
J. theor. Bioi. (1979) 81, 407-421 

An Analytical Model for a Short-term Advantage for Sex 

PETER D. TAYLOR 

Department of Mathematics and Statistics, Queen’s University, 
Kirlgston, Ontario K7L 3N6, Canada 

(Received 17 July 1978, and in revised form 19 February 1979) 

An analytical treatment is given for a model of Maynard Smith in which a 
short-term advantage for sex and recombination is provided by the 
mechanism of sib-competition. Suppose the next generation is formed by 
the winners of a large number of contests. Suppose a number of parents each 
contribute M offspring to a given contest, but the offspring of an asexual 
parent are identical whereas those of a sexual parent are distributed with 
some variance. If  M is large there is a high probability that a sexual offspring 
will have a high enough fitness to win the contest. Calculations show that 
values of M around 3 and 4 are generally enough for sexual behaviour to 
overcome its two-fold disadvantage. 

1. Introduction 

One of the major unsolved problems in evolutionary biology is to account 
for the widespread establishment of sexual behaviour in the plant and animal 
world. What is the nature of the selective forces which maintain sexual 
reproduction in nature, and under what circumstances are they effective? 
Can these same forces account for its origin? Many recent papers and at least 
two extremely interesting books (Williams, 1975; Maynard Smith, 1978) 
have addressed this problem. Of course, sexual reproduction can involve a 
high or a low level of genetic recombination, and an essential part of this 
problem is to decide why present levels of recombination are what they are 
observed to be. 

There are advantages and disadvantages to sexual behaviour and 
recombination. The literature considers two main types of disadvantages. 
The first arises when there is unequal investment by the two parents in their 
offspring. This may be the result of greater offspring care by one parent, or, 
in the absence of any parental care, of anisogamy : male and female gametes 
of different size. Usually it is the female who has the greater investment, but 
sometimes, for example in some fishes, it can be the male. Assume for now 
that it is the female. The disadvantage then stems from the fact that the 
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female, who is required to put equal investment into males and females, is 
unable to produce as many females, as a parthenogenetic female who 
produces on/y females. In the extreme case where the male investment is 
effectively zero, the sexual female produces only half as many females as the 
parthenogenetic female. This is referred to as the two-fold cost of sex. 

The second main disadvantage of sex is that the offspring are not faithful 
copies of either parent. Since both parents are probably fit and well suited to 
the environment (after all they have managed to reproduce) it would seem 
that their best bet would be to stick with a genotype of proven ability rather 
than to “mix things up”. This is an effect which is amplified by high 
recombination. Genes that work well, work well together. When 
recombination breaks apart gene complexes in successful parents it must 
usually disrupt favourable gene combinations. The average fitness of sexual 
offspring is expected to be lower than the average fitness of the two parents. 

What are the advantages of sex? Interestingly enough there is only one 
significant advantage mentioned in the literature and that is the same as the 
second disadvantage: offspring are more varied than parents. Again, this 
effect is amplified by recombination. This variation in offspring can be an 
advantage in the following sense. Although sexual behaviour usually permits 
fewer descendents than asexual behaviour and gives them lower average 
fitness, a few of these descendents may just happen to have the right 
combination of alleles to surpass in fitness all their ancestors. 

All models that I will mention that attempt to account for the maintenance 
of sex, present conditions under which some form of this advantage can out- 
weigh the two disadvantages described above. The advantage claimed for sex 
is then really an advantage of recombination, which of course only becomes 
possible with sexual behaviour. The models all use essentially the same 
argument to account for the success of an allele for recombination in a sexual 
population : the allele for recombination, although suffering inherent 
disadvantages, eventually attains an advantage over alternative alleles, 
because it produces good individuals more quickly than can the alternative 
alleles, and it rides to success on the high fitness of these individuals. 

This basic argument appears in a wide variety of guises. These can be 
categorized into two main forms : long-term and short-term. In the long-term 
argument it takes many generations for the production of these good 
individuals and in the meantime sexual behaviour will certainly appear to be 
at a disadvantage. The short-term argument looks for conditions under 
which the good individuals are produced in the next generation so that one 
can measure the advantage of sex with relative fitness in the classical sense 
(numbers of surviving offspring) of sexual and asexual individuals. 

In the long-term models, good individuals are those who have managed to 
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incorporate a large number of favourable mutations and/or a small number 
of unfavourable ones. The idea is that these individuals will be more quickly 
generated (in fewer generations) in sexual than in asexual populations 
because recombination hastens the attainment of linkage equilibrium. The 
argument was originated by Fisher (1930) and Muller (1932). More recently 
Crow & Kimura (1965) and Maynard Smith (1968,197l) consider models of 
this type. The last paper stands on the shoulders of the first two and builds an 
analytical model to decide whether a large number of favourable mutations 
can arise and be incorporated more quickly in a sexual or asexual 
population. Sex has an advantage when the population size and mutation 
rate are large and the selective advantage of each favourable mutation small. 
Indeed, in these cases, mutations do not take long to appear and become 
established in the population, but they take a long time to attain fixation. 
Recombination will create, early in the game, an individual with all 
mutations, so that in very little more than the time taken to fix one 
favourable mutation, they will all be fixed. 

More recently, long-term models have been built by Strobeck, Maynard 
Smith & Charlesworth (1976) and by Felsentein & Yokoyama (1976). These 
papers do simulation studies on small populations (< 1000). The first paper 
considers three loci : at one there is a balanced polymorphism, at another a 
favourable mutation, and the third has an allele promoting high 
recombination between the first two. In this model the high recombination 
allele is successful because it creates a good combination of genes, and 
increases in frequency because it is linked to that combination of genes. 
Hence the term hitch-hiking is introduced to describe the way in which the 
recombination allele hitches a ride on the back of the successful gene 
combination. The second paper investigates the effects of recurrent 
favourable and deleterious mutations on the success of an allele for high 
recombination. These models are long-term, in that the recombination allele 
does not increase in frequency in every generation, but does so when summed 
over many generations. 

The short-term models attempt to find conditions under which this 
ultimate benefit of variation in offspring might actually confer greater 
personal fitness on sexual individuals. The process by which the long-term 
models find an advantage can be enhanced by making the environment of 
ones offspring uncertain, so that variation in offspring has some merit. These 
environmental variations can be temporal in nature (change from generation 
to generation) as in Charlesworth (1976) and Maynard Smith (1971) or 
spatial (change from patch to patch) as in Maynard Smith (1971), Slatkin 
(1975), Ghiselin (1974), Williams & Mitton (1973), Williams (1975) and 
Maynard Smith (1976). The last three papers discuss the effects of sib- 
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competition, an important new feature that greatly amplifies any sexual 
advantage through variation of offspring. In fact to obtain any short-term 
advantage without sib-competition, circumstances seem to have to be 
unreasonably special. 

The essential idea behind sib-competition is that offspring of sexual 
individuals will differ somewhat from one another and will therefore compete 
less fiercely than asexual offspring. One way to look at this is to suppose you 
have to send several offspring to try to colonize an uncertain environment 
which can house only one mature individual. You want to maximize the 
fitness (for that environment) of your fittest offspring, so you may be better 
off to make your offspring all different than all the same. This is just what a 
sexual individual (with high recombination) does. 

Maynard Smith (1976) built a simulation model to study these effects of 
sib-competition. He studied variation in five different environmental 
features, with five corresponding genetic loci. Our purpose is to build an 
analytical model to describe this type of situation. 

Let us look more closely at the factors contributing to this short-term 
advantage. Suppose we have a patch of ground and a number of seeds are 
competing to grow on that patch. Suppose there are M seeds from an asexual 
parent and M seeds from a sexual parent. The M asexual seeds are all 
identical (to the parent) and presumably have high fitness since the parent 
already has high fitness by virtue of having survived. Of course, if the 
demands of the patch they are trying to dominate are different from those the 
parent experienced, this will tend to lower their fitness. The M sexual seeds 
are all different (especially if there is a significant amount of genetic 
recombination) and if M is large (which means a high level of sibling 
competition) one of them may have higher fitness than that of the asexual 
seeds. Thus to give sex as much advantage as possible, we want large 
uncertainty in predicting offspring environment from parental environment, 
a high level of sib-competition (large M) and probably significant genetic 
recombination (although recombination will also break up favourable 
combinations which the parents may (a posteriovi probably will) have had, 
and thus lower the mean offspring fitness). 

2. Description of the Model 

We have a large number of environmental patches. The patches are 
described by the values of N binary variables. A large number of individuals 
are trying to colonize the patches. Each individual sends M seeds to each of a 
number (the same number for every individual) of patches. Suppose this 
results in each patch having contributions from K+ 1 individuals. 
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Suppose individuals are haploid with one of two alternative alleles at each 
of N loci; each allele matches one of the two values of the corresponding 
binary patch variable. Let the Jimess of any individual, with respect to a 
certain patch, be the number of loci at which her allele matches the patch 
value. Suppose exactly one seed will grow on each patch, and this will be the 
one with maximum fitness. 

We suppose there are two types of individuals: asexual and sexual. An 
asexual individual produces seeds which are identical to herself, a sexual 
individual finds another individual at random and chooses the genetic 
composition of each seed by taking al each of the N loci, with probability .50- 
50, the allele from herself and her partner. So we have perfect genetic 
recombination. 

Our objective is to find conditions on K and M which will (1) allow a rare 
sexual mutant to invade an asexual population, and (2) allow a sexual 
population to resist invasion by a rare sexual mutant. 

Now, under the assumption that one or other of the behaviours is rare, 
there will be two types of patches: those in which all K + 1 parents are of the 
common type, and those with K common and 1 rare parent. To decide 
whether the rare behaviour is at a relative advantage, we need only look at 
the outcome of the struggle to colonize the second type of patch. We will 
argue carefully in Appendix A that in case sexual behaviour is rare, it will be 
at an advantage provided the winning offspring in a mixed patch, has a 
sexual mother with probability at least 2/K+ 1. (Roughly speaking we need 
the 2 because only half of these sexual winners will actually have the gene for 
sex.) In case asexual behaviour is rare, it will be at an advantage provided the 
winning offspring has an asexual mother with probability at least 
(K- 1)/K+ 1)(2K- 1). (This is approximately 1/2(K+ 1) and is all we need 
because in those cases in which the winning offspring has a sexual mother, 
there is probability - l/K that he had an asexual father and hence 
probability - 1/2K that he is asexual himself.) The factor of 2 which we see 
coming in here is what we have referred to as the two-fold cost of sex. 

Finally, we need in our model a variable to describe the relationship 
between parental characteristics, and the characteristics of the patch into 
which she contributes seeds. Let us take a typical parent and a typical patch 
she is attempting to colonize. Suppose her fitness relative to that patch is 
drawn from some probability distribution on the integers from 0 to N. Let us 
assume that this distribution is binomial B(p, N) with mean pN and variance 
pN( 1 - p). This would be the case if the colonizing parent has, independently 

at each locus, probability p of matching the patch characteristic. 
If the parent is asexual, her offspring have fitness the same as her own. If 

the parent is sexual she chooses a partner who we will suppose bears the 
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same binomial relation to the patch as herself (with the same p), but 
independently of herself, and the distribution of the fitness of their offspring 
can be worked out. Indeed, one of our tasks in the next section will be to find 
approximately, the mean and variance of this distribution. 

3. Mathematical Analysis 

Let us focus attention on a fixed patch. Fitnesses will be measured relative 
to this patch. Define the following random variables. Let A be the fitness of a 
typical asexual offspring on that patch. (Then A is distributed as B(p, N).) Let 
A, be the maximum fitness of K randomly chosen asexual offspring on that 
patch. Let S(z) be the fitness of a typical sexual offspring from a pair of 
parents with average fitness z. Let S,(z) be the maximum fitness of M 
randomly chosen offspring from a pair of parents with average fitness z. Let 
S, be the average of S,(z) over z. It is the fitness of the best of M offspring 
from a typical pair of parents. Finally, let S,,, be the best of K samples of 
S,. It is the fitness of the best of all the MK offspring produced by K sets of 
parents, each producing M offspring. We will now provide reasonable 
descriptions of the distributions of these random variables. 

In general, suppose we sample n times from a standard normal 
distribution. The largest of these n numbers (the so-called first order statistic) 
is a variate with a certain distribution. Let us denote by ,u,, and r~,’ the mean 
and variance of this distribution. If n is not too large (n < 50) this 
distribution is nearly normal. It is slightly skewed to the right, the skew 
becoming more pronounced the larger we take n. If we start with a general 
normal distribution with mean ,U and variance CJ’, the maximum of n samples 
will be distributed with mean p + c,, and variance 0’0,“. 

Now we can easily find the distribution of A,. Recall that A is binomially 
distributed with mean Np and variance Np(l - p). If N is large and p not too 
close to 0 or 1, this distribution is close to normal, hence A, is approximately 
normally distributed with mean and variance 

PM&d = NP + JNpoCk 
a2(A,) = Np(l -p)a& 

Now let us look at the S-distributions. First we will look at S(z). Suppose a 
pair of parents have fitness u and u’. Let Y be the number of loci at which they 
both match the patch characteristic. Then the fitness of a typical offspring is 
distributed as Y + x where x w B( l/2, u’ + u - 2~). Setting u’ + v = 22 where z is 
the average fitness of the parents, the offspring are approximately normally 
distributed with mean 
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and variance 
r+p(x) = r+(1/2)(2z-2r) = z 

c?(x) = (2z - 2r)/4 = (z - r)/2. 

In order to get an expression which we can work with later on, we will 
replace r by its average value in terms of z, that is, by its expectation 
conditional on z. Now r is hypergeometrically distributed with parameters 
N, u, w  and so has mean VW/N. The average of this, given z, is expected to be 
approximately z2/N. Actually, a precise calculation shows that the 
conditional expectation of r is 

z 2 z(N-z) 
E(r(z) = - - ___ 

N 2N-1 

but we will ignore the last term which is small, when N is large, compared to 
?/N. Hence, conditional on z, S(z) is approximately normally distributed 
with mean and variance 

!-G(z)) = z 
o’(S(z)) = z( 1 - z/N)/2. 

Hence S,(z) is approximately normally distributed with mean and 
variance 

P(S,(Z)) = z+&l=iwLf 
cr2(S,(z)) = z(1 -z/N)&2. 

To find the distribution of S, we must average this over z, which has mean 
Np and variance Np(1 - p)/2. [It is the sum of v/2 and w/2, two independent 
variates with mean Np/2 and variance Np(l - p)/4.] We will show in 
Appendix B that S, then is approximately normally distributed with mean 
and variance 

where 

/@MM) = NP + &PU -PI/~ PM 

02(S,) = (o&+a’)Np(l -p)/2 
(2) 

M = 1 + j.LJ 1 - 2py2J2Npo. (3) 

If p is close to l/2 or if N is large then M: is very close to 1. 
Finally, S,, K is approximately normally distributed with mean and 

variance 

14s~ K) = NP + v”;iVp(l-p)/2b,w + &6&d 
(r2(Su. ,rJ = o;(o& + cx2)Np( 1 - p)/2. (4) 
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(A) CASE 1 

In this case a mixed patch has contributions from IS asexual parents and 1 
sexual parent. The best asexual seed is distributed as A, and the best sexual 
seed as S,. From the results of Appendix A, sex will invade if the distribution 
of S,-A, has mass at least 2/(K + 1) above 0. Using independence, 

~l(S,)-~(A,)+JoZ(S,)+aZ(A~)m(2/(K+l)) 3 0 

where for any E, m(s) is that value of Y for which the standard normal 
distribution has mass e to the right of x. Substituting from (1) and (2) this 
condition becomes 

pM 3 $ipK - J2ai + a& + ct2 m(2/(K + 1)). (5) 

Observe that p and N have dropped out of the condition except for their 
occurrence in c(. But if p is close to l/2, or N is large, then x is close to 1. 

Sex common 
(B) CASE 2 

In this case a mixed patch has contributions from K sexual pairs and 1 
asexual parent. The best asexual seed is distributed as A and the best sexual 
seed as S,,.. From Appendix A, sex will withstand invasion if the 
distribution of S,. K - A has mass at least (K- l)/(K+ 1)(2K- 1) above 0. 
Using independence, 

~(S,,.)-~(A)+Ja2(S,,K)+cr2(A)m((K- lW+l)W- 1)) 3 0. 

Substituting from (4) and the paragraph above (1) this condition becomes 

PM s-- > -JFT&+J2+( cr~+a’)o~m((K- l)/(K+ 1)(2K- 1)). (6) 

To summarize, given values of p, N and K, condition (5) describes those 
values of A4 for which sex will invade an asexual population, and (6) 
describes those values of M for which a sexual population, once established, 
can prevent asexual invasion. We have always found that if either condition 
holds for a particular value of M, it will hold for all larger values. 

4. Numerical Calculations 

The figures needed to calculate (5) and (6) are found in Table 1. Values of 
p,, and o,, can be found in the CRC Handbook of Tables for Probability and 
Statistics and in a paper of Tippett (1925). 
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TABLE 1 

n Ir” 2 un m(2/(n+1)) m((n-l)/(n+1)(2n-1)) 

2 O-564 @682 
3 0.846 0.560 
4 1.029 0.492 
5 1.163 @448 @431 1.446 

10 1,539 0.344 0.908 1,715 
20 1.867 0.276 1.309 1.992 
40 2.161 0.230 1.657 2,256 

100 2.508 0,184 2.058 2.580 

We first make a sample calculation for N = 50, p = l/2 (so that a will be 
0). For K = 5, 10,20,40 and 100 it is found that there is some threshold 
value of M for which conditions (5) and (6) hold for M greater than or equal 
to this threshold and fail for M less than the threshold. For K = 5 this 
threshold is M = 4 for both conditions while for K = 10,20,40 and 100, the 
threshold is M = 3, again for both conditions. 

If p is not approximately l/2 it is likely to be somewhat greater than l/2. 
This describes the case when an individual has a greater than even chance of 
matching a typical characteristic of a patch she attempts to colonize. As p 
departs from l/2, the parameter CI (which is the only place p and N occur in 
(5) and (6) decreases slowly from 1. For p = 0.8, N = 50, a is 0.92 for 
M = 2 and 0.85 for M = 4. 

Sample calculations for N = 50, p = 0.8, yield the results in Table 2. The 
value of M tabulated is the smallest value for which the indicated conditions 
(5) and (6) hold. 

We see that for p = 0.8, K = 20, 40 and M = 3, sex is strong enough to 
invade an asexual population, but not strong enough to establish itself and 
withstand reinvasion by asexual behaviour. 

TABLE 2 

Under (5) we have the smallest value of M for which sex will invade an asexual 
population. Under (6) we have the smallest value of M for which a sexual 

population can prevent asexual invasion 

K 

5 
10 
20 
40 

N = 50 N = 50 
p = 0.5 p = 0.8 

(5) (6) (5) (6) 

4 4 4 4 
3 3 4 4 
3 3 3 4 
3 3 3 4 
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Although we have tabulated results only for N = 50, other values of N 
could be handled from a complete N = 50 table, because p and N only 
appear in (5) and (6) via the parameter c(. For example, N = 160, p = @9 
gives the same value of CI as N = 50, p = 0.8, so can be read from the second 
column of our table. And for all values of N, p = 0.5 gives a = 0, and the 
results can be read from the first column. 

It will be noticed that the results are fairly insensitive to changes in K or p, 
within reasonable limits. 

5. Simulation 

In order to check the reasonableness of our approximations, we did a 
simulation with N = 50 and p = 0.5. First, we generated some sexual 
offspring in the following manner. We generated 1000 pairs of parents-a 
parent is a 0,i vector of length 50 where each slot contains a 0 or 1 
independently with probability 0.5. We then crossed each pair of parents to 
produce 4 offspring-an offspring is a 0, 1 vector of length 50 which, in each 
slot, contains a 0 (or 1) if both parents have a 0 (or 1) and a 0 or 1 each with 
probability l/2 if the parent entries differ in that slot. We calculated the 
fitness of each of these 4000 offspring and for each pair of parents obtained 
values of S,, the best of the first M offspring, M = 1,2,3,4. Thus we 
obtained 1000 samples of each S, for M = 1,2,3,4. Table 3 compares the 
mean and standard deviation of these numbers with the values of h(S,) and 
a(SM) calculated from (2) (with CI = 1). 

Then we took these 1000 sets of offspring and formed them into 100 groups 
of 10. For each M, we took the best value of S, in each group. We thus 
generated 100 samples of S,, 10 for each M = 1,2,3,4. Table 4 compares the 
mean and standard deviation of these numbers with the values of ,u(S,,,) 
and a(S,,,) obtained from (4) (with CI = 1 and K = 10). 

To run simulations we also need some asexual offspring. We sampled 1000 
times from a binomial distribution with parameters 0.5 and 50. We thus 

TABLE 3 

Comparison of theoretical estimates of mean and standard deviation of S, with 
values calculated from 1000 samples 

M= 2 3 4 

sample mean 2647 27.18 2766 
PC(S,) from (2) 26.41 27.12 27.57 
sample standard deviation 3.33 3.14 3.05 
o(S,) from (2) 3.24 3.12 3.05 
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TABLE 4 

Comparison of theoretical estimates of mean and standard deviation of S,,, for 
K = 10 with values calculated fYom 100 samples 

M= 2 3 4 

sample mean 31.54 32.00 32.31 
AS,v.,o) from 14) 31.40 31.92 32.27 
sample standard deviation 1.81 1.87 1.81 
d.Lio) from (41 l-90 1.83 1 .I9 

TABLE 5 

Number of sexual wins in 100 contests with p = l/2, N = 50 and K = 10 

M= 1 2 3 4 

Sex rare 
No. sexual wins 8.5 16 19 '4.5 

(100 contests) 

Ser uvrmon 

No. asexual wins 10 5.5 5 2.5 
(100 contests) 

obtained 1000 samples of A. We formed these into 100 groups of 10 and took 
the best in each group to obtain 100 samples of A,,. 

Sex rare 
(A) CASE 1 

We matched the 100 samples of A,, with the first 100 of our samples of S,. 
The number of sexual wins (instances in which S, is larger than A,,) is 
tabulated in Table 5. A tie was counted as l/2 of a win. For sex to invade we 
need a sexual win at least 2/il = 0.18 of the time. Thus we get sexual 
invasion if A4 3 3. This agrees with the value provided by formula (5) in the 
first column of Table 2. 

Sex common 
(B) CASE 2 

We matched the first 100 of our samples of A with the 100 samples of 
S En, 10. The number of asexual wins is tabulated in Table 5. Again a tie was 
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counted as l/2 of a win. For sex to withstand invasion we need an asexual 
win no more than 9/209 = 0.043 of the time. (This is the value of 
(K- I)/(K+1)(2K-1) for K = 10.) This happens if M 3 4. This is one 
greater than the value provided in Table 2 by the formula (6). 

6. Discussion 

We have built a model of the following general type. A population consists 
of two types of individuals, sexual and asexual. To form a new generation, 
each individual sends forth a number of offspring. Asexual offspring are 
identical to the parent, and sexual offspring are formed by the crossing (with 
perfect genetic recombination) of the sexual parent with another member of 
the population. The offspring engage in local contests on a large number of 
patches and the winners (one per patch) form the next generation. The 
problem is, under what conditions will one or the other type of behaviour 
increase in number? 

There is an advantage and a disadvantage to sexual behaviour. The 
disadvantage is that sexual individuals may choose asexual individuals as 
fathers (assume no paternal investment except for the small genetic 
contribution, hence no increase in the number of offspring mothered by a 
sexual individual) resulting in only half their offspring being sexual. The 
advantage is that the offspring of a sexual parent are variable whereas the 
offspring of an asexual parent are identical. Thus if a sexual and an asexual 
parent each contribute M offspring to a contest, the one of highest fitness is 
more likely to be sexual (if M > I). This advantage will be increased with 
increasing M. The problem becomes, how- big should M be for the advantage 
to outweigh the disadvantage? 

By analysing the distributions involved and making a number of 
simplifying assumptions, we have produced formulae to give threshold 
values for M in the cases that sexual or asexual behaviour is rare (formulae 
(5) and (6)). Calculations show that values of M around 3 and 4 are generally 
sufficient to give sexual advantage. These results are fairly insensitive to 
changes in p, the probability that a parent will match any characteristic in a 
patch she is trying to colonize, N, the number of loci, and K the number of 
parents who contribute offspring to a given patch-at least for p A l/2, N 
large, and K between 5 and 100. There is a slight tendency for M to increase 
as p increases above l/2. and to decrease as K increases. We have run 
simulations to confirm our results for the case p =I l/2, N = 50, K = 10. 

Of course our model only describes a single generation of selection. The 
process will continue, generation after generation, and the real issue is 
whether sex wins in the long-term. This problem is more difficult to handle 
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with an analytical model than with a simulation model, so we have restricted 
attention to the situation in which sex is rare or common. It is probably safe 
to interpolate our results for intermediate situations. For example, we read 
from Table 2 that for N = 50, p = l/2 and K = 10 a value of M = 3 will 
provide sexual advantage both when sex is rare and common. It is not 
unreasonable to suppose that sex will be at advantage at all intermediate 
levels. The alternative, that there is some intermediate balance between 
sexual and asexual behaviour at which they are both equally fit is unlikely, 
although it is not ruled out by our analysis. 

There are a number of factors that our model does not take account of. 
The most important of these is probably the interdependence of different loci 
(epistasis). A model which took account of epistatic effects would find the 
mean fitness of sexual offspring lower than that of the parents because of the 
tendency of recombination to break up favoured combinations. The effect of 
this will be to increase the threshold value of M somewhat. Of course, the 
effect of this factor will be less if recombination is incomplete, or if dependent 
loci are closely linked. 

A simple model to try to accommodate this factor, suggested by Maynard 
Smith, has r loci for each trait instead of only I. A set of Y l’s means the trait is 
perfectly matched, and I’ O’s means its opposite is matched. One then has to 
decide on two things: what fitness to assign to intermediate cases, and the 
extent to which genetic recombination will be allowed to dismantle the r-set 
belonging to one trait. 

Other factors we have not treated are incomplete recombination and 
diploidy (the individuals of our model are haploid). The former should 
reduce the diversity of sexual offspring and the latter should increase it. 
Finally, we have not considered the possibility that p, M and K will vary 
from patch to patch. 

Bulmer (1980), using the methods of quantitative genetics, has simplified 
and improved our model. 

I am grateful for the help of John Maynard Smith. He made a number of 
suggestions which improved this paper. Of course, following the work of Williams 
(1975 ). he also put forth the model upon which this paper is based. I am grateful also 
to the referee who made a number of constructive criticisms and pointed out a 
mathematical error. 
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APPENDIX A 

Suppose we have a group of K + 1 individuals, S of which are sexual and 
K + 1 -S asexual. Suppose each contributes one seed to the next generation. 
An asexual contributes an asexual seed, and a sexual chooses a mate from the 
rest of the group at random and contributes a seed with 50% chance of being 
like her and 50% chance of being like her mate. Suppose one seed will be 
“selected” from the group and let P be the probability that this seed has a 
sexual mother. Our job is to find that value of P for which the probability 
that the winning seed will be sexual is S/(K + l), the proportion of sexual 
genes presently in the group. 

Given that a seed has a sexual mother, what, we ask, is the probability that 
it will be sexual? It will be sexual if the mother chooses a sexual mate (which 
she does with probability (S- 1)/K), and sexual with probability l/2 if she 
chooses an asexual mate (which she does with probability (K+ 1 -S)/K). 
Hence this probability is 

(S-l)/K+(K+l-S)/2K = (K-l+S)/2K. 

Hence our ‘“break-even” equation is 

P.(K-l+S)/2K = S/(K+l). 

In case S = 1 this gives a value for P of 1/2(K + 1). In case S = K this gives a 
valuefor l-Pof(K-l)/(K+1)(2K-1). 

APPENDIX B 
I 

We assume that S,(z) has distribution with mean z+Jz(l -z/N)/2pM 
and variance z(1 -z/N)&2 and that z has mean p = Np and variance 
0’ = Np(1 - p)/2. We obtain S, by averaging S,(z) over z. What is the mean 
and variance of S,? 
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First let F = z-p and observe that 

dz(l-z/N) = Jmd’l+~(N-2p)/p(N-~) 

1 
if E is generally small compared to 1-1 and N-p. Since the average value of E is 
0, the average value of S,(Z) is 

This then is the mean of S,. 
The variance of S, is calculated from 

CC~-(~++‘~~(~--/N)/~~M)I’P=(~)Q(Z) t, z 
where Pz is the probability function for S,(z) and Q is the probability 
function for Z. The term in the square brackets can be written as the sum of 
two terms: 

When this is squared and summed over t, the cross-terms sum to zero, the 
first term squared gives the variance oft, which is z( 1 -z/N)o&/2, and the last 
term squared gives 

4N- 2~) 1 1 
2 

(z-pu)+Jzqm 
?W-P) 

- l i-‘M 

E I pME (’ -2dN) 2 = E2u2 

2 &P( 1 - PIN 1 1 

using (Bl). 
When these terms are multiplied by G(Z) and summed over z we get, 

approximately 

which is the same as (2). 


