid, such ratios as 
that between mortality and growth would have to remain the 
same, not only for different communities, but at different sea- 
sons in the same community. They should be equally appli- 
cable, for instance, to sand lance larvae developing in Long 
Island Sound at about 0°C in January, and anchovy larvae 
developing there in the summer at >20°C. 

Even in tropical habitats there are seasonal changes in com- 
munity composition, for example, in the kinds and numbers of 
any organism's predators, competitors, and food items. We 
would expect this cycle of associated organisms to produce 
changes in growth and mortality curves (Figs. 1 and 2), and 
therefore in the values of so (where g = F + r for the first time) 

and s^ (the point which maximizes R(s) - s). We have shown 
that if g and F are time invariant, the optimal size y at maturity 
is s^ and the optimal zygote size x is so. What should y and x 
be when ŝ  and so change seasonally? This optimization prob- 
lem is mathematically quite complicated. We expect organims 
to adjust their seasonal phase to take advantage of some optimal 
time of reproduction. For example, they might arrange to attain 
reproductive maturity at a time when ŝ  is at or near a seasonal 
minimum. In this matter of timing there may well be a conflict 
between the needs of the zygote and the parent to minimize 
mortality and maximize growth. We hope to tackle these prob- 
lems in a subsequent publication. 

Our modelling relates explicitly to life cycles like those of 
many fishes and invertebrates, in which parental investment 
consists only of materials packaged in the egg and ends at 
zygote production. If parents feed their developing young it 
would increase juvenile growth rates, and active protection 
from predators would decrease juvenile mortality rates in com- 
parison with organisms of the same size without parental care. 
Population stability requires these benefits to the young to be 
balanced by costs to parents measured as decreased growth or 
fecundity or as increased mortality. We hope to model this 
trade-off in a future publication: 

Possible application to field data 
We observed in Eq. 16 that juveniles of constant shape under 

constant conditions should grow at a constant linear rate if 
a = 113 or at a slightly accelerating rate with a lower value of 
a. Aquaculturists find that well-fed juvenile fish at tropical 
temperatures in a size range of 10- 100 mm can grow at rates 
of 0.4-0.7 mm/day (Brown and Gratzek 1980; Payne 197 1 ; 
Strawn 1961 ; Uchida and King 1962). Wild mullet juveniles in 
the 100-300 mm range grow a bit more slowly at similar 
temperatures, about 0.3 mm/day (Oren 198 1). Two-metre 
juveniles of a tropical shark likewise grew at about 0.3 
mm/day (Thorson and Lacy 1982). The data are certainly 
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consistent with the supposition that linear growth rate is inde- 
pendent of size, as expected with a = 113. They do not rule 
out a somewhat higher value, especially since it is unlikely that 
either the mullet or the sharks were as well fed as the species 
under culture. A few marine invertebrates that have been 
investigated show a slightly accelerating linear growth of early 
juveniles (Theisen 1973; Yamaguchi 1975) implying a < 113. 

Ecologically normal variation in temperature can produce 
manifold differences in biological rates. It is commonly 
observed, for instance, that rates of embryogenesis in fishes 
show an increase of three-fold or more with a 10°C increase in 
temperature (Coombs and Mitchell 1982; Williams 1975). An 
egg developing at 5OC would take about 10 times as long from 
fertilization to hatching as one developing at 25OC. A survey of 
data on fertilization to hatching survival for marine fishes with 
planktonic eggs showed no obvious effect of latitude or season 
(Williams et al. 1973). This must mean that lower temperatures 
mean less mortality per unit time in addition to slower devel- 
opment. The same I-day mortality that would allow 50% sur- 
vival over the 2-day embryonic development of a tropical 
species would permit a survival of only one in a thousand of a 
boreal species. Our assumption that rate ratios are independent 
of temperature is apparently not seriously incorrect. We sug- 
gest that the factor a in rate formulations (Eqs. 13, 15, and 16) 
can be considered a temperature coefficient applicable to both 
mortality and growth. 

Our inferred schedule of mortality with time (Eq . 7 )  depends 
on a postulated dependence on size and is independent of age. 
A feeding juvenile fish of 1 g is thus predicted to have a certain 
mortality rate regardless of whether it was hatched from a large 
egg last week or a small egg last year. A given community may 
well include both kinds of 1-g fish. This picture will certainly 
prove inaccurate. A I-week-old fish might not have as 
advanced sensory and motor capabilities as an older fish of the 
same size. This would make it more vulnerable to predators and 
less efficient at foraging, so that its mortality rate would be 
greater and its growth rate less. We also think that such inaccu- 
racies may be minor compared with the enormous variation in 
both mortality and growth across the size spectrum. Similar- 
size juveniles of two species may often be more similar to each 
other in these respects than those of the same species with 
manifold size differences. 

Many field studies of planktonic egg survival, larval sur- 
vival, and larval growth have been made. They support widely 
different interpretations with, no doubt, widely different 
reliability. Some are biased with respect to season and locality, 
and much of the sampling may be biased for size classes and 
age-classes. Delicate younger larvae may be mechanically 
fragmented by collecting gear and forced through netting; 
larval ability to avoid capture increases with size. These factors 
could introduce serious errors into both mortality and growth 
estimates. 

Some studies support our inferences on the general shape of 
growth and survival functions and the expectation of a steady 
increase in cohort biomass. Examples are those reviewed by 
Ware (1975) for mackerel and haddock, and by Gulland (1977) 
for plaice. Farris' ( 196 1 ) 3-year study of jack mackerel showed 
a steady biomass decrease. The actively feeding 3-mm larvae 
were sampled abundantly all 3 years. In less than 2 months they 
grew to about 16 mm, perhaps a 130-fold increase in biomass. 
Survivorship during this period for the 3 years was about 
0.00058, 0.00275, and 0.00017. None of the three cohorts 
even approached the expected increase in biomass. At best (in 

1953) the biomass dropped to about a third of its original value. 
If the observations are representative and if the biomass trend 
continues for these cohorts, it means that in reproduction, the 
adults are investing biomass at negative interest and the popu- 
lation must be headed for extinction. 

It may be that sampling biases like those listed above con- 
tribute to the contradiction between our expectations and 
Farris' (1961) data, but we suspect that another factor may be 
more important. Great variation in year class size from similar 
spawning stocks is commonly observed, and the persistence of 
populations is made possible by that small proportion of year 
classes that have many times the median survival. That a 3-year 
study based on thousands of samples may be judged inadequate 
indicates the great technical difficulty of studying the demo- 
graphy of natural popuations. The most that can now be said for 
the mortality rate formulations derived in this paper, in relation 
to available field data, is that they give the right general shape 
for survivorship curves (e.g., Cushing 1975; Fig. 2). 

Commercially exploitable age groups are more reliably 
known than larval and early juvenile stages. Cushing (1975) 
has shown that cohort biomass of young adults (e.g., 4 year 
olds) in a plaice stock may nearly double in a year. Mortality 
rate is nearly constant thereafter but growth rate declines to 
equal mortality at about age 16 years. In most species the age 
of maximum cohort biomass probably occurs earlier (Alverson 
and Carney 1975). Older cohorts show an ever steeper decline 
in biomass. We would expect, contrary to Farris' (1961) data, 
that larval and juvenile stages also have a net biomass increase 
as a mean (but not median) condition (Eq. 11). 

Our assumption that the adult/offspring biomass ratio k is 
independent of size is another inaccuracy. Adults of really large 
organisms (tuna, kelp, trees) are often a million to a billion 
times the size of offspring. We are not aware that this is often 
true of organisms in the bacteria to insect range of sizes. So our 
inferrence from Eq. 14 that the proportion of adulthood (M / M 
+ I )  is about one-third regardless of size range must be inaccu- 
rate, but the discrepancy is noticeable only when k values are 
commonly less than 10, for example, in communities in which 
the dominant mode of reproduction is binary fission. 

Indeed, let us postulate a dependence of y/x on mature size 
y of the form y/x = K(y) = kyP, where 0 5 P < 1. Estimates 
of p for various classes of organisms have ranged from 0.05 to 
0.75. Then in all our equations, up to Eq. 11, k can simply be 
replaced by ky" Some care is needed with the integral Eq. 12 
for density I ( s )  of immature individuals. The range of integra- 
tion is all values of z for which z/K(z) < s < z. This translates 
to a lower limit of integration of s, as before, and an upper limit 
of ( k ~ ) " ' - ~ .  It is now true that M(s)  = m/s2 is approximately 
a solution of Eq. 12 provided kq-"-' << 1. This will certainly 
hold for k 2 10, and Eq. 14 will remain valid. 

For example, a sample of marine zooplankton in the 1-2 mg 
range might be dominated by crustaceans, and we would expect 
about a third of them to be adults, the rest larval instars of 
species with adult sizes greater than 2 mg. A sample from the 
1-2 t range of the same community would be dominated by 
vertebrates (cetaceans, sharks, sea turtles) and we would 
expect about a third of them to be adults. A seemingly adult 
shark or turtle would be using some resources for growth, and 
should therefore be divided between the mature and immature 
categories. Since it is clearly true that both the ton and the 
milligram (and smaller) ranges contain both adult and juvenile 
organisms, it must be that size is at most weakly related to the 
proportion of mature organisms in a community. 
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Appendix 

We wish to find x and y to maximize 

v(x,y) = l(x,y) e-rT'"."ER(y)/x 

We first derive formulae for the derivatives of 1. Regarding s as a function of t, obtained by solving dsldt  = sg(s), we have 

[IA] dl(x,s)/dt = - l(x,s)p(s) 

by definition of mortality p .  Thus, 

Similarly, it can be shown that 
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[3A] a in l(x.s)/dx = 
xg(x) 

We next remark that 

Now we find x and y to maximize Inv(x,y). To find x we set 

a - (In l(x,s) - rT(x,y) - In (x)) = 0 
ax 

and obtain g(x) = p(x) + r .  It is easily checked that x = so gives the maximum (see Fig. I; x = s gives a minimum). To find y we calculate 

E a a l a s  In v(x,s) = - - (In l(x,s) - rT(x,s) + In R(s)) x as  

Thus, w(x,s) will be maximized at y provided the above expression is 0 at s = y,  >O for s < y, and <O for s > y . This is just the condition 
that R(s) - s be maximized at y,  providing condition (ii). 


