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Abstract.— We investigate an instance of conflict between mates over the sex
ratio of their brood. We construct a kin-selection model for the evolution of the
sex ratio assuming local resource competition (LRC) among females. We explore
two basic scenarios: (a) the case where parents contribute to the brood sex ratio
in an additive fashion (the additive effects model); and (b) the case where
parental contributions are multiplicative (the multiplicative effects model). In
the additive effects model, resolution of the conflict between mates depends on
the extent to which relative paternal contribution influences the brood sex ratio.
Our multiplicative effects model is mechanistic. Males determine primary
sex-ratio through fertilization bias; then females modify the male’s sex-ratio
decision by adjusting the level of investment of some resource that contributes to
offspring survival. Under multiplicative effects, a compromise is always achieved;
however this compromise favours one perspective or the other, depending on the

extent to which maternal investment influences offspring survival.
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1 Introduction

Fisher (1930) argued that parents who bias their production of offspring
toward the rarer sex enjoy a selective advantage. This frequency-dependent
advantage means that, on average, parents should invest equally in sons and

daughters, producing brood sex-ratios that are unbiased.

It has long been known that Fisher’s argument for the evolution of unbiased
sex ratios relies on a few tacit assumptions (Hamilton, 1967). In particular,
Fisher assumed that competition for the resources necessary for reproduction
does not occur among same-sex relatives. When this assumption is violated we
say there exists local competition for reproductive resources (LCRR); and in this
case some form of sex-ratio bias is often advantageous. For example, selection
favours female-biased sex ratios when related males compete with one another
for mates (called local mate competition, LMC; Hamilton, 1967; Taylor and
Bulmer, 1980); whereas selection favours male-biased sex ratios when related
females compete with one another for nesting sites (called local resource
competition, LRC; Clark, 1978; Silk, 1984; Taylor, 1994). In general, sex-ratio
bias under LCRR favours the sex that is less likely to engage in local

competition, i.e. the ‘less competitive sex’ (Wild and Taylor, 2004).

Sex-ratio evolution under LCRR is easily understood using the related
notions of kin selection and inclusive fitness (Hamilton, 1964). From a parent’s
perspective, over-production of the less competitive sex provides a net benefit to
relatives (e.g. sons/daughters, nieces/nephews). In other words, sex-ratio bias

toward the less competitive sex will add to an individual’s inclusive fitness, and



so is favoured by kin-selection.

The extent of sex-ratio bias under LCRR will depend on the level of
relatedness between a parent and its social group; and sometimes, the level of
relatedness is different between members of a mated pair. In these cases, the
optimal level of sex-ratio bias depends on which parental perspective (mom or

dad) is considered; and we say that parents are in conflict over the sex ratio.

Sex-ratio conflict between mates, at least for LMC models, has been discussed
extensively in the literature (see Courteau and Lessard, 2000, and refrences
therein). Still, the manner by which such conflicts come to be resolved remains
to be seen. Using a simple model of LRC, Lessells (1998) has argued that the
end result of these sex-ratio conflicts must be investment in only one sex of
offspring by one mate, with compensatory investment in offspring of the
opposite sex by its partner. Lessells’ model, however, falls short of a careful

inclusive fitness account of the problem.

In this paper we investigate the sex-ratio conflict that exists between mates
under LRC. We choose LRC models of sex-ratio evolution because they involve
an outbreeding population. Relative to other LMC models, then, LRC models
appear straightforward. We adopt the direct fitness approach to contructing
kin-selection models, introduced by Taylor and Frank (1996). This approach
approximates the evolutionary dynamics described by the famous Price equation

(Price, 1970), under the assumption that selection is weak (Taylor, 1988).

Our main findings describe the resolution of sex-ratio conflict (a) when

parents make additive contributions to brood sex-ratios (the additive effects



model); and (b) when parental contributions to brood sex-ratios are
multiplicative (the multiplicative effects model). Under the additive effects
model, resolution of the conflict depends on the extent to which relative paternal
contribution influences the brood sex ratio. Under the multiplicative effects
model, a compromise is always achieved, and this compromise favours one
perspective or the other, depending on the extent to which parental investment
influence offspring survival. The contrast between additive effects and
multiplicative effects models highlights the importance of accounting for the

biological details of conflict resolution in a theoretical setting.

2 Models

2.1 A framework

Our main interest is the co-evolution of two sex-ratio behaviours
(phenotypes). The proportion of paternal investment made in sons, we call the
paternal sex-ratio behaviour. Similarly, the proportion of maternal investment

made in sons, we call the maternal sex-ratio behaviour.

We consider a diploid organism, and we suppose that sex-ratio behaviours are
separate quantitative traits—controlled by separate autosomal loci. We will
assume that both males and females possess the genetic information coding for
both paternal and maternal sex-ratio behaviour. Later, we assume that this
information is silent in one sex or the other. In addition, our phenotypic

approach to the problem will assume that the genetic covariance between



paternal and maternal sex-ratio behaviours is zero.

We assume an infinite population undergoing discrete, non-overlapping
generations. We assume further that the population is divided into many patches
of finite size, with each patch able to support N mated pairs. In order to set up
the direct fitness argument presented in a later section, the model will be
described with reference to one particular offspring (male or female, chosen at

random). We call this offspring the focal offspring.

We will need the following notation:

e 1,,, the paternal sex-ratio behaviour exhibited by the father of the focal
offspring;

e 1, the maternal sex-ratio behaviour exhibited by the mother of the focal
offspring;

® y,, the average paternal sex-ratio behaviour exhibited on the focal offspring’s
natal patch (i.e. the focal patch);

e y;, the average paternal sex-ratio behaviour exhibited on the focal patch;

e 2., the resident paternal sex-ratio behaviour;

e 2y, the resident maternal sex-ratio behaviour.

Our approach is rooted in game theory. We will allow z,, and z; — and so yy,
and yy also — to describe deviant or ‘mutant’ behaviour. However, we assume
that mutants are rare, and that the population is otherwise fixed at the resident

behaviours z,, and 2.

We explore three separate cases, each defined by who controls the parental



sex-ratio behaviours. In the first case, a father controls both his behaviour and
that of his mate (i.e. paternal control of the sex ratio). In the second case, a
mother controls both her behaviour and that of her mate (i.e. maternal control
of the sex ratio). The final case assumes that a father controls paternal sex-ratio
behaviour, and that a mother controls maternal sex-ratio behaviour. Conflict

occurs in this last case only.

2.2 Life cycle

The hypothetical life cycle is outlined below. All notation we introduce can be

found in Table 1.

(a) Parental investment period.— Our first model assumes that the realized
sex ratio of a brood is determined by parental sex-ratio behaviours in an
additive fashion. This model corresponds to a situation in which both parents
provide the same type of parental investment; e.g. both parents provide

nutrients to ensure the survival of a developing zygote.

We begin by assuming that each mated pair produces K sons and K
daughters, where K is large, and parental sex-ratio behaviours contribute to the
viability of offspring. If the focal offspring is male, we express his viability (or

the viability of any of his brothers) as

Add. effects: M(z,,,2f) = axp + (1 —a) zy (1)



where 0 < a < 1. The viability of a focal female offspring, we express as
Add. effects: F(zm,z¢) =a(l —xpm) + (1 —a) (1 —zf). (2)

Note that M(z,,,x) and F(x,,, x) describe the proportions of viable brood
that are male and female, respectively. We can interpret the products KM and
KF, with arguments suppressed, as numbers of sons and daughters, respectively.

This interpretation holds throughout the paper.

Our second model assumes that the brood sex-ratio is determined by parental
sex ratio behaviour in a multiplicative fashion. Now, each mated pair produces
K offspring, and paternal sex-ratio behaviour determines the primary sex ratio
of the brood (e.g. which oocytes are fertilized X sperm, and which are fertilized
with Y sperm), so that there are Kx,, sons and K(1 — z,,) daughters born to a
pair. Maternal sex-ratio behaviour, by contrast, is assumed to determine the
survival of offspring. We suppose a mother has a fixed amount of parental
resource, T to offer to her offspring. We then interpret maternal sex-ratio

behaviour as the proportion of the maternal resource given to sons.

Now, suppose that each unit of maternal resource given to an offspring (son
or daughter) reduces the probability of its mortality by a proportion p. It follows
that an offspring given u units of maternal resource survives with probability,

1 — (1 — p)™. If the focal offspring is male, he expects Tz s/ Kz, units of

maternal resource, and we express his survival as
s(@s/tm) =1 = (1 =p)"o/5m =1 — exp(=bay/ap) (3)

where b = In{(1 — p)~'}(T/K) > 0 is a constant. Similarly, if the focal offspring



is female, her survival is given by s((1 —xf)/(1 — x,,)). It follows that
Mult. effects: M(xp, x¢) = Tps(xr/m), (4)
gives the realized male proportion of the brood, and
Mult. effects: F(2p, z7) = (1 — 2,)s((1 —z5) /(1 — 1)) (5)

gives the realized female proportion of the brood. Note that, unlike the case of

additive effects, M + F' under multiplicative effects does not equal one.

(b) Dispersal.—All male offspring disperse, but female offspring remain on
their natal patch. We assume that males arrive safely on a new patch, where
they encounter no relatives. We assume further that each patch receives an equal

share of the dispersing males.

(c) Mating.—We assume that each female is mated exactly once, but that
males compete at random on each patch for access to females. When mating
takes place on the focal patch, we find NK M (zy,, zr) males competing for access

to NKF(ym,ys) females. It follows that each male expects

# females/# males = F(ym, yr) /M (2m, 2f) (6)

matings.

(d) LRC.—A total of NKF(y,,,yy) fertilized females compete at random for
one of N breeding sites on the focal patch. The probability that a given fertilized

female wins a breeding site, then, is given by

# sites/# females = 1/ K F(yy,, yr)- (7)



3 A direct fitness argument

3.1  Recipient fitness

The direct fitness approach begins by assigning different roles to different
individuals in the population. Parental sex-ratio behaviour involves some form
investment in offspring, and so we cast the focal offspring in the role of
‘recipient,’ i.e. recipient of the parental investment ‘gift.” Using the same

reasoning we cast parents in the role of ‘donor.’

Once roles are assigned, a direct fitness argument proceeds by identifying
expressions for recipient fitness. Given that the recipient is female, recipient

fitness is given by

Wf(xm7xf7ym7yfazmazf) = F(xmaxf)/F(ymayf); (8)

i.e. she survives to mate with probability F'(z,,,x), is mated once, obtains one
of N breeding sites with probability 1/KF (y,yy), and has a total of K

offspring. When the recipient is male, a similar argument gives

Wm(xma xfa yma yfa Zm? Zf) = M(Z'm, J"f)/M(Zm’ Zf) (9)

To calculate an average recipient fitness we must devise a method of
weighting Wy and W,,,. The correct method weights males and females in
proportion to their total reproductive value, respectively (Taylor, 1990; Taylor

and Frank, 1996). In our model, the total reproductive value of males equals



that of females, and so expected recipient fitness is

(1/2)F (2m, 1)/ F (Y ys) + (1/2) M (2, w5) /M (2, 25)- (10)

Readers familiar with the evolutionary theory of sex-ratio behaviour will
recognize the previous line as a variation of the Shaw-Mohler expression for

parental fitness (Shaw and Mohler, 1953; Charnov, 1982).

3.2 Direct fitness effects

Let g, and gy be the genotypic value of the focal individual (i.e. recipient) at
the locus coding for paternal and maternal sex-ratio behaviour, respectively.
Direct fitness effects describe the consequences of altering g, or g;. The positive
genetic covariance that exists between relatives tells us that changes to g, or gf
in the recipient will also occur in his/her relatives. A direct fitness argument
captures this idea by treating x,, and y,, as functions of g,,, and zy and y; as
functions of g¢. It should be understood, however, that these functional
relationships are more properly understood as covariances. The functional
notation is simply a device that provides us with the correct approximate of

Price’s (1970) formula under weak selection.

Supposing the recipient is female, the direct fitness effect of increasing g,, is

Add. effects: OW;/0gmlep=ym=smar=y;=2; = WY — Trn) /[ F (2, 21) (11)

10



under the additive effects model, and

Mult. effects: an/agm|xm=ym=zm,xf=yf=zf = (Yo — ) | F(2m, 27)]

X [s((1=2p)/(1 = zm)) = 8'((1 = 27) /(1 = 2)) (1 = 2f) /(1 = 2)]  (12)
under multiplicative effects. Similarly, supposing the recipient is a male,
Add. effects: OWin/0Gm e —ym=zmses=y;—z; = @y /M (Zm, 25), (13)

and

Mult. effects: OW,, /0gy,

|$m:ym:zm,mf:yf:z]c —

[0/ M (2, )] X [5(21 ) 2m) = 5" (27 ) 2m) 21 [ 2] (14)

Following Taylor and Frank (1996) we replace z], in (11-14) with r, the
relatedness between the focal male offspring (the recipient) and his parent—the
one that controls x,,. In addition, we replace y/, in (11-14) with 7, the
relatedness between the recipient and a random parent breeding on the focal
patch. We want to emphasize that the genotype of the parents considered by the
relatedness coefficients r and 7 is that parent who controls paternal sex ratio
behaviour, and is not necessarily the parent who expresses the behaviour (the

donor).

The overall direct fitness effect of increasing g,, we denote by, AW, : and this
is obtained by averaging eqns (11) and (13) (or eqns 12 and 14) using total

reproductive values as weights. Under the additive effects model,

Add. effects: AW, = (1/2)a(F — 1)/ F (2, 27) + (1/2) ar /M (zm, 25);  (15)

11



and under the multiplicative effects model

Mult. effects: AW, =
(1/2)[(r=r)/F (zm, 2p)|[s((1=25) /(1= 2m)) = 8" (1 =25) /(1 = 2m)) (1 = 25) / (1 = 2)]

+ (1/2)r/M (2m, 21)][5(2¢/ 2m) — §'(2¢/ 2m) 21/ 2m] -~ (16)

We compute the direct fitness effect of increasing gy, call it AW, , in a similar

fashion:

Add. effects: AW, = (1/2)(1 — a)(7 — 1)/ F(2m, 2z5) + (1/2)(1 — a)r /M (2m, 2y),
(17)

and
Mult. effects: AW, =
(1/2)s'((1 = 24) /(1 = 2))(r = 1)/ F(2m, ) + (1/2)" (27 ) 2m )7/ M (2, 7). (18)
In Appendix A we demonstrate that r = 1/2, and

1/2N between offspring and a random father,

=i
Il

(19)
(bN —1)/2N(3N + 1) between offspring and a random mother.
Notice that 1/2N < (5N —1)/2N (3N + 1) with equality if and only if N = 1.
This relatedness asymmetry exists in both the additive effects and multiplicative

effects models.

Our analysis will focus on the signs of AW, and AW,

gy respectively. The

sign of AW, determines whether normal sex-ratio behaviour z,, is increasing or

decreasing over evolutionary time. When AW, > 0 normal sex-ratio behaviour

12



Zm 1s increasing (i.e. selection favours increasing paternal care given to sons).
When AW, < 0 normal sex-ratio behaviour z,, is decreasing (i.e. selection
favours less paternal care given to sons). When AW, =0, z,, is not changing
over time (i.e. the level of paternal care given to sons does not change). The sign

of AW, ; determines the evolution of z; in a similar fashion.

Because the signs of the direct fitness effects, respectively, are central to the

analysis, we will often be interested in the equilibrium condition

AW, =0, AW, =0. (20)

f:

We will use z)),, and 2 to denote the solution to system (20).

4 Conflict under additive effects

Let us first determine what sex-ratio each member of a mated pair considers
to be optimal. We do this by giving control of both sex-ratio behaviours to one
parent only. To give the father control, we set 7 = 1/2N (see 19) in both AW,
and AW, ; and we identify optimal parental sex-ratio behaviours (from dad’s
perspective) by solving system (20). Doing so yields an infinite number of

solutions , defined by a relation between 2% and Z?‘. Straightforward algebra tells

us that (z),, 2}), satisfies
Mg = M(z,,25) = N/(2N —1) > 1/2. (21)

The optimal proportion of female offspring from dad’s perspective is

Fj4=1— M}, That an infinite number of pairs, (z),,2}) can all be considered

13



‘optimal’ is not surprising. Selection only requires that sex-ratio behaviours

maintain M (z,,, zy) = Mj,,—and there are an infinite number of ways to do this.

Now we give control of sex-ratio behaviours to mothers. We set
7= (5N —1)/2N(3N +1) in both AW, ~and AW, .. We determine the optimal
parental sex-ratio behaviours (from mom’s perspective) by solving (20). Again,

we find an infinite number of possibilites for (2, 2}). In this case, however, a

0

solution (z,),,

29) satisfies

Mom = M(29,,27) = N(3N +1)/[BN(2N — 1) + 1] > Mj,q4, (22)

mom

with equality if and only if N = 1. Again we have F* =1— M*

mom mom*

Eqns (21) and (22) show that both parents prefer a male-biased sex ratio.
However, (22) makes the key observation that, in most cases, dad prefers less
male bias than does mom. This establishes the existence of male-female conflict
over the sex ratio under the additive effects model. If we adopt interpretation of
male-biased sex-ratio behaviour as a form of altruism, we see that females, being
more closely related to members of their social group, opt for a more altruistic

strategy than males.

Now we allow a father to control paternal sex-ratio behaviour set (set
r=1/2N in AW, ), and a mother to control maternal sex-ratio behaviour (set
F= (5N —1)/2N(3N +1) in AW, ). In this case, mates are in conflict over the

sex ratio, and we ask: how is this conflict resolved?

Observe that, under the additive effects model, there does not exist a pair of

resident sex-ratio behaviours, (2),,2}) for which both AW, —and AW, are zero.

14



This follows from the fact that

AW, =0 gives z; = —zpa/(1 —a) + Miq/(1 —a), (23)
Ang =0 gives zf = —zpa/(l —a)+ M ,../(1 —a). (24)

These are parallel lines when N > 2, i.e. they do not intersect.

The resolution of the sex-ratio conflict that exists between mates ultimately
depends on the relationship between the parameter a — the contribution of
paternal sex ratio behaviour to the determination of realized brood sex ratio —

and the sex-specific optima, M}, and M} themselves.

Consider (23) and (24). As mentioned above, these equations describe parallel

lines of negative slope (Fig. 1). Since Mj,, < M} ., we can assert that the

mom’
vertical intercept of (23) will never lie above that of (24) on the z;-axis.
Whenever N > 2, then, we are able to divide the unit square in the z,,, zf-plane

into three regions:

(I) AW,,,, AW, > 0, and so selection favours fathers and mothers that
increase allocation to sons;

(IT) AW, <0 and AW, > 0, and so selection favours fathers that reduce their
allocation to sons, whereas selection favours mothers that increase their
allocation to sons;

(IIT) AW,,,, AW, <0, and so selection favours fathers and mothers that reduce

allocation to sons.

From the way in which Regions [-1II are characterized, it is clear that

selective pressure will force normal sex-ratio behaviours into Region II, and onto

15



the boundary of the unit square (Fig. 1). However, the level of behaviour
resulting from the long-term action of selection depends entirely on the

placement of the vertical intercepts of (23) and (24).

Fig. 1A illustrates the case M}

rom < 1 —a. In this case, both nullclines

intersect the face z,, = 0, and we observe z,, approaches zero, while z;
approaches M} /(1 — a). It follows that the realized proportion of males in a
brood,

azm+ (1 —a)zp — M,

mom* (25)
The conflict is resolved in favour of a mother. Notice that in order for

Mo <1—atohold, a <1/2.

mom

In Fig. 1B we assume Mj,4 <1—a < M}

< om> and so we require a < 1/2. In

this case the nullcline AW, = 0 intersects the face 2, = 0, whereas the
nullcline AW, = 0 intersects zy = 1. Over time, then, 2, approaches zero, z;
approaches one, and the realized proportion of males in a brood approaches

1 — a. This outcome corresponds to neither sex-specific optimum. Instead, it

represents a compromise: greater than M, , but less than M} .

Fig. 1C assumes Mj,; > 1 — a, and so we require a > 1/2. In this case both
nullclines intersect the face z; = 1. Over time we observe that z,, approaches

(Mj,q — (1 —a))/a, z; approaches one, and so
azm+ (1 —a)zp = M. (26)
The conflict is resolved in favour of the father.

One consistent feature of the additive effects model — found for any a — is that

16



selection leads one parent to always provide care to offspring of only one sex;
while selection leads the other parent to compensate by investing, at least to
some degree, in offspring of the opposite sex. However, the latter parent does not
always bias its sex-ratio toward the sex overlooked by its mate, as suggested
elsewhere (see Lessells, 1998, p. 402). To see why, consider the additive effects
model with N =2 and a = 5/6. This case is depicted in Fig. 1C. Our analysis
above tells us that selection encourages a mother to invest only in sons, but

encourages fathers to use sex-ratio behaviour,
(Mg — (1—a))/a=6/10 > 1/2. (27)

Parents are in conflict, but both bias effort toward sons.

5 Conflict under multiplicative effects

As before, let us begin by establishing the sex-ratio behaviour each parent
considers optimal. Assuming paternal control, and following the same recipe
outlined in the previous section we find that z), = 2} = N/(2N — 1) (see
Appendix B). Unlike the additive effects case, the equilibrium solution is unique;
however, the realized brood sex ratio are the unchanged. Under paternal control

we find

Mgaa/ Fiaa = [IN/(N = D]/[1 = N/(N = 1)] = N/(N - 1). (28)

Assuming maternal control of sex-ratio behaviours the unique equilbrium

17



solution is 20, = 2} = N(3N +1)/[3N(2N — 1) 4+ 1] (Appendix B). It follows that

m

M JFE = NBN +1)/(N —1)(3N — 1), (29)

mom

which is again unchanged from the additive effects model.

The conflict over the sex ratio is clearly maintained in the mutliplicative
effects model. The main result of this section states that, when parents are
allowed to control only their own sex-ratio behaviour, a compromise is always
established— in the sense that solution pairs (29,22 are readily found using
numerical methods. The stability of these solutions, under a multidimensional

version of the convergence stability concept — originally proposed by

Christiansen (1991) (see Appendix B) — was also verified numerically.

Table 2 presents numerical approximates for z), and 2%, under various
combinations of parameters N and b, and found using the Maple software
package (Waterloo Maple, 2002). In each case investigated, we found
Mg < 29, < 2§ < M

xoms 1-€. the stable joint equilbrium represented a sort of

compromise between male and female perspectives. The same pattern can be

observed in the realized brood sex-ratio, M/F (Table 2).

Reading down the rows of Table 2 we see also a shift in which perspective
dominates the compromise. When the parameter b is small the female’s
perspective carries more weight; and when b is large the male perspective
prevails. Why might this pattern be expected? To answer this, let us fix
attention on a single value of p (= the proportion by which offspring mortality is

reduced with one unit of maternal investment). In order for b to be small, then,

18



T (= total maternal resource) must small relative to K (= brood size). That is
to say, when b is small a mother is unable to provide resources to all her
offspring. It follows that offspring survival is low, and so maternal investment is
able to alter the primary sex ratio significantly. It is instructive to observe that
in the limit as b approaches zero, the multiplicative effects model for AW,

approaches the additive effects AW, with maternal control.

When b is large, T" must be large relative to K. In other words, a mother has
an abundance of resources to distribute among her offspring. In this case the
survival of offspring is almost assured, and so manipulation of maternal
investment does little to change the primary sex ratio set out by a father.
Observe that in the limit as b approaches oo, the multiplicative effects model for

AW, approaches the additive effects AW, with paternal control.

6 Conclusions

Not surprisingly, the resolution of sex-ratio conflict between mates under LRC
depends on how parental efforts are combined to determine the realized sex-ratio
of a brood. When efforts are combined in an additive fashion the relative weights
assigned to sex-specific levels of care tells the story. If the weight assigned to
paternal care is sufficiently large (i.e. a > 1/2), the brood sex-ratio is optimum
from the perspective of the father. In contrast to this, we see that a < 1/2 is not
sufficient to guarantee that mother’s optimal sex is achieved. Setting a < 1/2
can, at best, assure a compromise between mates—in the sense that neither

sex-specific optimum ‘wins’ (Fig. 1A, B). In order for the mother’s optimum to
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prevail, we need a < 1 — M} .. < 1/2. All else being equal, the resolution of

sex-ratio conflict under LRC — and under the additive effects model — appears to

be biased in favour of the father’s perspective.

In nature, the coefficient a will certainly vary across species; and likely vary
according to some non-uniform distribution, respectively. Birds, for instance,
tend to exihibit bi-parental care (perhaps a nearer to 1/2), whereas sole

maternal care is common in many mammals (perhaps a near zero).

The multiplicative effects model we present here provides an interesting
contrast to the previous case. Our numerical investigations suggest that an
equilibrium compromise is always achieved. In this case the perspective that
receives greater weight is determined by the parameter b. When 0 is small, the
offspring are resource-limited and the parent responsible for distributing the
resource (in our model, the mother) has greater degree of control over the
realized brood sex-ratio. When b is large offspring thrive and the realized
sex-ratio is closer to the optimum from the perspective of the parent controlling

the primary sex-ratio (in our model, the father).

One might wonder why it is that, under the multiplicative effects model, the
mother’s perspective does not always prevail. After all, it is the mother who
makes the final adjustment to the brood sex ratio. At first glance this logic is
appealing. Nevertheless, ‘winning the conflict’ would require a mother to make
an investment in sons that, because of diminishing returns on offspring survival,
would have been better spent on daughters. In short, a mother does not try to

win because it is unprofitable to do so.
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As a final comment on the multiplicative effects model, we note that we have
assumed that a mother divides her investment evenly among all same-sex
individuals in a brood. This assumption is valid because of the ‘diminishing
returns’ form of the survival function, s. The assumption will not be reasonable

for other forms of s, e.g. forms whose graphs are concave up.

The idea that parents are in conflict over parental investment is not new (e.g.
see Trivers, 1972). Usually, this conflict is centred around the overall level of
parental care given, rather than the manner in which care is divided between
sons and daughters. For instance, one mate in a pair might choose to either care
for offspring, or desert—providing no parental care whatsoever (Maynard Smith,
1977). The decision to care comes at the expense of future reproduction, and so
there exists a tradeoff (Williams, 1966). Incorporating such tradeoffs into a
model of sex-ratio conflict could suggest how likely it is that male perspective

wins out.

Our model assumes that selection is the only way in which conflict can be
resolved. There may, however, be other factors that either contribute to conflict
resolution, or at least, reduce the intensity of the conflict. One noteworthy factor
is patch size, N. We can see that larger N reduces the size of the disparity
between sex-specific behavioural optima. In these situations, then, being on the
‘losing end’ of a sex-ratio conflict may not be that bad; and this may actually
represent a benefit of such behaviours as communal nesting sites. In general, any
factor that brings 7 closer to one half should be relevant to the resolution of

sex-ratio conflict in geographically structured populations.
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Appendices

A Relatedness calculations

In this appendix, we compute expressions for the relatedness coefficients used
in the main text. Let H;; denote the coefficient of consanguinity (CC) between
two individuals, I and J, i.e. the probability that a random allele from I and a
random allele from .J are identical-by-descent. Following Michod and Hamilton

(1980), we define the relatedness between I and J as

H]J/H[[:H]J/HJJ. (A].)

We define Hy; as the CC between two females breeding on the same patch,
taken with replacement. We define H,,,, and Hy,, in a similar way. Since no
male breeds on his natal patch (i.e. outbreeding population), H,,, = 1/2N, and
Hyy, = 0. To compute Hyy we use a recursive equation. We suppose that, in
generation t, Hys(t) is known, and we compute its value one generation in the

future, Hp(t + 1). A conditional probability argument yields

Hpp(t+1)=1/2N + (N —1)/N (Hss(t) /4 + Hpm/2 + Hp /4)

=1/2N + (N — 1)/N (H;(t)/4 + 1/8N). (A.2)

At equilbrium Hys(t + 1) = Hyp(t). Making this substitution in (A.2) and

solving for Hys we get

Hyp = (5N — 1)/2N(3N + 1). (A.3)
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Since there is no inbreeding, parent-offspring relatedness, r is simply 1/2 To
compute 7 we note that we are effectively comparing an allele from an adult
with an allele drawn either from an adult female (probability = 1/2), or an adult
male (probability = 1/2). It follows that the relatedness between a recipient

offspring and a random adult female donor is given by

r=(Hm/2+ Hyp/2)/(1/2) = Hyy. (A-4)

Similarly, the relatedness between a recipient offspring and a random adult male

donor is given by

F= (Hyn/2 + Hyn/2)/(1/2) = Hym. (45)

Observe that Hyy > Hp, with equality if and only if NV = 1.

B Sex-specific optima under multiplicative effects model

Here we show that, under multiplicative effects,

Mgaa/ Faaa = N/ (N — 1) (B.1)

is optimal from father’s perspective, and

M}/ Fuom = NBN +1)/(N—-1)(3N —1) (B.2)

is optimal from mother’s perspective.

We begin by defining two functions
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s'(y/x)/(s(y/x) — s'(y/x)y /), (B.3)
d(1—x,1—y) (B.4)

o(z,y)
Y(z,y)

restricted to the domain, £ = (0,1) x (0,1). We observe the following:

e 0¢/0x > 0 and 0¢/dy < 0;
e J¢/0x < 0 and dv/dy > 0;

e ¢ =1 on the set {(x,y) € E | z = y}.

Suppose sex-ratio behaviour is controlled by only one parent. We seek a

solution to equilbrium condition (20). One can easily verify that

0 _—
Zm =

N/(2N —1) is a solution under paternal control, and that

0 _
2y =
2y, = 23 = N(3N +1)/[3N(2N — 1) 4 1] is a solution under maternal control;

m

but are these the only solutions for the respective cases? We claim that they are.

To prove the claim, suppose that we have found a solution to (20), (zp,,2}). A

simple rearrangement of (20) shows that ¢(z),, 2}) = ¢(z,, 2}) must hold. By

the observations made above, ¢(z), 2}) = ¥(z,,, 2}) holds if and only if z) = 2}.

0

Since z,,

= 2} condition (20), under multiplicative effects is

(r=r)/1 =) =1/ (i=m,f). (B.5)

We conclude that if (27, 2}) is a solution to (20) under multiplicative effects,

then it must satisfy (B.5).

It follows from the preceding comments that 7 = 1/2N (paternal control)

yields

m

2 = 2) = N/(2N — 1), (B.6)
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and we have (B.1). When 7 = (5N —1)/2N (3N + 1) (maternal control)

z =27 =N(BN +1)/[3N(2N — 1) + 1], (B.7)

m

and we have (B.2).

To generalize Christiansen (1991), we say that a pair (z,, 2}) is convergence
stable provided
(AW, Ang)T(zg1 — Zms z? —z7) >0, (B.8)
for resident behaviours (2, zy) sufficiently close to (2, 2}). The standard
dervative condition for convergence stability in this sense is that the eigenvalues

of the matrix

T

OAW,, [0z OAW,, [0z OAW,, |02y OAW,, [0z
(1/2) +(1/2) (B.9)
OAW,, [0z, OAW,, [0z OAW,, [0z, OAW,, [0z

be strictly negative. We verified numerically that (B.1) and (B.2) correspond to

convergence stable values of (z,, 2}).

27



(f ‘w = 1) InorARYD( O1RI-X0S 1-X0S SUI[[0IIU0D SNDO] JY) 10} anfea didAjousd s Juardidor ‘b

woux

I9Yjoul ® Jo 9A1pdadsiad o) woxj 4 rewrydo ]

1071e] ® Jo aA1pdadsiad oy woxy g ewmydo PPy
$199p0 aAnyedI[dinur Iepun poried JUOUIISOAUT [RjUsIRd SOAIAINS PUR J[RUISJ
POZI[11I9] ST 934000 ue jer) qoid jurol (§109Fe SAT}IpPR IOpUnN SIdIYSNEP 0} pajossp pooiq ® jo udoxd A

'H BUISLLIDUI JO J90JJ0 SsoUly 12911p UV

[epou s300pe aAtyeoTdIynur oY) Ul

[eAlAINS SULIASHO SOOUONJUL JUOUIISOAUT [RUINJRUL [DIYM 0F JUIXD oY) SOqLISIP ‘3 /[ (d — 1) = q
OT1RI XS 0) UOINQLIJU0D [euId)Rd SAT)IpPR D
uorjeuedxy [OquIAg

"}X0) UTRW 9} UI Pasn UOIJRIOU JO ATewwuins Y ' 9[qe],

28



yored [eo0J o) uo Furpoarq juared wopuer pue SULIdSHO WOOMID( SSOUPIIR[OT 4
yuered pue SULIAdSHO U9M)9( SSAUPIJR[AI A
oz1s yojyed N
170U © Jo aa1ydadsiod oty woy py rewmnydo Yy
1071e] ® Jo aA1pdadsiad oy woxy gy ewnpdo  PEP
$109pe aAnyedI[diynur wpun porred JuauIiseAur [RiumsIed SIAIAINS pUR S[eUI
PoZI[1310] ST 934000 ue Jer) qoixd jurol ($109]J0 SAT}IPPR I9pun SUOs 0) pajoAsp pooiq ® jo u.doxd W

S399]j0 aAryeor[drynur

I9PUN $834000 PAZI[I}19] JO IdQUINU [BI0) S1D09JJ0 SATIIPPR Iopun Juridsgo SUIATAINS JO IoquUNU [R)0) )Y

uoryeue[dxy [OquIAg

‘ponurjuod ‘1 9[qer,

29



(0g) wegsAs 0y uornos

&NREN

0“0
([ ‘w = 1) INOIARYD( OIIRI-XOS 1-X0S JUIPISOI %
(f ‘wr = 1) yoyed [eo0J o) U0 JuaIRd 1-X0S ® AQ POIIQIYXS INOIARYI( OIJRI-XaS dFRIoAR *fi
(f ‘w = 1) Surrdspgo [e20J 13 Jo juaIed 2-X0S 9} AQ PaYIqIYXe INOIARYD( OIJRI-XOS ‘x
99IN0SAI [RILIOJRUI JO JUNOUWR UR n
([ ‘w = 1) yuetdIdal 1-Xas ® JO Ssou)y "
JUOUIISOAUT 10] S[(R[IRAR 9DINOSOI [RILIO)RUI JO JUNOUIR [R)0) L
[earains gutrdspo jo Ayriqeqoad s

uorjeuedxy [OquIAg

‘ponunuos ‘1 9[qe],

30



cee'T = P00 /P vu p12e =Pt =01/ vu 2999°0 = PPy 00 «+—

eee'T ccLe pILC 000°Z ThLY’ L999° 0T
0LF'T 1209° €e8e Ngare 11eL 8169° I
€9¢'T 019" 116¢ 9CL'T eeel’ SN I
FLGT AR L16¢° G6L°T L9€L" 820L" 10°
¢Le T =" /M 8119 = " el 008z = "5 /"N 89gL =" el 0 <
/10 & e A/ & e q
V=N ¢=N

‘(e1qeoridde jou = eu) uostreduron 10§ pajusseld ore (00 <— q) aa1poadsiad s 1otye] ® WO Wnwdo o)

pue ‘(0 « q) eanadsiod s tarjow v woly wnuydo oY) 01 Surpuodsaliod senfep 'Q pur A/ SIjoureled Jo SUOIIRUIGUIOD

STOLIRA I9pUn 7 /Jy O13R1 oY) Jo anfea ajyeurrxordde pue mm ‘"2 sInoraetyeq o1yeI-Xas a[qe)s ayewrxoiddy "z a[qey,

0

31



Resident maternal sex-ratio behaviour (z,)
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Figure legends

Fig. 1. The resolution of sex-ratio conflict under the additive effects model. The
nullclines AW, =0 and AW, =0 are indicated with a dashed and solid line,
respectively. Landmarks are indicated in panels on the left; the direction of
evolution is indicated in panels on the right. Top row (A) describes the case
M. .. < 1—a; middle row (B) describes the case M}, <1 —a < M} . and

bottom row (C) describes the case M}, ; > 1 — a. Recall: in Region I

AW,

gm>

AWy, > 0; in Region II AW, <0 and AW, > 0; and in Region III
AW, AW, < 0.
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