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 NOTES AND COMMENTS 305

 THE SELECTIVE ADVANTAGE OF SEX-RATIO HOMEOSTASIS

 Fisher (1930) first postulated that under normal circumstances the equilibrium

 sex ratio should result from equal overall investment in male and female offspring.

 Assuming males and females are equally expensive (which we henceforth do), this

 means a 1: 1 sex ratio. Since Fisher's work, models of varying sophistication have
 been produced to show that the 1: 1 ratio obtains under quite a variety of assump-

 tions.

 According to these models, if the population as a whole has a 1: 1 sex ratio then

 an individual's expected fitness is the same no matter what the sex ratio of his

 offspring. That is, provided the population has an overall 1: 1 sex ratio, there is no

 selective pressure for what might be called "sex-ratio homeostasis," equal ex-

 penditure by an individual parent on males and females.

 Of course, this assumes an outbred population with mates chosen randomly

 from the population at large, so that male and female offspring have an equal

 chance of finding mates. However, this is not generally strictly the situation.

 Usually a family of offspring will choose mates from a local group, and the
 male-female ratio within that group will not be 1: 1 but will show some variation
 (with, of course, mean ratio 1: 1). In that case an all male family will do better than
 average when the local mating group has more females and will do worse than
 average when there are more males.

 Verner (1965) thought that in such a situation the all male family would lose
 more, on the average, when the local group was mostly male, than it would gain,
 on the average, when the local group was mostly female. He gave a simple
 numerical example to illustrate this point.

 Our purpose in this paper is to take a diploid population with a 1: 1 equilibrium
 sex ratio in which mates are chosen from local groups and to construct a simple

 model to measure the selective advantage of an allele h for sex-ratio homeostasis.

 We will find that the selection coefficient s of h is density dependent. This is to be
 expected. If h is common, the local mating group will tend to have nearly equal
 numbers of males and females, and it ought to make little difference whether an
 individual's offspring are mixed or all of the same sex. It is when h is rare that it

 has a maximum advantage.

 Indeed, if p is the proportion of h alleles in the population and G is the total

 number of offspring produced by the founding females in a local group (not all
 these offsprings may survive to breed), then we show that s = (1 - p)2/2G if h is
 dominant and s = p(l - p)/2G if h is recessive. To test these values, we use the
 standard diffusion equation method (Crow and Kimura 1970, chap. 8) to calculate
 the probability of fixation of the h allele starting at some initial frequency p. We
 report results of a computer simulation with G = 20, po = 1/2, which agree closely
 with our theoretical calculations.

 Am. Nat. 1980. Vol. 116, pp. 305-310.

 ? 1980 by The University of Chicago. 0003-0147/80/1602-0010$02.00
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 A MODEL TO MEASURE THE SELECTIVE ADVANTAGE

 We will build the simplest possible model that exhibits the behavior that
 interests us. Our parameters all exhibit some variance in real life, but we will

 assume they are almost all constant. In most cases this variance can be incorpo-
 rated fairly easily into the model to produce a minor effect on the results.

 Assume the females, after mating, form at random into local groups of size N.
 Each female then gives birth to 2T offspring. Assume each of these offspring,
 independently, has probability KIT of surviving to breeding age. Those who do

 survive (2KN on average) mate within the group, after which the females disperse
 to form new groups of size N with females of the population at large. We will
 assume the equilibrium sex ratio is 1: 1, although it is known that the sex ratio is

 slightly female biased in such local mate competition models. Indeed, Hamilton
 (1967) considered the above model and calculated the equilibrium sex ratio to be

 N - 1 N + 1 (males to females). P. D. Taylor and M. G. Bulmer (in prep.) provide
 a method for obtaining this result more rigorously.

 Now consider a particular group of N females of the F0 generation. Suppose M

 of these females produce offspring in the normal (Mendelian) way, and H produce
 (as nearly as possible) equal numbers of males and females. We will calculate the

 expected number of descendants in the F2 generation of the alleles in the M
 Mendelian females and in the H homeostatic females.

 Let us count sons. The H homeostatic females produce HT sons and the M
 Mendelian females produce B(2MT, 2) sons (binomially distributed with mean
 MT). Since each male survives to breed with probability KIT, the homeostatic
 females produce B(HT, KIT), and the Mendelian females produce B(2MT, K!2T)
 breeding sons. Writing these last two numbers as HK + 8 and MK + E, 8 has mean
 0 and variance HK(T - K)IT and E has mean 0 and variance MK(2T - K)/2T.

 The numbers of daughters of these two types of females are distributed in the
 same way. These sons and daughters, the F1 generation, then mate with one
 another randomly within the group and produce the F2 generation. Assuming the
 population remains constant in size, this group F1 can expect to contribute 2N
 offspring to the F2 generation. Now look at these 2N offspring. Of their 4N alleles,
 2N come from the F0 females; of these, N come through F1 males and N through
 F1 females. How many of these come from the H homeostatic F0 females? The
 number that come through F1 males is

 N no. sons of homeostatic F0 females N(HK + 8)
 total no. F1 males (MK + E) + (HK + 8)

 N(HK + 6) N (HK+ 8) I_ E 8 + (E + 8)2
 NK? E?6 NK '[ NK +(NK)2

 if we assume 6INK and EINK are much less than 1. Now averaging this over 8 and
 E (which are independent with mean 0), we get

 I HK + var(E) HK + var(8)4HK - NKI1 = H(1 + 2N2T)
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 NOTES AND COMMENTS 307

 Since the same average number comes through F1 females, the expected number

 of descendants of alleles in the H homeostatic F0 females in the F, generation is

 E(hom) = 2H(1 + 2N!2T) (1)

 The expected number of descendants of alleles in the M Mendelian F0 females in

 the F2 generation is the difference between this and 2N, which is

 E(Mend) = 2M(1 - 2H{T)- (2)

 So far we have been working with phenotypic fitness. We now introduce
 different alleles, assign phenotypes to genotypes, and calculate genic fitness of the
 different alleles. Suppose we have two alleles in and h at a certain locus which

 code for Mendelian and homeostatic behavior. Suppose h has frequency p in the
 population and a typical local group has Hardy-Weinberg proportions p 2N of type
 hh, 2pqN of type hm, q 2N of type mm, where q = 1 - p. Referring to our previous
 numbers M and H, if h is dominant then M = q2N and H = (1 - q 2)N, and if h is
 recessive then M = (1 - p2)N and H = p2N.

 Now we calculate the expected number of h alleles in the F2 generation that

 have descended from the N F0 females. In case h is dominant, the h alleles

 comprise a proportion (p2 + pq)!(p2 + 2pq) = 1/(1 + q) of the alleles in the H F0
 females of types hh and hm, so the expected number is

 1+q E(hom) = + q |2(1 - q2)N1I + q2N

 = 2pN + pT (h dominant). (3)

 In case h is recessive, the h alleles consist of all the alleles of the H hh females and

 a proportion pq!(2pq +q2) = pl(1 + p) of the alleles in the M females of types hm
 and mm. Thus the expected number is

 E(hom) + 1 P E(Mend) = 2p2N I + (I p2)

 + j [2(1 p2)N(1 2NTI)l

 2pN + p q (h recessive). (4)
 T

 Now (3) and (4) give the expected number of h alleles in the F2 generation that
 descend from N F0 females. Of course, half the alleles in the F2 generation are
 descended from F0 males, but, under the assumption that the h allele is expressed
 only in females, these will appear in equal numbers in the two generations and can
 be ignored when calculating changes in numbers. Thus the average increase in
 numbers of h alleles that is due to the expression of the allele in a group of N
 females is the difference between (3) or (4) and 2pN, and is pq2IT (h dominant),
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 308 THE AMERICAN NATURALIST

 p2q!T (h recessive). The selection coefficient s is the increase per allele in the

 population and is the above number divided by 4pN, the number of h alleles in N

 females and N males. Hence

 q2 q2
 s 4NT (h dominant), (5)

 4T 2G

 s _ pq _ pq (h recessive), (6)

 where G = 2NT is the total number of offspring born into a local group. These two

 formulae are graphed in figure 1.
 You might think at first that, since the increase in numbers of h alleles takes two

 generations to show up, the selection coefficient per generation should be one-half
 of the above value. However, this is not the case. The above value of s reflects the

 increase resulting from the action of h on a single generation. In the following

 generation h will act again to produce a similar increase. It is incidental that these
 increases are not realized until two generations have passed.

 THE PROBABILITY OF FIXATION-BY SIMULATION AND FORMULA

 To test our values for s, we decided to use a formula developed by Kimura
 (1962) for the probability of fixation of a mutant allele in a population. First we did
 a computer simulation to measure this probability for the gene h, and then we

 calculated it using Kimura's formula.
 In the simulation we took a population of 10 females and 10 males and assigned

 them genotypes mm, hm, or hh in Hardy-Weinberg proportions (approximately)

 with initial h frequency po = 2. They mated at random and the females had
 offspring, Poisson distributed in number with mean 2. The homeostatic females
 alternated the sex of their offspring, whereas the Mendelian females had the sex of
 each offspring assigned independently, male or female each with probability 2. We
 recorded the genotypes of the offspring, then mated them at random (with no

 mortality between birth and breeding), and the females started over again. We did
 not hold the population size constant, but allowed it to drift. However, the number

 of offspring per female at each generation was drawn from a Poisson distribution
 with mean 401n, where n was the number of males and females in the current
 population. Thus the population tended to stay near 20 individuals. We continued
 until either the h allele was lost from the population or was fixed in the population.

 Once or twice the population reached an all male or all female state and disap-
 peared, but this happened too rarely to cause concern. This scenario corresponds
 roughly to our model with T = K = 1, N = 10, and hence s = q2/40 (h dominant)

 and s = pq/40 (h recessive).
 A dominant h was fixed 544 times out of a total of 968 runs, a fixation rate of

 .562. A recessive h was fixed 538 times out of 960 runs, a fixation rate of .560.

 Now let us calculate theoretical values for these fixation rates. Suppose in a
 population of effective size Ne an allele h has a selective advantage s (which may
 be a function of its frequency p) over its competitors. If h starts with frequency Po,

 what is its probability u (p 0) of eventually becoming fixed in the population? This
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 S

 2G

 h dominant

 h recessive

 0 I P

 FIG. 1.-Selective advantage s of h allele against frequency p in population.

 problem can be neatly solved using diffusion equation methods (Crow and Kimura

 1970, p. 424). The answer is

 () 0exp(-f 2M!V)dp
 U(P ) f exp(-f2M!V)dp

 where M = sp(1 - p) and V = p(I - p)!2Ne. In our case, if we take p0 = 2, N, -
 2N - 20, and s = (1 - p)2!4NT = (1 - p)2/40 if h is dominant, and s p (I
 p)/4NT = p (l - p)!40 if h is recessive, we get

 1 /12e2(1-p)313
 (= fle2(1P)33 .576 (h dominant), (7)

 Ix/2e -p2+2p3/3
 ll(2= fle-P2?2P3I3 -.552 (h recessive). (8)

 The integrations were performed using Simpson's rule on intervals of size 4.

 Observe that we have taken the effective population size Ne to be the total

 number of adults in the population. In natural populations Ne is often somewhat

 less than this, sometimes as little of three-fourths of the total number of adults

 (Crow and Kimura 1970, p. 362). In fact this correction lowers the values of it(i)
 obtained in (7) and (8), but not by much. For example, taking Ne = (3)(2N) = 15

 we get M (2) = .556 (h dominant) and u(2) = .539 (h recessive).

 DISCUSSION

 We have built a simple model to measure the selective advantage of an allele h
 which causes a female to alternate the sex of her offspring. We made a consider-

 able number of simplifying assumptions in the mathematical model, but our
 purpose was to obtain as clear a model as possible so that the crucial mechanism
 giving h its advantage could be observed. For example, we have assumed the local

 mating groups are always of the same size, that every female has the same number
 of offspring, that the sex ratio is 1: 1, and that the homeostatic females produce
 exactly the same number of sons and daughters (this will be very closely true
 unless the number of such females is very small).

 The selection coefficient s we get in (5) and (6) is density dependent. This is to
 be expected. The advantage of sex-ratio homeostasis is most pronounced when
 there is large variance in local sex ratio, and this will be greatest if h is rare. Its
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 TABLE 1

 PROBABILITY U OF FIXATION OF h ALLELE

 h dominant h recessive

 Simulated ....................... .562 .560
 Theoretical . 5 7 6 .576 .552

 advantage is also inversely proportional to the size of the local group, but it is

 important to notice that, for this effect, size must be measured by the total number

 of offspring G born into a group. Thus, even if groups are founded by small

 numbers of females (N small), if they have high fecundity (with a resulting high

 offspring mortality either before or after breeding) the advantage of homeostasis
 will be swamped.

 We tested s by asking what the probability u should be of fixation of h starting

 at po = 2. We estimated u with a large number of computer simulations in which
 we avoided some of the unrealistic assumptions of the mathematical model. We
 then calculated u using a formula based on diffusion equation methods in which
 we inserted the value of s obtained from our mathematical model. The results are

 shown in table 1. The simulated and theoretical values show remarkable agree-

 ment. This result, as well as providing a nice test for our model, provides an
 interesting test for the fixation probability formula of Kimura (1962).
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