
J. theor. Biol. (1977) 65, 571-578 

Stable Equilibrium Strategies and Penalty Functions in a 
Game of Attrition 

RICHARD F. NORMAN, PETER D. TAYLOR AND 
RALEIGH J. ROBERTSON 

Departments of Biology and Mathematics, 
Queen’s University at Kingston, Ontario, Canada 

(Received 30 March 1976, and in revised form 28 July 1976) 

Maynard-Smith (1974) has presented a game of attrition model for 
animal conflict. He assumed that the penalty function, giving the cost in 
terms of fitness, of displaying for a given time period, is a linear function 
of the time of display. Under this assumption he shows that an evolu- 
tionary stable strategy (ESS) always exists: one such is a mixed strategy 
for which display times have a negative exponential distribution. Given 
the diversity of reproductive strategies and patterns of agonistic behavior 
in nature, it is reasonable to consider games with different types of cost 
functions. In this paper it is shown that if more general cost functions are 
allowed (not necessarily linear), then ESS’s still exist and give a great 
variety of distributions of dispIay time. Supporting data are presented 
to suggest that these distributions may be found in nature. It is suggested 
that the interrelations between an animal’s fitness budget and the game’s 
penalty function will determine the nature of an ESS for different kinds 
of games. 

1. Introduction 

Maynard-Smith & Price (1973) and Maynard-Smith (1974) formulated a 
game theory for agonistic contests and demonstrated an evolutionary 
stable strategy (ESS) in which players display conventionally unless an 
opponent escalates, in which case they retaliate. Contests lacking escalation 
are defined as a “war of attrition”, and the winner is the contestant that 
displays the longest. In the war of attrition the ESS is not a pure strategy, 
but a mixed strategy having a negative exponential distribution of display 
times. Maynard-Smith (1974) pointed out that his model could not account 
for the behavioural complexity of conventional displays. However, Parker 
(1974) has introduced a rigorous theoretical framework that models 
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conventional displaying as a method of assessing an opponent’s resource 
holding power @HP). 

A game for us will be a symmetric contest between two animals (symmetric 
means that the same set of strategies are available to each contestant, and 
the same payoffs apply). Each contestant can choose from a number of pure 
strategies, or he may employ a mixed strategy, which plays different pure 
strategies according to some probability function. A strategy for us will be 
a mixed strategy (of which the pure strategies are special cases corresponding 
to trivial probability functions). The outcome of the game is determined 
by the pair of strategies chosen by the contestants. We denote by Ei(j) the 
expected payoff to a contestant using strategyj against strategy i. A strategy i 
is called an equilibrium strategy if &(i) 2 E&j). An equilibrium strategy i 
is called (evolutionarily) stable (or an ESS for short) if whenever Ei(i) = &(j) 
for somej then ,??j(i) > Ejci). This definition is from Maynard-Smith (1974). 
It guarantees that in a population consisting entirely of individuals adopting 
strategy i, rare mutants employing strategyj would not increase in frequency. 
Hence the population is in this sense stable. 

2. Existence of ESS’s in a Game of Attrition 

In Maynard-Smith’s (1974) model for a “war of attrition” contestants 
display for a certain length of time, and the winner is the contestant who 
displays the longest. The pure strategies are the lengths of time x for which 
a contestant displays. Thus, in general, if the two contestants choose pure 
strategies x and y where y > x then the game lasts for time x and the payoff 
to the winner is &(y) = v-q(x) where v is the value of the win and q(x) 
is the penalty incurred (lost time or energy will reduce fitness) in displaying 
for time X. The payoff to the loser is E,,(X) = -q(x). 

In Maynard-Smith’s model it is tacitly assumed that the penalty function q 
is the linear function q(x) = X. In this case he shows that an ESS exists and 
has a negative exponential distribution: if p(x) is the probability density 
of displaying for time x then 

p(x) = 2, 1 exp (- x/v). (1) 

Let us consider more general penalty functions. It is reasonable to put a 
few conditions on q(x): it should be positive, differentiable, non-decreasing 
(q’(x) > 0), and satistj 

q(0) = 0 and lim q(x) = co. 
*‘co 

The condition that q be non-decreasing simply says that longer display times 
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correspond to greater penalties. The condition 
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lim q(x) = co 
x-00 

says that arbitrarily large display times incur arbitrarily large penalties. 
What should p(x) be for such a penalty function q? 

The simplest way to analyse this situation is to shift our point of view 
and imagine the animal choosing an acceptable penalty rather than an 
acceptable display time. In this case, an identical argument to that of 
Maynard-Smith shows that the probability density function should be 

~(4) = t exp (- 4/f& (2) 

What then is p as a function of x? Well, p(q) dq is the probability of 
choosing a penalty between q and q+dq. Hence p(x) dx, the probability 
of choosing a time between x and x+dx must be p[q{x)]q’(x) dx since the 
dq which corresponds to dx is q’(x) dx. Hence 

P(X) = i 4’(x) exp C - d4/4. 

This then gives the stable equilibrium strategy for a general penalty function. 
The mathematical details behind this formula are set out in a preprint 
available from the authors. 

We can invert equation (3) to obtain 

q(m)=-vln 
[ 
1 -ip(x)dx . 1 (4) 

Equations (3) and (4) give us a one-to-one correspondence between con- 
tinuous probability density functions p and penalty functions q which are 
positive, differentiable and non-decreasing, with 

[If 

q(O) = 0 and lim q(x) = 00. 
x-c.2 

@x) dx = 1 

for some finite m, then q(x) will actually be in&rite for x > m.] 
Finally, it is worth noting that p(0) = q’(O)/v: the initial value of p is 

determined by the initial slope of q, and the payoff for winning. 
The graphs in Fig. I are designed to provide some insight into the 

qualitative relationship between the slope of q and the shape of p. One useful 
way to look at the differences between various penalty functions is to interpret 
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FIG. 1. Evolutionary stable strategies of persistence time p(x) for various penalty 
functions q(x), with v  standardized to 1. 

the derivative q’(x) as the marginal penalty: that is q’(x) is the extra penalty 
incurred by an animal who displays for an additional small unit of time, if 
he has already displayed for time x. For linear q, q(x) = kx, and the marginal 
penalty is constant. If q is concave up like Fig. l(b), the marginal penalty 
increases with display time, perhaps corresponding to a game for which 
there is some significant advantage in interacting for a short period of time 
versus not interacting at all, thus shifting the mode of p away from zero. 
Figure I(c) is an example where marginal penalty decreases at first, and 
then increases. The penalty is like Fig. l(a) for short contests, but long 
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contests are much more taxing. The corresponding ESS has two maxima. 
In this population one expects contests either to be settled quickly, or to go 
on for a reasonable length of time, those of intermediate duration being 
rare. Are there such populations in nature? 

Thus we conclude that p and q are interdependent and from a biological 
perspective it would seem that the penalty function determines the nature 
of the ESS. The penalty function in turn should be determined by the nature 
of the game being played. 

3. Discussion 

Let us then ask what kinds of games would have linear or non-linear 
penalty functions. The answer is not clear. However, in an intraspecific 
context the concept of varying penalty functions corresponds closely to 
Parker’s (1974a,b) theory of resource holding power (RHP), fitness budgets 
and assessment strategies in animal conflicts. Parker defined a fitness budget 
as the difference in fitness change due to withdrawal by the resource holder 
and the fitness change due to attacker withdrawal, with and without 
escalation. This relation determines the number of fitness units available 
for expenditure in contests, which in connection with the penalty functions 
should determine patterns of persistence time and the nature of an ESS. 

Little information is available on persistence time in wild populations. 
Parker (1974b) found a roughly negative exponential distribution of per- 
sistence times spent searching for females around droppings by males of 
the dung fly, Scatophaga stercoraria. Though this is strictly an “n-player” 
rather than a “two-player” game it appears to corroborate the predictions 
of Maynard-Smith (1973). An example of another type of persistence strategy 
is illustrated in Fig. 2. The patterns of contest persistence times are for 
four wild, individually marked, male brown-headed cowbirds (Molothrus 
ater) observed during the 1974 breeding season at Delta, Manitoba, Canada. 
Three of the males were dominant mated birds and displayed according to 
a normal type distribution of contest length; the fourth male, a young 
unmated subordinate, that did not hold a territory, showed a negative 
exponential type distribution of contest length. Interpretation of patterns of 
contest length is complicated because a given contest only indicates the 
loser’s persistance time. In the case of the winner we only know that his 
persistence time, for that contest, was relatively greater than the loser’s. 
In Fig. 2 note that the distribution of contest length on a male’s territory is 
the distribution of the losing contestants’ persistence times since the graphs 
are only for the contest wins of the indicated bird. Thus the off territory 
distributions for lost contests give the best indication of a bird’s persistence 
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FIG. 2. Distributions of display persistence time of four male Brown-headed Cowbirds 
for two-bird displays both on and off territory: (a) unmated male LWBW, (b), (c) and 
(d) mated males LWW, TWRW and LWWTW respectively. On territory distributions 
are only for won contests, and off territory distributions are only for lost contests of the 
specified male. 
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time distribution. Mated males may not use the same strategy of persistence 
times while displaying on and off their territories. 

The agonistic behavior of cowbirds during the breeding season corre- 
sponds closely to the game theory models of agonistic contests and assess- 
ment strategies that were advanced by Maynard-Smith (1974) and Parker 
(1974a,b). During an interaction, male cowbirds perform an alternating 
sequence of aggressive threat postures and appeasement displays. That is, 
opponents simultaneously display an aggressive posture in an alternating 
sequence. Contention during displays is usually for females, and males 
guard their mates. The displays are usually given with constant intensity, 
and a one-to-one correspondence between postures until near the end of the 
contest, when intensity varies. Before withdrawal the winner displays with 
increasing intensity and frequency of aggressive postures, and the loser 
almost exclusively adopts appeasive postures in response to aggressive 
threats. Males seem to be assessing each other throughout the interaction 
and escalation rarely occurs. The differences in patterns of persistence time 
between male MoIothrus probably reflect different fitness budgets for mated 
and unmated individuals. 

The basis of the different distributions of persistence time for Scatophagu 
and Moloth~us is not clear. If these mixed strategies of persistence time are 
evolutionary stable then the above data indicate that Scatophaga and 
Molothrus may be playing games with different penalty functions. The 
different distributions of p(x) for Scatophugu and Molothrus may also be 
influenced by effects of contest asymmetries and departures from a “two- 
person” game in the case of Scatophuga. Differences of such magnitude 
could be due entirely to such effects. 

An understanding of the possible interrelations between various penalty 
functions, the corresponding ESS, and the kinds of games being played by 
different species may require a consideration of their respective reproductive 
strategies. For Scatophaga and Molothrus a strict games comparison is not 
valid because for Scatophagu, persistence time is not how long males display 
to an opponent, but rather how long he searches at dung for females (Parker, 
1974b). In species playing more comparable games it may be possible to 
relate the nature of penalty functions to the average number of contests an 
average player participates in, and the number of breeding seasons in its 
lifetime. A payoff function can be thought of as being comprised of several 
parts; a component of metabolic cost of displaying for a given length of 
time, a component of injury risk should escalation occur, and a component 
of fitness that varies inversely with the average number of contests an average 
contestant plays (Maynard-Smith, 1974). In biological games an average 
player has an average total potential reproductive value V [in the sense of 
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Fisher (1930)], and the fitness payoff component of a game can be thought 
of as the average proportion ii, of V (where 

and ri is the average number of contests an average contestant plays in its 
life) which is at stake in a given contest. For an iteroparous species in which 
a player engages in many contests in its life, the relative reproductive value 
at stake in a given contest, B/T, would be less than for a semelparous species 
in which players display less often, and this may be correlated with lower 
and higher penalties and payoffs, respectively. For a semelparous species 
these reproductive characteristics might place a premium on quick assess- 
ment of an opponent’s resource holding power (RHP) and a relatively high 
probability of early withdrawal if the opponent’s RHP is greater. 

Although the data presented here are few they do lend some empirical 
support for the general derivation of the model and strongly suggest that 
in this sort of modelling, we are dealing with a complicated system of penalty 
functions, fitness budgets, fitness payoffs and ES% that in some mutual 
way define the type of game being played. 
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