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Hamilton (1967) pointed out that Fisher’s (1930) argument predicting an 
equality of the sex ratio may break down when there is local competition for 
mates. He considered in particular a model in which the environment 
consists of a number of isolated patches, each of which is colonized by a 
number of inseminated females; the offspring breed within the patch before 
dispersal. The present paper provides a careful derivation of the equilib- 
rium sex ratio under this model in both diploid and haplo-diploid popu- 
lations, and extends the model to consider the effects of having a finite 
number of patches. 

We suggest that the equilibrium sex ratio is not simply a function of the 
amount of inbreeding or sib-mating, as suggested by Maynard Smith 
(1978), but that the detailed breeding structure of the population must be 
taken into account. 

1. Introduction 

Fisher (1930) argued that the total efforts invested in producing males and 
females should be the same; in species without parental care of the young, 
this implies that the primary sex ratio should be 1. Hamilton (1967) pointed 
out that Fisher’s argument depends on the rather unlikely assumption of 
random mating within the whole population, and showed that considerable 
departures from an equal sex ratio may occur when mates are chosen 
preferentially within local groups (local mate competition). 

Hamilton considered in particular a model in which the environment 
consists of a number of isolated patches, each of which is colonized by a fixed 
number of inseminated females; the offspring mate at random within the 
patch in which they were born, and inseminated females then disperse at 
random among the patches to restart the cycle. In this model the sex ratio 

tThis investigation was supported by a grant from the National Sciences and Engineering 
Research Council Canada. 

$ Permanent Address: Department of Biomathematics, Pusey Street, Oxford. 
409 

0022-5193/80/190409+11$02.00/0 @ 1980 Academic Press Inc. (London) Ltd. 



410 P. D. TAYLOR AND M. G. BULMER 

should show a female bias, and in the extreme case when each patch is 
colonized by a single inseminated female, the equilibrium sex ratio is all 
female; in practice this means that a female should produce nearly all female 
offspring, and only a few males sufficient to fertilize all their sisters. 
Examples of this mechanism are provided by some insects and mites in 
which sib-mating is accompanied by a predominantly female primary sex 
ratio. 

Hamilton’s derivation of the theoretical sex ratio under the above model 
was approximate and rather heuristic. The purpose of this paper is to derive 
the results by a more exact argument. 

In the next section we describe a simple, heuristic argument which 
demonstrates the underlying reason for the female bias under Hamilton’s 
model in a diploid population; in section 3 we make the argument more 
rigorous, considering separately the cases with a finite and with an infinite 
number of patches. Finally, in section 4 we consider haplodiploid popu- 
lations and meiotic drive. 

2. A Heuristic Argument 

Hamilton’s model in its simplest form can be stated as follows. The 
environment consists of M patches, each of which is colonized by N 
fertilized females. Each female produces K offspring, the male and female 
offspring within a patch mate at random and fertilized female offspring 
disperse at random among the patches to restart the cycle; when each patch 
has been colonized by N females, any remaining females die without 
reproducing. 

We shall now consider a simple, non-rigorous derivation of the equilib- 
rium sex ratio in a diploid population. Suppose that the normal sex ratio in 
the population is r, and that a single mutant female produces offspring with 
sex ratio s ; thus normal females produce Kr sons and K(1 -r) daughters, 
while the mutant female produces KS sons and K( 1 - s) daughters. To find 
the fitness of the mutant female, imagine that her genes, and those of her 
mate, are coloured red, so that there are four red genes in the population at a 
typical autosomal locus. We shall now compute the average number of red 
genes in the next generation. 

The mutant patch (the patch containing the mutant female) produces 
K(l -s) females with two red genes and K(N - 1) (1 - r) females wiith no 
red genes; likewise, it produces KS males with two red genes and K(N - 1)r 
males with no red genes. After random mating among these offspring, the 
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number of red genes among fertilized females is 

A=X(I-s)+[K(l-s)+K(N-l)(l-r)l[ KS+g;-l)r] 

=X(1-s)+Xs 
[ 

(l-s)+(AJ-1)(1-r) 1 s+(N-1)r ’ 

(1) 

the first term coming from red genes in females and the second from red 
genes in their mates. The total number of fertilized female offspring from all 
patches is 

T=K(l-s)+K(l-r)[(N-l)+N(M-l)]. (2) 

When these females have dispersed to start the next generation, the 
number of red genes in the next generation is AMY/T, and the fitness of the 
mutant female can be defined as f = AMiV/4T’. If r is the equilibrium sex 
ratio, then it must be able to resist invasion by any mutant, so that f < 1 
whenever s # r. Thus the equlibrium sex ratio can be found by solving the 
equation 

df/dsl,,, = 0. 

The equilibrium sex ratio is 

We see that if there is only one patch (a finite random mating population), 
then r has the standard Fisher (1930) value of 1, but if M > 1, the equilibrium 
sex ratio is female biased, the bias increasing with the number of patches. 
With a very large number of patches (M + co), r = i(N - 1)/N, the value 
obtained by Hamilton (1967). 

By comparing the fitness of the three different categories of females in the 
model, we can get some insight into the mechanism favouring a female 
biased sex ratio. The quantity A calculated above is the number of red genes 
among fertilized female offspring after mating. The analogous calculation 
for a normal female in the mutant patch gives 

B=2K(l-r)+2Kr 
(l-s)+(iV-1)(1-r) 1 s+(N-1)r ’ (4) 
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Finally a normal female in a normal patch expects to produce 

C=2K(l-r)+2+*]=4K(l-r) 

red genes in mated female offspring. 
Now suppose that the population sex ratio is r = $, and the mutant ratio is 

female biased, s <i. Then, in A and B, the term in square brackets is greater 
than one, so that B <A. But also A > 2K = C. Thus C <A < B. The reason 
that C is less than A and B is that the mutant patch produces more females 
than a normal patch. The reason that A is less than B is that the excess of 
female offspring in the mutant patch has the effect of raising the expected 
reproductive success of all male offspring, and the ordinary females produce 
more male offspring than the mutant female. This is the standard Fisher 
effect which penalizes low sex ratios when the population (patch) sex ratio 
falls below 3. Thus the mutant female raises her own fitness above that of the 
general population, but raises the fitness of normal females in her own group 
even more. If there is only one patch, then of course, s will be at a 
disadvantage, but if there is more than one patch, there will be values of s 
close to but below i which will have a net advantage over r = i. 

The mutant female exhibits a type of local altruism. Some quite general 
models which provide conditions under which this form of altruism can 
spread in a population have been considered by Wilson (1975) and Maynard 
Smith (1976). 

Finally, let us observe that an essential feature of this model is that 
offspring mate locally within the patch before the mated females disperse. If 
we drop this requirement, and assume that an individual mates in the patch 
with probability p, and at random in the whole population with probability 
1 -p, then the amount of female bias in the sex ratio is proportional to p. 
Indeed an argument similar to the above gives the equilibrium ratio as 

1 PM-1) 
r =5-2(MN-l)’ (f-5) 

3. A More Rigorous Argument 

In this section we shall construct a more rigorous argument based on a 
precise genetic model of the determination of the sex ratio. We consider a 
locus with two alleles, R and S, with S dominant to R. We shall suppose that 
the gene acts in females, so that RR females produce offspring with sex ratio 
r, while SR or SS females produce offspring with sex ratio s, whatever the 
genotypes of their mates; however, the argument will go through with minor 
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notational changes if the gene acts in males rather than females. We shall 
now show by a direct argument that equation (3) of the last section gives the 
equilibrium sex ratio under this model. By changing details of the proof it 
can be shown that the result remains true if the assumption of dominance is 
relaxed. We shall first consider a deterministic model with an infinite 
number of patches (M = co); we shall then discuss the stochastic analogue of 
this model with a finite number of patches. 

(A) INFINITE NUMBER OF PATCHES 

There are nine possible genotypes of a fertilized female, which may be 
represented by (i, j), where i denotes the number of S genes in the female 
and j the number in her mate (i, j = 0, 1,2). A pair will be called normal if the 
female is RR (i = 0) and abnormal otherwise. A normal pair produces rK 
male and (1 - r)K female off spring, an abnormal pair produces SK male and 
(1 -s)K female offspring. A pair will be called non-mutant if both the 
female and the male are RR (i +j = 0), and mutant otherwise. We shall 
suppose that S is rare, so that the possibility that there are two or more 
mutant pairs in a patch can be ignored. Write x(i, j) for the frequency of 
patches with one mutant pair of type (i, j) and N - 1 non-mutant pairs, which 
will be called a mutant patch of type (i, j); since S is rare the x(i, j)‘s will be 
small. The patch is called normal if i = 0 and abnormal if i > 0.. 

The standard method of determining whether S will spread when it is rare 
is to write down the linearized recurrence relations for the x(i, j)‘s and to find 
the dominant eigenvalue of the corresponding 8 x 8 transformation matrix. 
Fortunately a short cut is available. We first compute cx (i, j), the expected 
number of S genes in fertilized female offspring produced by a mutant patch 
of type (i, j). For normal patches LT (i, j) = (1 - r)K(i + j), and for abnormal 
patches 

where 

(Y (i, j) = 2 x no. of female offspring in patch x (pr + p,), (17) 

no. of female offspring in patch = (1 - s)K + (N - l)( 1 - r)K 

pf = frequency of S in female offspring 

i(i +j)(l -s)K 
=[(l-s)K+(N-l)(l-r)K] 

pm = frequency of S in male offspring = 
aci +j)sK 

[SK + (N - l)rK] 
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Hence, in abnormal patches, 

a(i, j) = (1 - r)K(i +j)f(r, s) (8) 
where 

f(r, s) =&[w+ 
s[(l -s)+(N- l)(l -r)] 

I s+(N-1)r * (9) 

The chance that a fertilized female offspring will survive to breed in the 
next generation is l/(1 - r)K, since nearly every patch is normal. It follows 
from (8) that the number of S genes in the population will increase or 
decrease from one generation to the next according as f(r, s) B 1. It is now 
easily shown that r = $(N - 1)/N is the only equilibrium value of the sex 
ratio, and that when r takes this value f(r, s) < 1 for all s # r. Thus this sex 
ratio is an evolutionarily stable strategy. It should be noted that this analysis 
is confined to the behaviour of a mutant allele S when it is rare, though it 
seems likely that the result is of general validity. 

(B) FINITE NUMBER OF PATCHES 

When the number of patches is finite, the total population size is finite, and 
the process must be treated as a stochastic process. Let niil be the number of 
fertilized females of type (i, j) in patch 1. A state of the system is a 
specification of these numbers, and a complete description of the process 
would require writing down the matrix of transition probabilities for all 
possible states. Fortunately, it is possible to obtain enough information 
about the behaviour of the system by considering simply the total number of 
S genes, defined as X = C (i +i)nijl. In particular we shall show that 

E(Xt+I(Xt)=Xt-~(r-i)(s-r)+o(s-r), (10) 

where /3 is strictly positive and f is the equilibrium sex ratio given in (3)., 
Thus the S gene is at a selection advantage if r > i and s < r, or if r < r^ and 
s > r, provided at least that s is close to r. This does not ensure that the 
equilibrium sex ratio (3) will hold exactly, since suboptimal alleles may be 
fixed by chance fluctuations, but we should usually expect to observe a sex 
ratio near this value under the joint pressures of mutation, selection and 
drift. 

To prove this theorem we first compute the expected value of X,+r given 
the nijl’s in generation 1. We then write e = s - r, expand this expected value 
in a Taylor series about E = 0, and keep only the linear term in E. In this way 
we find that 

E(X,+lltZijl’S in generation t) =X, + (YE, (11) 
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where 

and 

(l-r)cu = &x’+;[(1-2’)x; (12) 

A, = no. of abnormal pairs in patch 1 
A = &Al = total no. of abnormal pairs 

XL = total no. of S genes in abnormal pairs 
Xl, = no. of S genes in patch 1 

Xi = no. of S genes in patch 1 in abnormal pairs. 

We now write nij for the total number of pairs of type (i, j) in all patches, 
and we consider the expectation of X ,+l conditional on the Itii’s in generation 
t. We first observe that 

E[ C (AOX,tInij’S] = (MN1_ 1) [(IV-l)AX,+N(M-1)X;]. (13) 

To obtain this result we first compute E(Xl,IA,), and we then use the fact that 
Al, conditional on A, has a hypergeometric distribution. From (1 l), (12) and 
(13) we find that 

where 

E(Xt+llttij’S in generation t) =X, + (Y*E (14) 

(1-r)a - *- 1- MN-l) 
c 2r(MN-1) c&x-x~l* I[ (15) 

The second term in square brackets on the right-hand side of (15) will almost 
certainly be negative. When S is rare this follows from the fact that A/MN is 
very small. In general, we may assume that the population is approximately 
in Hardy-Weinberg equilibrium, whence X; *$X,(1 + A/MN), and the 
term in question is approximately -(MN-A)Xt/2MN. Hence (10) is 
abtained. 

4. The Haplodipoid Case 

We now suppose that males are haploid and females diploid with the 
standard reproductive pattern: fertilized eggs become females; unfertilized 
eggs become males. We will assume that there are an infinite number of 
patches, and provide an exact argument at the level of that given in section 3. 
As before we postulate two alleles R and S at a single locus, except that, to 
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obtain some mathematical simplification, we assume R to be dominant over 
S. To begin with we assume that the gene acts in the female. Thus RR and 
RS females produce offspring with sex ratio r and SS females produce 
offspring with sex ratio s. 

As in section 3 we assume that S is rare, so that at most one fertilized 
female in each patch has any S genes. Let x(i,j) (0 si 52, O%js 1, 
i +j > O), denote the relative frequency of patches in which there are N - 1 
non-mutant fertilized females and one female of type (i, j) with i S genes in 
the female and j S genes in her mate. To determine whether S will spread we 
will write down the linearized recurrence relations for the x(i, j) and find the 
dominant eigenvalue of the 5 x 5 transformation matrix. The short cut which 
worked in section 3 is not available when the sexes have different ploidy. 

The transformation matrix is obtained by recording the output of each of 
the five types of mutant patch; the ith column records the contribution of the 
ith patch type to each next generation patch type. If we let x (i, j) denote the 
number of patches of type (i, j) at one generation and x’(i, j) at the next then 

1/4N 0 
(2N - 1)/4N 0 

1/4N 1/4N 
(2N- 1)/4N (2N- 1)/4N 

$k’L’l); (N-1)/2N (2N-1)/4N 0 

where we have introduced the abbreviations p = s/[s + (N - l)r], and u = 
(l-s)/(l-r). 

The condition that r be at equilibrium is that the dominant eigenvalue 
of this matrix be 11 for all s. This condition is met for r = 
(N - 1)(2N - l)/N(4N - 1). We will discuss how this calculation is made at 
the end of the section. Hamilton (1967, p. 485) did some computer simula- 
tions to test this model for the case N = 2. His result located the equilibrium 
sex ratio between 0.205 and 0.215. At the time, Hamilton was working with 
the diploid formula r = (N - 1)/2N, and he pointed out the discrepancy 
between the theoretical ratio r = a and the result of his simulation. In fact, 
our formula gives r = & = O-214, and the discrepancy disappears. Hamilton 
(1979) has subsequently obtained a formula which is equivalent to ours, 
though his argument is cryptic. 
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(A) MEIOTIC DRIVE 

Suppose we have a diploid population with a gene controlling sex ratio on 
the X chromosome. This is formally identical to a haplodiploid population 
with male control of the sex ratio. We proceed exactly as before except that 
now mated females of type (2, l), (1, 1) and (0,l) produce offspring with sex 
ratio s. The equilibrium sex ratio is calculated to be r = (N - l)/N(4N - 1). 
For infinite N we get r = 0, which corresponds to the fact that in an infinite 
random-mating population, X-drive leads to an all female ratio and extinc- 
tion. For N = 1, we have complete sib-mating and we again get r = 0, but for 
a different reason. For intermediate values of N, the population can survive 
with a non-zero equilibrium sex ratio. 

Hamilton (1967) discusses X-drive. He did not have a mathematical 
solution available, but determined by computer simulation that the 
equilibrium ratio for N = 2 is between 0.070 and 0.072. Our formula gives 
r:=&=O.0714. 

A model for X-drive in Drosophila has been proposed by Thompson & 
Feldman (1975). They show that a stable equilibrium can occur if the driving 
X-chromosome confers differential viability and, in males, differential 
fertility. They quote biological evidence for both these effects which seem to 
provide a more likely explanation of the polymorphism than the situation of 
Hamilton’s model. 

It is of interest to compare our formula with the formula r = (N - 1)/N for 
Y-drive obtained by Hamilton (1967). This case does not need the matrix 
machinery of the X-linked case, since there is only one type of mutant mated 
female. 

(B) THE CALCULATIONS 

Let us describe how the mathematical calculations proceed in the 
haplodiploid case with female control. Denote the 5 x 5 transition matrix by 
A(r, s). We want the value of r for which the dominant eigenvalue of this 
matrix is 5 1 for all s. Notice first that when s = r the population is in a steady 
state, so that A (r, r) = 1. Indeed it is easy to check that (3,2,2,1,1) is a left 
eigenvector for A = 1 of A(r, r). Thus a necessary condition that A (r, s) 5 1 
for all s is that (ah/&) = 0 when s = r. If we let f(r, $, A) be the characteristic 
polynomial of A(r, s) then the function A(r, s) is obtained by solving the 
equation f(r, s, A) = 0 for A as a function of r and s (and taking the largest 
value). Hence the equation we get by differentiating with respect to s, 
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will give us (ah/&). The condition (aA/&) = 0 is equivalent to (~?flas) = 0. 
Since f is the determinant of A-A I, the condition becomes 

$ det IA(r, s) -I\ = 0 at s = r. (16) 

The use of (16) to calculate the equilibrium value of r requires the 
evaluation of the determinant of a large matrix (in this case 5 x 5), and the 
work required can be tedious. Simplifications can sometimes be made with 
row and column operations (which do not alter the determinant). In the 
present case, if we replace row 3 of A-I with row 3 + $ row 4 + $ row 5, we 
get zeros in the last two columns of row 3. (Essentially, this happens because 
(3,2,2, 1, 1) is a left eigenvector of A(r, r) -I for the eigenvalue 0, and the 
last two columns of A-I are independent of s.) The matrix A -1 then has 
block triangular form, but has the same determinant: 

where D is a 2 x 2 matrix which does not depend on s. Thus (1) becomes 
(a/&) det B = 0, with B a 3 x 3 matrix. The calculations are now reasonable. 

Let us finally remark that if we assume S is dominant, the last two columns 
of A are no longer independent of s, and the above row reduction trick does 
not work. This is what makes the calculations more difficult in this case. 
However, we have verified that the equilibrium value of r is the same as in 
the case S recessive. 

5. Discussion 

Maynard Smith (1978) discusses the effect of sib-mating on the equilib- 
rium sex ratio. He argues that in a diploid population if a proportion p of all 
females sib-mate while 1 -p mate at random, then the equilibrium sex ratio 
should be r = (1 -p)/2. His argument is in general terms and does not 
require a knowledge of the specific breeding structure which causes the 
partial sib-mating. 

One reason that Hamilton’s model is of theoretical interest, is that it does 
provide a specific breeding structure in which Maynard Smith’s general 
formula can be tested. In the first part of section 3 we discuss Hamilton’s 
original model, in which the probability of sib-mating is p = l/N. We obtain 
Hamilton’s result r = (N - 1)/2N, which gives Maynard Smith’s formula 
when N = l/p. If, however, we assume a finite population, organized into M 
patches, the equilibrium sex ratio is rather less female biased than Maynard 
Smith’s formula predicts. In case M = 1, we obtain the result r = 5 for a 
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random mating finite population of size N (which is of course, completely 
inbred). 

In two forthcoming papers (Taylor & Bulmer 1980; Bulmer & Taylor, 
1980), we argue that what affects sex ratio is not inbreeding as such, but 
rather the extent of sib competition for a genetic share of the next genera- 
tion. Between males this might involve competition for mates; between 
females, competition for nest space. Such competition will often tend to 
produce some inbreeding, but there is no direct link between the amount of 
such inbreeding and the equilibrium sex ratio. To actually calculate the 
equilibrium sex ratio one needs to know several parameters of this sib 
competition; it is not enough simply to know p, the probability that a female 
will sib-mate. 

Finally we will make a point about dominance. If a genetic argument, 
using alternative alleles, is employed to calculate equilibrium sex ratios, one 
is forced to make an assumption about the dominance of the mutant allele. 
In sections 2 and 3, we have assumed S is completely dominant, whereas in 
section 4, some mathematical simplifications were obtained in our assump- 
tion that S is recessive. In some models it is easy to see that the equilibrium 
ratio will remain the same under any dominance assumption. In others, for 
example in section 4, considerable calculation is required to see whether this 
is so. 

There is a general problem here which appears to be difficult. Our 
biological intuition tells us that under a wide range of conditions there 
should be a stable equilibrium of the sex ratio which resists invasion by 
mutant alleles of all degrees of dominance. But it is not easy to see how a 
precise result along these lines might be formulated or demonstrated. 
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