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SUMMARY

There is a conflict of interest between the queen and her worker-daughters in
social hymenoptera over the ratio of investment in male and female reproduc-
tives. In the absence of worker-laying and inbreeding, the queen prefers a 1:1
(male : female) investment ratio, whereas the workers prefer a 1: 3 ratio. Trivers
and Hare (1976) suggest that the workers will win this conflict because they
control the allocation of care to the young, but this argument ignores the fact
that the queen controls the numbers of haploid and diploid eggs laid, and that
the workers must operate within this constraint. We have investigated two
theoretical models of this situation. We conclude that the queen may have
considerable control over the investment ratio; two factors which may act in
favour of worker control are a high cost of producing a new queen rather than
a worker and the possibility of making a variable investment in a new queen
with a concomitant variation in her fitness.

1. INTRODUCTION

I~ an influential paper, Trivers and Hare (1976) have discussed the conflict
of interest between the queen and her worker-daughters over the produc-
tion of reproductives in colonies of social hymenoptera. This conflict has
two interacting aspects—conflict over which party will produce male eggs
and conflict over the ratio of investment in male and female reproductives.
What determines which party will win these conflicts? Trivers and Hare
(1976) argue plausibly that the queen should win the conflict over the
production of male eggs in monogynous, perennial colonies (colonies such
as those of many ants which have a single queen and which last for many
years). The reason is that there is a strong asymmetry of interest in a
physical contest between the queen and a worker; a worker who kills the
queen will suffer a large loss of inclusive fitness because the colony can
produce no more workers, whereas a queen who kills a worker will hardly
notice the effect on her inclusive fitness. Thus the queen can destroy
worker-laid eggs without fear of retaliation, and one would expect all eggs,
haploid as well as diploid, to be laid by the queen. Worker-laying is in
fact rare in monogynous, perennial colonies, except after the death of the
queen.

Trivers and Hare (1976) then argue that, if all males are queen-
produced, the workers will maximise their inclusive fitness by investing
three times as much effort in rearing female as in rearing male reproductives
(because they are related three times as closely to their sisters as to their
brothers as a result of haplo-diploidy), whereas the queen would prefer an
equal investment in male and female reproductives (because she is equally
closely related to her sons as to her daughters). The above authors suggest
that this conflict of interest is likely to be won by the workers, who care
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for the young and can therefore determine how this care is allocated. They
write: “Since in ants workers feed and care for the reproductives from the
time the reproductives are laid as eggs until they leave the nest as adults
and since there are usually hundreds of workers (or more) per queen, it is
difficult to see how an ant queen could prevent her daughters from
producing almost the ratio of investment that maximises the workers’
inclusive fitness”. They therefore conclude that in monogynous, perennial
colonies of ants the investment ratio in reproductives should be biased in
favour of females by a margin of 3:1, and they present data to show that
this is in fact the case, though there has been some controversy over both
the statistical analysis and the interpretation of these data (Alexander and
Sherman, 1977; Macnair, 1978; Forsyth, 1980; Taylor, 1981).

In this paper we wish to consider the theoretical question, whether the
queen or the workers ought to win the conflict over the investment ratio,
or whether some compromise between them should be reached. It seems
to us that Trivers and Hare (1976) have overlooked one important weapon
possessed by the queen, that in the absence of worker-laying she determines
the numbers of haploid and diploid eggs laid; the workers can then invest
their resources in making males from haploid eggs or in making either
queens or new workers from diploid eggs, subject to the numbers of these
eggs laid by the queen and to the total resources available for invest-
ment. In the next section we shall construct and analyse a model which
incorporates these ideas.

2. A MODEL FOR A PERENNIAL COLONY

Consider a haplodiploid social insect with the following life history.
The population is composed of a large number of colonies, each of which
has a single queen who lays all the eggs. Each summer the colonies produce
male and female reproductives who mate at random within the population;
mated queens (who have mated once only) try to found new colonies.
Established colonies have a chance p of surviving from one summer to the
next, irrespective of their age or size; in the numerical calculations we shall
take the survival rate as p = 0-8, so that the average lifetime of a colony
is five years.

Suppose that in its fth summer a colony has resources R, available for
making new individuals. The queen can determine how many eggs are
laid, and she chooses to lay D, diploid eggs and H, haploid eggs, with no
constraints except that D, =0, H,=0. (We are assuming that constraints
on colony growth and the production of reproductives are provided by the
ability of the workers to rear larvae, embodied in R, rather than by the
ability of the queen to lay eggs.) The workers can now allocate the resources
R, among these eggs, and they choose to rear W, new workers, Q, queens
and M, males, subject to the constraints that W, =0, Q, 20, M, 20, and that

W.+Q. =D, (1)
M,=H, (1(ii))
W, +aQ,+BM, =R, (1(iii))

(1(iii)) is the resource constraint, which assumes that « is the cost of a
queen and B the cost of a male, both relative to the cost of a new worker,
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taken as 1 unit. If the colony survives till the next summer, we suppose
that the resources available then will depend only on W, and will have the
form

R,+1=[1—exp(—%W,>]K. 2)

The parameter u is the maximal growth rate of the colony if it is small
and devotes all its resources to growth rather than reproduction. In the
numerical calculations we shall take 4 = 10. The parameter K determines
the maximum size of the colony; its value will not affect the form of the
optimal strategy.

Before proceeding with a detailed analysis of this model it may be
helpful to indicate what sort of solution to expect. If we put p =0 so that
the colony never survives from one year to the next, we would have a
model for an annual colony. In this case there is no point in producing
any new workers, and the queen can enforce the sex ratio she wants by
limiting the supply of diploid eggs (all of which the workers will make into
queens) and forcing them to use their remaining resources in rearing haploid
eggs into males. However, a realistic model of an annual colony should
take into account the possibility of worker-laying and the fact that there
are several generations of workers in a year; a model taking these complica-
tions into account will be considered elsewhere (Bulmer, 1981).

In the present paper we consider a model for a perennial colony with
p nearer 1 than 0; it is plausible to ignore worker-laying in this case, as
explained in the Introduction, and also to concentrate on a single point of
time in each year at which colonies release reproductives. In this situation
it will be in the interests of both parties to produce some workers each
year to carry on the colony next year, if it survives. This fact gives the
workers some influence on the outcome of the contest over the sex ratio
among reproductives; the queen cannot afford to limit the supply of diploid
eggs too severely because that would limit the production of new workers
and would entail too low an amount of resource the next year. How can
we calculate the optimal strategies for the queen and for the workers?

A strategy for the queen (So) is the choice of two non-negative functions
D(R) and H(R) specifying the numbers of diploid and haploid eggs to lay
when the resources available to rear them are R. A strategy for the workers
(Sw) is the choice of three non-negative functions W, M and Q, depending
on D, H and R, satisfying the constraints (1) and specifying the numbers
of workers, males and queens to rear given D, H and R. If the queen’s
and the workers’ strategies in a particular colony are known, together with
R, the resources available in its first year of life, its subsequent history in
any year in which it has survived can be calculated. Hence we can find
the expected numbers of queens and males produced during the lifetime
of that colony, given by

é = Z Qrp'
M=YMp"
(In giving equal weight to the numbers of reproductives produced in

different years, we are presupposing that the number of colonies in the
population and the numbers of reproductives they produce each year are

3)
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constant. This is likely to be true at equilibrium, so that this approach will
give the correct equilibrium strategies, assuming that they exist. In the
numerical calculations we shall take R, =0-01K.)

Both the queen and the workers want to maximise the Expected number
of reproductives produced during the lifetime of the colony, but they attach
different weights to queens and males. If s is the population sex ratio, the
queen will try to maximise

Fo=50+(1-5)M (4a)
while the workers will try to maximise
Fw =350 +(1—5)M. (4b)

Fg and Fw will be called the queen’s and the workers’ objective functions
respectively. A justification of these objective functions is given in the
Appendix.

Both Fg and Fw are each functions of both Sq and Sw. If the queen
tries to find a strategy to maximise Fg, while the workers try to find a
strategy to maximise Fw, they will end up with a pair of strategies (S&, Sw)
which form an evolutionarily stable strategy (ESS) such that

Fo(So, S%)=Fo(S%, S%) forall Sg
Fw (8%, Sw)=Fw(S%, S%) forall Sw.

Denote by O* and M* the Expected numbers of queens and males
produced by a colony employing this ESS, and let the sex ratio in these
colonies be

&)

r*=M*/(M*+ Q%) (6)

Thus r* is the sex ratio evolved in response to the population sex ratio s,
which has been regarded as constant. If we plot r* as a function of s we
shall obtain a decreasing function. The evolutionarily stable sex ratio is
the value of s for which r*(s)=s.

If the population sex ratio is s, the corresponding investment ratio in
males is

o =Bs/[Bs +a(l-s)]. (7N

For mvestment ratios between worker control (o =}) and queen control
(o =3), which is the range of values of interest, the queen will prefer a unit
of resource to be invested in making males rather then queens (if it is to
be used in making reproductives), whereas the workers would rather invest
it in queens than males. It is therefore unlikely that it would be to the
queen’s advantage to restrict the supply of haploid eggs. To simplify the
analysis we shall therefore assume that the queen lays as many haploid
eggs as the workers will rear, so that the constraint (1(ii)) can be ignored.
The power of the queen lies in her ability to restrict the number of
diploid eggs.

For a fixed value of s the ESS (S%, S%) was calculated by the following
dynamic programming approach. Suppose that, if the colony miraculously
survives for 1000 years, it will then devote all its resources to reproductives
in some given ratio of males and females and die. We can calculate the
equilibrium strategies in previous years by backward iteration. Suppose
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that the equilibrium strategy in year 1000—n has been found; write
QF(R) and M} (R) for the expected numbers of queens and males pro-
duced from that year on, if it has resources R in that year. If the colony
has resources R in year 1000 —(n + 1) and produces W workers, Q queens
and M males in that year, the resources available in the following year if
it survives will be

5 I
R=[1— (——W)]K,
exp| —
and the Expected numbers of reproductives produced from year 1000 —
(n+1) onwards will be

én+l = Q+Pér(§)
M,..=M+pM¥*(R).

For fixed D we can now find the values of W, Q and M satisfying (1)
which maximise the workers’ objective function; using these values and
varying D we can find the value of D which maximises the queen’s objective
function, assuming that the workers will maximise their objective function.
Hence the equilibrium strategy in year 1000 —(n + 1) can be computed.
As we proceed backwards and »n increases, the effect of imposing the
arbitrary strategy in year 1000 will disappear and the solution will converge
to the ESS (S%, $% ) for the original problem.

Equilibrium strategies have been calculated in this way for different
values of s and hence the equilibrium sex ratio satisfying r*(s) = s has been
found with parameter values p =08, u = 10, R; =0:01K. The equilibrium
investment ratios, as defined in (7), are shown in table 1 for different values
of a, the cost of a queen relative to that of a worker; the results do not
depend on B, the cost of a male. With queen control we expect o =0-5
and with worker control & =0-25. Thus there is a large measure of queen
control unless « is very large. It is intuitively clear why queen control
becomes weaker as a increases since there is more scope for workers to
react to limitation of diploid eggs by investing more resources in making
queens; it is surprising (at least to us) that the degree of queen control is
as high as it is.

The computer calculations required to produce the results in table 1
were costly, and it was unfortunately not possible to repeat them for other
values of the parameters, but we feel that the results are likely to be
qualitatively correct for most biologically plausible parameter values. We
have already noted that K is a scale parameter which will not affect the
sex ratio. Provided that R, the size of a newly-formed colony, is small
compared with K, and that u, the maximum colony growth rate, is reason-
ably large, the colony will devote all its resources to producing workers in
its first year or two of life; only when the colony has reached a size at
which its actual growth rate has fallen to some critical level will it produce

TABLE 1
Equilibrium investment ratio in males as a function of the cost of a queen

Relative cost of a queen (a) 1 2 5 10
Investment ratio (o) 0-499 0-478 0-443 0-385
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reproductives, so that its behaviour in the reproductive phase will be
insensitive to R; and w, which only affect its initial behaviour in the
ergonomic phase. The value of p, the survival rate, will certainly affect the
power of the queen to control the sex ratio, but we have chosen a value
of p = 0-8 which seems reasonable for perennial colonies.

3. THE EFFECT OF VARIABLE COSTS

In the previous section we assumed that there were fixed costs of
producing workers, queens and males. In fact the workers might have a
choice in the amount invested in a particular individual; for example, they
might be able to produce a queen of high fitness at high cost or a queen
of lower fitness at lower cost. In this section we shall investigate whether
such flexibility would give the workers more control over the investment
ratio. This idea was suggested to us by the work of Maynard Smith (1980)
on the theory of sexual investment in diploid species.

It is impractical to introduce this complication into the already compli-
cated model of the last section, and we shall therefore discuss it in the
context of a simpler situation. Consider an annual haplodiploid social
insect in which the colony produces reproductives once only at the end of
the year and then dies. Suppose that in the reproductive phase the queen
lays D diploid eggs and an unlimited supply of haploid eggs and the workers
have resources R available for making reproductives, where we choose
units so that a male requires 1 unit of the resource. The workers must
choose the number ¢ of units to invest in each queen, with the constraint
tD =R. We suppose that an investment of ¢ confers a fitness of g(¢) upon
a new queen.

This fitness can be most simply interpreted by supposing that some
value t, corresponds to a “standard” queen, and for other values of ¢, g(t)
measures expected genetic contribution to the next generation relative to
a standard queen. So the output of the colonyis Q = Dg(¢) standard queens
and M = R —tD males.

Given D, the workers should choose ¢ to maximise Q>M. If we denote
by ¢* = r*(D) the maximising value of ¢, then the queen should choose D
to maximise QM, where Q and M are evaluated at r=¢*(D). The
justification for this is contained in the Appendix, if ‘‘queen” is replaced
by “standard queen”’.

We first solve the workers’ problem for fixed D. Equating to zero the
derivative of QM with respect to ¢ we get

3Mg'()=Q 8)

where g' denotes the derivative of g. Equation (8) with r=1*, gives ¢*
implicitly as a function of D. Now we solve the queen’s problem by equating
to zero the derivative of QM = Dg(t*)(R —t*D) with respect to D, where
* must be treated as a function of D, We get

dt* ek * %

—(Dg'(t*)Y M —DQ)=t*Q — Mg (t*). 9

dD
The simplest way to eliminate dt*/dD from (9) is to regard (8) as giving
D as a function of *, and differentiate with respect to f to get an expression
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for dD/dr* =(dt*/dD) ", If this expression is incorporated into (9) we
get, eventually, the equilibrium condition

ge"(3g' —g/t)=6(g)(g' —g/1) (10)

whose solution ¢ is the value of ¢*. If we assume g and g’ are positive
while g” is negative, then (10) requires that at t =%, g/t lie between g’
and 3g’. Now the ratio of investment in males to investment in queens is

M_ g
tD 3tg’

by (8), so that (10) requires a ratio between 1:3 and 1:1.

The situation is illustrated in fig. 1 where a typical g curve is drawn.
The boundaries for t*, g/t =g’ and g/t =3¢’ are shown. The quantity g/t
is the ratio of the fitness of a queen to the original investment, and is seen
from the graph to be maximised when g/¢=g’. Thus the 1:3 ratio is the
one at which queen production is most efficient.

As an example we take one of the investment functions considered by
Maynard Smith (1980):

(11)

gty =ct*/(b+1%) (12)

with parameters a, b, and ¢ >0, If a > 1, the graph of g has the form given
in fig. 1. The equilibrium condition (10) for this function is

t“=bla-1)Ba+1)/(a+1) (13)

and the ratio (11) becomes
_g__3a—-1
31g" 3a+3

(14)

——

t

~lQ

=g ! % = 39 ’

F1G. 1.—Queen’s fitness g as a function of investment ¢. The equilibrium value of ¢ must lie
between the points g/t=g' and g/r=3g. The first point gives an investment
{male : female) ratio of 1:3 and the second 4 ratio-of 1:1.
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which goes from the workers’ preferred ratio of 1:3 when a is close to 1
to the queen’s preferred ratio of 1:1 for large a. To see why this is
reasonable observe that the effect of increasing a on the graph of g is to
make the curve rise more quickly to the asymptote. For example the family
of functions g(#) = ct*/(9+1“) all take the value ¢/10 at t=1. They attain
the value 9¢/10 at r=9 if a =2, and at r=3 if a =4. Then the amount
of extra investment required to raise a queen’s fitness from '1'1@ to 1% of its
maximum value is 8 units when a =2 and only 2 units when a =4. In the
second case the workers have less flexibility and hence less control.

4. DisCUSSION

There is a conflict of interest between the queen and her worker-
daughters in social hymenoptera over the ratio of investment in male and
female reproductives. If a single non-inbred queen lays all the eggs, she
prefers a 1:1 (male: female) investment ratio, whereas the workers prefer
a 1:3 ratio (since they are three times as closely related to their sisters as
to their brothers under haplodiploidy). In this paper we have undertaken
a theoretical analysis of this conflict, taking into account that the queen
controls the numbers of haploid and diploid eggs laid, while the workers
control the investment of resources in making males from haploid eggs or
in making either queens or new workers from diploid eggs. The two models
considered are idealised and ignore many of the complexities in the natural
history of any real species, but we believe that they throw light on some
of the factors which are important in resolving the outcome of this conflict
of interest.

In section 2 we have considered a simple model of a perennial colony
with fixed costs of producing workers, males and queens; we have found
the evolutionarily stable sex ratio arising from the balance between the
interests of the two parties by a dynamic programming approach. The
equilibrium investment ratio (male : female) depends only on the relative
cost of producing a queen rather than a worker from a diploid egg. As
shown in table 1, the investment ratio is much closer to the 1:1 ratio
preferred by the queen than to the 1:3 ratio preferred by the workers
unless the cost of producing a queen is very high.

In section 3 we have considered whether the possibility of producing
a queen of high fitness at high cost or a queen of lower fitness at lower
cost will give the workers greater control over the investment ratio. To
simplify the analysis we have considered an annual colony which produces
reproductives once only at the end of the year and then dies. Under this
model the queen has complete control over the investment ratio with fixed
costs of producing male and female reproductives, but we find that allowing
a variable investment gives an appreciable degree of control to the workers
if the sensitive range over which fitness responds to variations in investment
is large. Putting the results of sections 2 and 3 together, it seems likely
that in a perennial colony, a high average cost of a queen and the possibility
of variable investment in individual queens would both act in favour of
worker control over the investment ratio.

It has been assumed throughout this paper that there is no worker-
laying, so that our conclusions are more relevant to perennial colonies, in
which worker-laying is likely to be unimportant for reasons discussed in
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the Introduction, than to annual colonies (notwithstanding that the model
in section 3 presupposes an annual colony). Consideration of the conflict
of interest over worker-laying would add a new dimension of difficulty to
the analysis.

Finally, we may place the queen-worker conflict over sex ratio in social
hymenoptera in a more general setting by noting its similarity to the
mother-daughter conflict over sex ratio in gregarious hymenopteran para-
sitoids discussed by Pickering (1980). In the latter case there is competition
for host resources between sibs which through kin selection in mixed broods
will give an advantage to females over males. Pickering (1980} suggests
that mothers tend to lay broods with a preponderance of one sex or the
other as a strategy to avoid competition between the sexes which gives rise
to a distorted investment ratio.
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APPENDIX

The standard technique for calculating equilibrium sex ratios (Charnov,
1978; Taylor and Bulmer, 1980) is to suppose that sex ratio of offspring
is controlled by a gene at a single locus. Assume all members of the
population have the wild-type allele T* except a few mutant individuals
who carry an alternative allele 7. The sex ratio coded by T* is an ESS if
every such T has a growth rate (numbers of copies per generation) no
greater than that for T*.

If T is rare and inbreeding is negligible we can ignore TT individuals
and assume there are two kinds of mutant individuals, TT* queens and T
males. If we let x and y denote the numbers of these mutant queens and
males respectively in one generation then the corresponding numbers x
and y one generation later (we assume discrete non-overlapping gener-
ations, but see Note 1) will be linearly related to x and y with a transition
matrix A whose entries depend on the wild-type and mutant sex ratios.
The first column of A is thé mutant reproductive output of a mutant
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queen :numbers of mutant queen and mutant male offspring, and the second
column is the mutant offspring output of a mutant male.

Suppose that ¢ parameterizes the colony’s choices; a given ¢ corresponds
to the production of Q(f) queens and M(r) males. We let t* be the
parameter value coded by T*, and ¢ be that coded by T.

If the queen has sex ratio control, the gene expresses itself only in the
queen, and the transition matrix is

= Q%)
2 M(t*
Ao=Aolr)=| | e
2 0

We have assumed mutant individuals always have normal mates, and each
male can expect to have Q(r*)/M (¢*) mates. If the workers have sex ratio
control the matrix is

[ Q()+0(*) Q@)

Q)
3 o 4 M(t*)
Aw =Awlh ") = M(t) + M(t*)
L 4 0

Notice that in a mutant-queen colony half the workers are mutant where-
as in a colony fathered by a mutant drone all the workers are mutant.
In the former case we assume each type of worker appropriates half the
reproductive resources.
If we let A(z, t*) be the dominant eigenvalue of A(t, t*) then ¢* is the
ESS value if A(¢*, t*)Z A (¢, t*) for all ¢, which implies
oA

5(’*’ 1*)=0. (A.1)

There is a nice condition equivalent to (A.1) which does not involve
eigenvalues. If we let U and V be the left and right eigenvectors of
A(r*, t*) then (A.1) is equivalent (see Note 2) to

a
UEA(I*’ M)V =0. (A.2)

Q

For both A and Aw we have U = (M, Q) and vz(M/z

). With these
vectors in (A.2) we get

%+ %—/ =0 (Queen control)
and
3—O+ M =0 (Worker control).
Q M

The first formula is the condition which maximises QAM; the second
maximises Q>M.
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Note 1.—These formulae remain valid for discrete overlapping gener-
ations at least in our case in which offspring mature in one year and each
breeding aduit, regardless of age, survives to breed next season with fixed
probability p. Then if x’ and y' denote number of reproductive offspring
from x and y adults (queens and males respectively) and

][]

the breeding population next season is

[J-weo]?)

In this case the condition we need is (A.2) with A + pI playing the role of
A. Since A +z has the same eigenvectors as A, and p is independent of
t, {(A.2) is in fact unchanged.

Note 2.—Let Ult, t*) and V{t, t*) be the left and right dominant
eigenvectors of A(t, t*). Start with (A —AI)V = 0 with everything evaluated
at (¢, t*). Differentiate with respect to ¢ and then evaluate at r = r*. We get

JA  dA A%
(———) V+(A—A=—=0.
at ot at
Now apply U(t*, t*) at the left. We get
d
U—A‘ V—% U. V=0
at at

since U(A —AI)=0 at (¢*, r*). Hence (A.1) and (A.2) are equivalent.



