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batholithic equivalents. The similarity of these volcanic and
batholitic rocks extends beyond bulk composition to many of
the petrological features discussed here'®.
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When great tits forage in an unknown environment
containing two feeding places of different profitability, they
first sample the two places and then exploit the more
profitable one. The balance between sampling and exploi-
tation shown by the birds is close to an optimal solution for
maximising the number of food-items obtained during a
feeding period.

OPTIMAL foraging models, based on the premise that animals
collect food in a way which maximises their net rate of food
intake, have been quite successful in predicting the decision
rules used by predators in laboratory experiments'™, but so far,
little work has been done on the problem of how a predator
samples the environment. Sampling is an implicit necessity of
optimal foraging models, which assume that the predator
behaves as if it knows the availability of different prey types or
patches of food. We describe here an experiment designed to
test whether or not the great tit, Parus major, uses a maximally
efficient set of rules when sampling a patchy environment.

Two possible methods of obtaining maximal
food intake with
a choice of foraging area

Our experimental set up is extremely simple. The naive bird is
faced with a choice of two foraging places (patches) which differ
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in availability of food. The availabilities remain constant
throughout a particular experiment, and the bird can only
discover by exploration which of the two patches is better. Once
the bird has distinguished between the quality of the two
patches, it should concentrate on exploiting the better one;
however, in our experiment we are concerned with how the bird
makes the decision about which patch to exploit. We suggest
that there are two simple types of maximising rules. On the one
hand, the predator might attempt to maximise its rate of food
intake at every instant in time by always foraging in the patch
with the higher expected reward rate. We refer to this strategy as
‘immediate maximising’. Alternatively, the predator might
attempt to maximise its intake over the total foraging time and
sacrifice short-term gain in order to acquire more information
about the relative quality of the two patches. In this second
strategy, an efficient predator has to choose the appropriate
balance between exploration and exploitation. OQur main aim
was to test whether or not great tits follow this strategy and if so,
whether they approximate an optimal balance between explor-
ing and exploiting. The advantage of the sample-then-exploit
strategy is that, in contrast to the strategy of immediate maxi-
mising, there is no risk of choosing to exploit the less profitable
patch.

Simulation of the ‘two-armed bandit’ problem

The predator’s problem of choosing the optimal balance
between exploration and exploitation is similar to the classical
‘two-armed bandit’ problem, in which the player is faced by two
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Set N

Define ‘future optimal payoff matrix’ E[al, a2] where 0< =g, < = (N —-2)/2:

Each element of the matrix equals future optimal payoff for a subject that tried n times in each patch and got a; rewards in patch i.

Set initial values of E[al, a2] for all pairs al, a2:

rewards.
For all pairs al, a2

Assume the subject has tried N —2 times (n = (N —2)/2) and decides to do both remaining trials in the patch which has given more

Elal, a2)=2(max{al, a2}+1)/(n+2)

-

Move one stage backwards:

n becomes n 1

For all pairs al, a2:

Compute future payofl if subject does all remaining trials in the patch which has given more rewards (decision):

Ep=(N—-2n)max{al, a2}+1)/(n+2)
Compute future payoff if subject does one more trial in each patch and then decides (sampling):

Eg = expected payoff from one more trial in each patch
+ (probability both patches will reward) E{al1+1, a2+1]
+ probability only patch 1 will reward) E[al+1, a2]
+ (probability only patch 2 will reward E{al, a2+1]
+ (probability neither patch will reward) E(al, a2]
Redefine value of E{al, a2]:

Efal, a2]=max{Ep, Eg}

Output whether Ep, - = Eg (decision) or otherwise (sampling):

N =total number of trials (‘time horizon’).
n =number of trials in each patch up to current stage.
a; = number of rewards obtained in patch i.

Ep = future payoff if subject decides.

@ False

True

Eg=future payoff if subject samples once more and then decides. @

Fig. 1 ‘Two-armed bandit’ simulation.

machines, each with a characteristic, unknown reward rate on a
random schedule, and the goal is to maximise the expected
number of rewards in N trials'®*!, This problem can be solved
with a dynamic programming algorithm which works backwards
from the N'th trial, at which point the machine with the higher
percentage rewards is chosen. The algorithm involves analysing
at each stage, n, the payoff for two possibilities (exploring or
exploiting) in terms of the known optimal behaviour at stage
n+1.

Our model is a modification of the optimal solution of the
two-armed bandit problem'?. We consider that the bird has a
total of N trials (the meaning of which will become apparent),
and at the beginning of an experimental session it samples each
patch alternately. After M trials in each patch the bird commits
itself to one patch or the other, so that all strategies have the
form: M trials in each patch (exploration) followed by N —2M
trials on one patch (exploitation). In our model we introduced
the constraint of equal sampling effort in the two patches during
exploration, because this simplifies the model without
significantly altering its predictions. The model predicts how the

value of M, the point at which the predator decides to exploit,
changes with p, and p,, the reward probabilities in the two
patches. Intuitively, one would expect M to decrease as |p, — p,|
becomes larger, and our model predicts the exact shape of the
curve.

The details of our algorithm, which uses a Bayesian approach
to describe the information possessed by the bird at each stage,
are as follows. At the start of the experiment, the birds’ prior
estimate of p (the parameter of the Bernouilli process which is
the reward rate in a patch)is considered to be B-distributed with
parameters (o, B), and therefore, with mean (a+1)/(a+B+2)
and variance (a-+1)(B+1)/(a+B+2Y(a+B+3). The dis-
tribution has the property that after n trials with r successes, the
posterior estimate of p is also B-distributed with new parameters
(a+r1, B+n—r). Thus, it is easy to follow the state of the bird’s
information about the two patches by updating o and B after
each trial. In simulating the model, we used starting values of
a =0, B =0 for both patches. This means that the bird’s initial
estimate of the mean reward probability in the two patches is
0.50 with a uniform distribution between 0 and 1.0. Thus, after n
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trials with a; successes, the bird’s revised estimate of the reward
rate p in patch i is (a; + 1)/(n +2). We investigated the effect of
varying the prior, by calculating our predictions for the
following valuesof aand3:a=0,=2;a=0,3=0;anda =2,
B=0. The model was rather insensitive to changes in the
prior, most of the changes in prediction being between 10%
and 20%.

If, after n trials in each patch, the bird decides to sample once
more, its expected payoff for the remainder of the foraging time
is Eg, whereas if it decides to exploit, its payoff is Ep. The
optimal strategy is to choose the larger (E) of these two values.
Es can be calculated in terms of the values of E atstage n +1 as
follows:

Let

m=(a;+1)/(n+2)

Then
Es(a,', as, n)=771+7r2+71'2‘n'1E(a1+1, a2+1, n+1)

+771(1~772)E(a1+1, as, n +1)
+(1—m)mE(as, az+1,n+1)
+(1_‘7T1)(1 —7T2)E(a1, as, n+ 1)

and
Ep(a,, az, n)= (N —2n)max {m, w2}

Figure 1 gives further details.

The model is simulated by starting with 2n = N and working
backwards, generating Es, E, and E recursively. At each stage,
the model produces an n X n matrix giving the value of (Ep— Es)
for each combination of values of a; and a,. When the bird is at
the last pair of trials, Ep, is clearly higher than Es, assuming there
is a difference in the two reward probabilities. As the simulation
works backwards, it becomes more likely that, for any particular
combination of a, and a,, the payoff for sampling once more in
each patch (and hence acquiring more information about the
profitability of the two patches) is higher than the payoff for
deciding to exploit. The exact point at which this change from
sampling to decision occurs depends on the value of the total
number of trials N, which in effect represents the bird’s time
horizon. For given values of a, and a,, the larger the value of N,
the longer the bird should sample before deciding. We ran the
model with a range of values of N.

The experiment

In our experiments, the two patches consisted of two identical
operant feeding places at opposite ends of an indoor aviary
(measuring 4.3x3.7m). The feeding places consisted of a
perspex disk 35.5 em in diameter enclosed in a shallow metal
box measuring 38.5 X 38.5x 9 cm. The disk was drilled with 72
holes (diameter 0.7 cm, depth 0.4 cm) around the perimeter of
its upper surface. Each of these holes contained a piece of
mealworm (weight 0.07 g), and the bird had access to one hole at
a time through a small horizontal window in the top of the box
which enclosed the disk. To get at the next piece of food, the bird
hopped on a perch next to the disk, which operated a solenoid-
driven stepping cog to turn the disk through a small angle,
bringing the next hole into line with the window. The reward
rate was set on a pseudo-random variable ratio schedule using
BRD modular logic units. This experimental set up is exactly
analogous to that used in probability learning experiments’”.

The experiments were carried out between June 1976 and
February 1977 and involved testing nine wild-caught, adult
great tits. Each bird was first trained to perform the operant task
and then given a series of tests of different treatments consisting
of various percentage reward rates in the two disks. The values
we used were 50:0; 40:10; 35:15; 30:20. It is important that
although these ratios always summed to 50%, we think the birds
did not learn this, as between each treatment they were sub-
jected to a series of one to four ‘neutralisation’ tests in which
both disks offered a 7.5% reward rate. These tests were always
continued until the bird showed no marked preference for one
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disk over the other; we used a low reward rate during neu-
tralisation sessions because we found this to be effective. If there
was a slight preference, the less preferred disk was used as the
more profitable place in the next treatment. A ‘treatment’ (for
example, 20: 30) consisted of a series of between 1 and 5 10-min
tests. We had to run a series of short tests because the birds
sometimes emptied one of the disks of rewards before a treat-
ment was completed. When this happened, we interrupted the
treatment for a short time while the disk was refilled. During
these interruptions the bird was locked outside the test aviary
without food, and in our analysis we always discounted the first
20 hops after an interruption. Any particular treatment was
continued until the bird had ‘decided’ to exploit one disk or the
other (nearly always the more profitable place).

The decision criterion was that the bird should perform more
than 90% of a sequence of 100 hops on the preferred perch. This
decision criterion was chosen after calculating the probability of
the bird going back to the less profitable perch for a bout of 20 or
more hops after different lengths of hopping bouts on the
profitable perch. With the 100-hop criterion the probability of
this type of reversal is nearly asymptotic and is less than 5%.
Each bird was tested twice with all five treatments, the sequence
of testing being randomly chosen. At the beginning of each
treatment, the test bird was deprived of its normal food and
excluded from the indoor aviary while the disks were being
loaded with prey. Preliminary trials showed that the birds
worked at a constant rate (15 hops per min) throughout a series
of tests after an initial 60-min deprivation, which was the
minimum period we used. The data were recorded on a
computer-compatible event recorder which stored the informa-
tion on magnetic tape.
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Fig.2 a, The predicted (——, - —--)and observed (@) number of

hops before making a decision (nine birds). Three predicted curves
based on the ‘sample-then-exploit’ model are shown, for N = 50,
150 and 250. The observed means are close to 150 (continuous
line) curve. Also shown are the 95% confidence intervals of the
observed geometric means (we used geometric means to normalise
the distribution). The x axis is the difference in reward probability
between the two perches for the five experiments (for example,
50:0, difference =50; 35:15, difference=20) b, A frequency
distribution of lengths of tests. The modal value is close to N = 150,
which gave the best fit in Fig. 3a. ¥ = 199.
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Fig. 3 The observed number of ‘giving-up hops’ (unsuccessful
hops before a departure) plotted against reward probability. The
random curve is calculated taking into account the fact that the
birds tend to hop in short bouts. If p is the probability of getting a
reward on a single hop and q = (1 — p), then the exg)ected number of
giving up hops for bouts of 5=gp+2q°p+3q°p+4q°p+54°p.
The observed points lie very slightly, but consistently above the
random departure line, indicating that the birds tend to leave a
perch after a run of bad luck. The observed points are + standard
error.

Treatment of results

The results of these experiments showed that the birds followed
the general pattern of behaviour assumed by our version of the
two-armed bandit model. There was an initial sampling period
during which the birds performed on average 42% of hops on
the more profitable and 58% on the less profitable perch. This
proportion does not differ significantly from 50:50, and is
consistent with the constraint of equal sampling in our model.
The slight bias towards the less profitable perch resulted from
our experimental procedure of always starting with the higher
reward rate in whichever perch was used less in the preceding
neutralisation test. After the decision point, the birds spent
virtually all their time on the more profitable perch; on average,
95% of hops were on this perch, and the range for individual
treatment means was 88-99%. Similar results, referred to as
‘maximising’ on concurrent variable ratio schedules, have been
obtained with pigeons'>.

In terms of our optimal decision model, we can consider a hop
as being equivalent to a single trial, so that we can predict, for
each combination of reward rates, how many hops on each perch
the bird should do before making the decision to exploit. Figure
2a shows the observed mean decision point in each experimen-
tal treatment and the predictions of the model for three values of
N (total number of hops in the experiment), 250, 150 and 50.
The fit to the model with N =150 is good; not only is the
observed curve the same shape as predicted, but the predicted
values are all fairly close to the observed means. The other
values of N give curves of the same general shape, but with
predicted values too high or too low. The value of N which fits
the data (150) is the modal value for the number of hops
performed in a test (Fig. 1b5). This suggests that birds are
optimising over the ‘time horizon’ which they experienced most
often during our experiments, but we do not know if the birds
would optimise with a bigger value of N if they were accustomed
to longer tests. We plan to test this possibility. There is a slight
difference in the modal value of test lengths for different treat-
ments, but as the treatments were presented in a random order
there is no reason to suspect that the birds could modify their
behaviour according to treatment.

One way in which the birds’ behaviour differed from that
implied in our model is that they did not sample by doing one
hop on each perch at a time, but instead they hopped in bouts of
about five. (The overall mean bout length before decision was

Nature Vol. 275 7 September 1978

5.00, the range 3.00-16.5.) This makes no difference in predic-
ting the average decision point, but if the birds had hopped in
rigidly determined bouts, the predicted decision point for a
particular experiment would have to be a multiple of 5, which
would involve reading every fifth matrix of the model’s output.
This tendency to hop in bouts probably explains why the ob-
served points are above those predicted at the right-hand end of
the graph where the bird should make a decision after about 10
hops.

The alternative goal we considered above was the strategy of
immediate maximising, in which the bird always switches to the
perch with the higher current expected reward rate. We used the
B-distribution and the same starting values of o and B as above
to predict, for any given experiment, at which point the birds
should no longer switch back and forth if they were following
this strategy. This predicted point is reached when expected
payoff in the current patch never drops below that expected in
the other one. The observed point was based on the decision
criterion discussed above. The expected number of switches
depends on the actual sequence of obtaining rewards in the first
few moments of the experiment. In calculating the expected
values we made the conservative assumption that the birds
would continue to switch until the difference between patches in
expected reward rate was greater than 5%. The observed mean
values for the five treatments (50:5, 45:5, 40:10, 35:15,
30:20) were 3.3, 3.6, 3.8, 6.4 and 9.6, whereas the correspond-
ing expected values were 0.93, 1.3, 1.36, 1.3 and 3.25. If we
relax the assumption that the birds cannot discriminate
differences of less than 5% in our experiments, the difference
between observed and predicted values becomes even greater.
Clearly, the birds switch more than expected. In other words,
they are not maximising in the very short term, but instead they
behave as if they acquire information to achieve a longer-term
optimum.

Although the birds do not seem to switch according to the rule
of immediate maximising, there is some evidence that switches
between perches are related to short-term changes in reward
rate. In Fig. 3 we plot the number of unsuccessful hops before a
switch during the sampling period as a function of reward rate.
The points lie very close to, but slightly above, the random
departure curve. This random curve takes into account the fact
that the birds work in bouts rather than single hops. Eight out of
10 means lie just above the random curve (P =0.05). This shows
that birds have a slight tendency to switch after a run of bad luck.
In other words, they have a weak component of immediate
maximising in their sampling strategy.

Discussion

The bird’s behaviour approximates the prediction of a simplie
model based on a constrained optimal balance between
exploration and exploitation, and does not fit the model of pure
exploitation. The fit to the former model is close in spite of the
fact that we have not yet directly incorporated a cost of switching
between patches. In effect, we incorporated a small cost by using
the rule that if the payoffs for sampling and exploiting were
exactly equal, then the bird should exploit. In our experiment,
this cost was small both in energetic terms and in time. However,
in further developments of the model the cost of switching might
be an important consideration.

Our comparison of the two maximising models has been in
terms of predicting the details of the bird’s behaviour, but an
alternative approach is to compare the payoff, measured as
number of rewards per test. On average, the two-armed bandit
model achieves a slightly higher payoff than immediate maxi-
mising, except in very short experiments with less than five
trials'*, but when the reward rates are very different in the two
patches (for example, 50:0) and the risk of a wrong decision is
negligible, immediate maximising is just as effective. The
difference between the birds’ behaviour and that predicted by
the two-armed bandit model, although small, is sufficient for the
birds to do slightly worse than either of the two models in terms
of payoff. However, the difference is less than 5% of the
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predicted optimum of the two-armed bandit model (A.K. and
J. K., in preparation). Thus, an analysis of payoffs enables us to
say that the birds are close to the optimum but does not
discriminate between the two models, unlike the analysis of the
birds’ behaviour.

We have presented averaged data for the nine birds we tested,
but individual variation was very marked. We considered the
possibility that some individuals are more cautious (do more
exploring) but are less likely to make mistakes. Five of the nine
individuals tested made one or more mistakes (that is, chose the
poorer patch)in the 30:20 or 35:15 tests. These individuals did
not make decisions after fewer hops than the other four birds.
The average number of hops before a decision for all treatments
was 23.9+9.6 and 18.4+9.8 for the fallible and infallible
individuals, respectively. If, however, we examine individual
treatments in which a bird made an incorrect decision, it is
apparent that these tend to be cases in which the bird did little or
no sampling. Examining the 18 ‘20: 30’ treatments (nine birds,
two treatments each), only three out of the 13 in which a correct
decision was made involved no sampling, whereas two out of the
five in which the bird made a mistake were tests in which there
was no sampling period at the beginning.

Although the birds in our experiments behaved on average as
if they were calculating an optimal balance between exploration
and exploitation, we suggest that they use some simple rule to

31

approximate the optimum. We have simulated various potential
rules including ‘matching’ future responses to rewards obtained
so far, an empirically derived rule applying concurrent choice
experiments'®. The extent to which these proximate rules mimic
the behaviour of the birds and match the total payoff achieved
will be discussed elsewhere (A K. and J.K., in preparation).

We thank the SRC for financial support, Mike Cullen and
John Gittins for valuable advice, and Nick Styles, Janet Lomer
and Ruth Ashcroft for help with the experiments. Ted Fleming
and Nick Davies commented on the manuscript.
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Electrophoretic movement and localisation
of acetylcholine receptors
in the embryonic muscle cell membrane

Norman Orida & Mu-ming Poo

Department of Physiology, California College of Medicine, University of California, Irvine, California 92717

A steady electric field of 30 mV across a single embryonic
muscle cell produces accumulation of acetylcholine recep-
tors toward one pole of the cell within 1 h. The movement
is electrophoretic in nature and the accumulation results in
the formation of stable, metabolically independent receptor
aggregates.

MANY cell membranes are fluid in structure’, and proteins and
lipids are free to undergo long-range movement in the plane of
the membrane®™. Under many circumstances, however, mobile
membrane components may be localised and concentrated at
specific regions of the cell membrane. The mechanism that
modifies and stabilises their topographic distribution in the
fluid matric is poorly understood. One notable example is the
acetylcholine (ACh) receptors at the neuromuscular junction.
Embryonic muscle membrane before innervation is sensitive to
ACh over the entire surface of the muscle®’. After synap-
togenesis, the ACh sensitive site is essentially confined to the
junctional region of the muscle membrane®®°. Embryonic
muscle cell membranes are fluid'®*?, and redistribution of ACh
receptors during the course of innervation has been
demonstrated'*'?. We present here our study on electric field
induced movement and localisation of the ACh receptor in
muscle cell membranes. We found that when a steady electric
field of 10 Vcm™! (corresponding to a potential difference of
30 mV across a cell 30 wm in diameter) was applied along the
surface of spherical Xenopus muscle cells, the ACh receptors
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rapidly accumulated towards one pole of the cell. This accu-
mulation of receptors is consistent with the electrophoretic
redistribution of mobile, charged receptors in the plane of the
cell membrane. The redistribution is independent of metabolic
energy, blocked by the preincubation of the cells with
concanavalin A (Con A) and reversed in direction after surface
charge modification with neuraminidase. Moreover, the accu-
mulation of the ACh receptors leads to the immediate forma-
tion of stable receptor aggregates which persist against back
diffusion, resist treatment with cytoskeletal disrupting agents,
and require no metabolic energy supply for their stability.

Iontophoretic mapping of ACh receptors

Single embryonic muscles cells, obtained by dissociating the
neural tubes of Xenopus laevis embryos (stage 18-19, ref. 14),
were plated as a monolayer on clean glass culture chambers
and were used for experiments after 2.5-3.5d in culture.
Culture medium contained 85% Steinberg’s saline'® (58 mM
NaCl, 0.7 mM KC(Cl, 0.4 mM Ca(NQO,);, 0.1 mM MgSO, and 4.6
mM Tris), 10% Leibovitz medium (L-15, Gibco), and 5% fetal
calf serum (Gibco). Within 2.5 d of culture, embryonic muscle
cells of two distinct morphologies were observed, extended
spindles and spheres. All experiments were carried out on the
isolated, spherical mononuclear cells (diameter 35+ 5 pm) that
adhered tightly to the culture substratum (Fig. 1a). Details of
electrophoresis methods and apparatus have been reported
elsewhere''. Briefly, an electric current was applied to the thin,
rectangular culture chamber of defined geometry (6.0x1.0X
0.02 cm) containing culture medium. A current of 1.5 mA
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