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This paper investigates the evolution of the sex ratio under an extension of 
the haystack model of Maynard Smith (1964). At the beginning of each 
season a stack is colonized by a number of fertilized females, and their 
offspring breed there for several generations until new haystacks are 
available for colonization. We intend this as a model for populations which 
undergo periodical population explosions and crashes. With mating before 
dispersal, the number of generations in the stack has little effect on the 
equilibrium sex ratio, but it has a marked effect with mating after dispersal. 
This model is then used to investigate the evolutionary stability of the 
mechanism of sex determination found in the wood lemming which leads to 
a population sex ratio of three females to one male. 

1. Introduction 

It has been known since Hamilton’s (1967) paper on local mate competition 
that inbreeding can lead to the evolution of a biased sex ratio. We have 
argued elsewhere (Taylor & Bulmer, 1980a,b; Bulmer & Taylor, 1980) that 
the effect of inbreeding on the sex ratio can only be understood in terms of 
the processes which give rise to inbreeding. In the present paper we shall 
consider the evolution.of the sex ratio under a model based on the haystack 
model of Maynard Smith (1964), in which a species of mouse lives entirely in 
haystacks. 

At the beginning of each breeding season a stack is colonized by a number 
of fertilized females, and their offspring breed there for several generations 
until the following year, when new haystacks are available for colonization. 
In section 2 we suppose that females mate with males from their own colony 
before dispersal, and in section 3 that they mate at random with males from 
other colonies after dispersal. [We feel that this model provides a paradigm 
for populations such as those of some rodents, which undergo periodical 
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population explosions followed by crashes, after which the population 
retreats into small isolated refuges; we envisage the type of ecological 
situation discussed by Stenseth (1978).-j In section 4 we investigate the 
evolutionary stability of the genetic mechanism of sex ratio determination 
found in the wood lemming under the ecological model outlined above; this 
problem has been considered previously by Maynard Smith & Stenseth 
(1978). 

2. The Haystack Model with Mating Before Dispersal 

The model to be considered is as follows. The environment consists of a 
large number of haystacks, each of which is colonized by N fertilized females 
at the beginning of a breeding season. Each female has offspring and dies, 
the male and female offspring within a stack mate at random with each other 
to produce grandchildren, who in turn mate with each other to produce 
great-grandchildren, and so on. This process continues for G generations 
until the end of the year, when new haystacks are available for colonization. 
Fertilized females disperse at random to colonize these stacks and restart the 
cycle; when each stack has been colonized by N females, any remaining 
females die without reproducing. Note that the “fitness” of a stack at the end 
of the season is proportional to the number of females in it. This generates 
selection pressure for a female-biased sex ratio, whereas there is selection 
for a sex ratio of i during the season, when breeding occurs within the stack, 
by the usual Fisherian argument. When G = 1 this model reduces to 
Hamilton’s (1967) model, which has been discussed in another paper 
(Taylor & Bulmer, 1980~). In that paper we stressed competition between 
brothers for mates as an alternative way of explaining the tendency towards 
a female-biased sex ratio. 

To investigate the equilibrium sex ratio under this model we consider a 
locus with two alleles, R and S, with S dominant to R. We suppose that the 
gene acts in females, so that RR females produce offspring with sex ratio r, 
while SR or SS females produce offspring with sex ratio s, whatever the 
genotypes of their mates. It makes no difference whether the gene is 
supposed to act in females (as we have done) or in males. 

There are nine possible genotypes of a fertilized female, which may be 
represented by (i, j), where i denotes the number of S genes in the female 
and j the number in her mate (i, j = 0, 1,2). A pair will be called non-mutant 
if both the female and her mate are RR (i +j = 0), and mutant otherwise. We 
suppose that S is rare, so that the possibility that there are two or more 
mutant pairs in a stack at the beginning of a season can be ignored. Write 
x(i, j) for the frequency at the beginning of a season of stacks with one 
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mutant pair of type (i, j) and N - 1 non-mutant pairs, which will be called a 
mutant stack of type (i, j); since S is rare the x (i, j)‘s will be small. 

To determine whether S will spread when it is rare we find the linearized 
recurrence relations for the frequencies of the eight types of mutant stack 
from one year to the next, and then calculate the dominant latent root, 
A (r, s), of the corresponding 8 x 8 matrix. S will increase or die out according 
as A (r, s) is greater than or less than 1 in absolute value. The equilibrium sex 
ratio which will resist invasion by any mutant sex ratio is the value of r such 
that IA (r, s)l < 1 for all s # r. 

This equilibrium sex ratio has been found by numerical investigation of 
the function A (r, s) on a computer, and is tabulated in Table 1 for different 

TABLE 1 

The equilibrium sex ratio under the haystack model 
with mating before dispersal 

: 0 0 0 0 
2 0.250 0.249 0.244 0.242 
4 0.375 0.375 0.373 0.372 
8 0.438 0.437 0.437 0.437 
co 0.500 0.500 0.500 0.500 

values of N (the number of founding females) and G (the number of 
generations of breeding within the stack before dispersal). When G = 1, the 
equilibrium sex ratio is 

r=i(N-1)/N; (1) 

this is the sex ratio under Hamilton’s model in a diploid population. As G 
increases there is a consistent but very slight decrease in the sex ratio. It can 
be concluded that, if females mate before dispersal, the number of genera- 
tions of mating within the stack has a negligible effect on the equilibrium sex 
ratio. In interpreting this result it must be remembered that the population 
within the stack is allowed to grow without limit; if population growth were 
restricted to a finite carrying capacity by density-dependent factors, the sex 
ratio would tend to 3 as G increases. The increase in the sex ratio with N is 
due to the increase in the amount of competition between brothers for 
mates. Alternatively, one can argue that the importance of within-stack 
competition, favouring a sex ratio off, increases with N, while the amount of 
between-stack competition, favouring a female bias, remains constant. 
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3. The Haystack Model with Random Mating After Dispersal 

We assumed in the last section that females mate within their own stack at 
the end of the year before dispersing to found new colonies. In this section 
we make the alternative assumption that unmated males and females 
disperse at the end of the year, and that individuals from all stacks mate at 
random with each other before fertilized females (or mated pairs) found new 
colonies. It would seem that this model is more likely to be appropriate to 
populations of small rodents which we have in mind. 

The equilibrium sex ratio was found in the same way as before, but it was 
only necessary to consider four types of mutant stack because with popu- 
lation-wide random mating there is a negligible chance that two rare mutant 
individuals will mate at the beginning of the year. The results are shown in 
Table 2. 

TABLE 2 

The equilibrium sex ratio under the haystack model with 
random mating after dispersal 

1 0.5 0.312 O-203 0.175 0.149 
2 0.5 0.391 0.334 0.312 0.292 
4 0.5 0.441 0.412 0.399 0,386 
8 0.5 0.470 0,455 0.447 0.440 
CD 0.5 0.500 0*500 0.500 0.500 

In each column the female bias in the sex ratio decreases with increasing 
N; as in Table 1 this results from less competition between brothers for 
mates. When G = 1 there is random mating with no local mate competition 
so that r = $. As G increases each row shows an increasing female bias since 
larger values of G result in a higher proportion of local mate competition to 
random mating, and hence a more female-biased sex ratio. Note that when 
N = 1, G = 2, the sex ratio agrees with the result r = &obtained by Maynard 
Smith (1978, p. 161) by an unspecified argument for a population which 
mates randomly and brother-sister in alternate generations. 

4. Sex Ratio in the Wood Lemming 

The wood lemming (Myopus schisticoZor) has a sex ratio at birth of about 
three females to one male (Kalela & Oksala, 1966). Fredga et al. (1976, 
1977) hypothesize that there are two types of X chromosomes, X and X”. 
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The X” chromosome overrides Y, so that X” Y individuals are female and 
produce only X*-carrying ova; X*X females produce X” and X ova in 
equal numbers. Thus there are three types of females (XX, X*X and X* Y) 
but only one type of male (XY). 

Bengtsson (1977) has shown that under random mating there is an 
ecologically stable equilibrium with each of the four genotypes present in 
equal numbers, so that there are three females to each male, if each of the 
three mating types is equally fertile. In this section we shall consider whether 
this genetic system is evolutionarily stable, in the sense of being able to resist 
invasion by a modifier gene which suppresses the action of X*, under the 
breeding structure of section 3. Maynard Smith & Stenseth (1978) have 
considered the evolutionary stability of this system under inbreeding, but 
without specifying how inbreeding is produced. 

We first consider ecological stability in the absence of modifiers under the 
breeding structure of the last section in the case N = 1. We have postulated 
discrete, non-overlapping generations, but a problem arises when the 
founding female is X”Y, since all her offspring are female and have no 
brothers to mate with. We suppose in this case that in a proportion p of the 
cases a male is found to inseminate the daughters (perhaps their father) and 
with probability l-p no male appears and the colony dies. The problem 
arises only in the first generation; if a mate is found for the daughters, they 
should have enough sons to inseminate the next generation of females. 

To find the equilibrium frequencies of the four genotypes XX, X*X,X* Y 
and XY we must look at the output, after G generations, of each of the three 
types of mated females. Assume that, in each generation, a female produces 
2k offspring. A routine calculation shows that, after G generations, an XX 
mated female produces kGXX females and kGXY males, an X*X mated 
female produces kG(3/2)“-‘/2 of each of the four genotypes, and, in a 
proportion p of the cases, an X” Y female produces kG[(3/2)G-1 - l] of 
eachof XX andXY and kG(3/2)G-’ of X*X andX*Y. It isseenfrom these 
outputs that, at equilibrium, XX and XY have the same frequency a and 
X*X and X” Y have the same frequency 6. When G = 1 and p < 3 or when 
G = 2 and p <i these frequencies are a = :, b’ = 0; in all other cases 

a = [(l + 2p>($)G-’ - 2p]/D 

b=[(1+2p)(~)G-‘-2]/0, 
(21 

where D is chosen so that 2a + 2b = 1. Following the analysis of Bengtsson 
(1977) we find that these equilibria are globally stable. 

We shall now consider evolutionary stability against invasion by modifier 
genes. We consider two types of modifiers, a Y-linked suppressor, Y”, such 
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that X* Y” individuals are normal males, and an autosomal suppressor, A*, 
such that A*AX* Y or A*A*X* Y individuals are normal males, whereas 
AAX” Y individuals are female. We postulate the breeding structure of the 
last section with N = 1 and with the modification defined in the last 
paragraph. The Y* problem is simple enough to be handled analytically, but 
the A* problem required the use of a computer. 

To investigate the Y* problem, we suppose that Y* is rare, so that two 
types of mutant males, XY* and X* Y*, are both rare. We remark that the 
X” Y * male can produce X*X* females, but if Y * is rare, soalso will be this 
type of female, and we can assume that in the random mating phase, such 
females do not mate with Y* males. Indeed we can assume that in the 
random mating phase, each of the two types of Y” males choose mates XX, 
X*X and X*Y in equilibrium proportions a, b and b. To determine 
whether Y* increases or decreases, when rare, we proceed in the usual way. 
We find the matrix which relates the numbers of successfully mated Y” 
males of each type to the numbers of the previous season. Then Y* invades 
the population if the dominant eigenvalue of this matrix is greater than 
unity. 

After some straightforward calculations the transition matrix is found to 
be 

1 
I 

u + b[1+ (-2)-G] b[l-(-2)-G] 
*=% (2a+6)[1-(-2)-G]/3 [(a+%)+(2a+6)(-2)-G]/3 (3) 

where 

M = a -pb + (p(p +$)b. (4) 

The dominant right eigenvector of A is (1,l) with eigenvalue (a +2b)/M. 
The condition that Y* will not invade is therefore that a + 2b CM, which 
becomes 

(;)“-’ > (4 + 2p)/(2p + 1). (5) 

The results are tabulated in Table 3. When G I 2, Y” will always invade, 
and when G 2 5, Y* will never invade. For G = 3 or 4, Y” will invade if p is 
sufficiently small. 

To investigate stability against invasion by an autosomal modifier, we 
proceed in the same way. There are now ten genotypes which incorporate at 
least one A*, six of which are female and four male. The transition matrix A 
is now 10 x 10 instead of 2 x 2, and we used a computer program to calculate 
its entries and eigenvalues given values of p and G. The condition that the 
dominant eigenvalue of this matrix be less than one is tabulated in Table 3. It 
is seen that A* always invades if G I 3 and never invades if G 2 10. For 
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TABLE 3 
Range of values of p for which X* is 

evolutionarily stable 
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G y* modifier A* modifier 

1 none none 
2 none none 
3 p>o.70 none 
4 p>o*13 p>o.97 
5 all p 
6 all p p>O.52 
8 all p p>o.19 

10 ail p all p 

intermediate values of G, A* will invade if p is sufficiently small. We note 
that X” can resist invasion from Y” more easily than from A*. We also note 
that our analysis only considers the conditions under which X” can resist the 
spread of modifiers; we have not considered the ultimate fate of the system 
under conditions when modifiers initially increase. 

We are grateful to Steve Gaito, David Maier and Lydia Adams for computing 
assistance. 
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