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NOTES AND COMMENTS

VON BERTALANFFY’S GROWTH EQUATION SHOULD NOT BE USED
TO MODEL AGE AND SIZE AT MATURITY

Troy DaY* AND PETER D. TAYLORT

Department of Mathematics and Statistics, Queen’s University,
Kingston, Ontario K7L 3N6, Canada

Submitted January 4, 1996; Revised May 15, 1996; Accepted May 20, 1996

The study of life-history evolution has enjoyed considerable success in melding
theoretical prediction with empirical observation (Roff 1992; Stearns 1992). Often
relatively simple models yield remarkably accurate predictions. One area of par-
ticular interest has been the study of age at maturity (Koztowski 1992; Bernardo
1993; references therein). Several models have been proposed to explain variation
in age at maturity across species, and each usually employs a different set of
assumptions regarding mortality rates, growth, fecundity, and the appropriate
measure of fitness. Results are often sensitive to the choice of these components;
therefore, it is important to know when simple formulations are adequate. Here
we focus on one of these components: the growth function.

In the first section, we present the general modeling framework common to
most of the aforementioned studies and consider how to choose an appropriate
growth equation. We suggest that the growth trajectory should be specified by
two separate equations: a prematurity equation in which essentially no surplus
energy is devoted to reproduction and a postmaturity equation in which all (deter-
minate growth) or some (indeterminate growth) surplus energy is devoted to
reproduction. Logical inconsistencies can arise in models of the evolution of age
and size at maturity when such a specification is not made.

We believe that the von Bertalanffy (VB) equation is misused in both indetermi-
nate and determinate growth models of maturity. Under indeterminate growth, a
separate specification of pre- and postmaturity growth curves is usually not em-
ployed. Under determinate growth, in which such a separate specification is
made, the VB equation often fails to provide an appropriate description of prema-
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turity growth. Here we consider determinate growth models in detail and review
evidence for the shape of prematurity growth curves. We demonstrate that using
a more suitable equation for prematurity growth alters predictions in a qualitative
way. Finally, we consider indeterminate growth models in detail and propose a
suitable specification for modeling age and size at maturity in this setting.

MODELING AGE AND SIZE AT MATURITY

Many models for optimal age and size at maturity can be placed within a general
theoretical framework based on the Euler-Lotka equation. Additionally, the ma-
jority assume continuous reproductive output (see Koztowski and Wiegert 1986)
and an instant switch for the onset of maturity. Maturity is regarded as the point
at which an organism begins to devote some surplus energy to reproduction. The
two most common fitness measures employed are lifetime reproductive output,
R, and the Malthusian parameter, r (Koztowski 1993). Our analysis focuses pri-
marily on R, because it is simplest and it is an appropriate fitness measure under
many important forms of density-dependent population regulation (see Charnov
1990; Mylius and Diekmann 1995). We assume that mortality can be reasonably
described by an initial burst of mortality (p) followed by constant juvenile and
adult mortality rates (see the appendix for notation). This is probably most appro-
priate when changes in mortality result from reproductive costs rather than size
or age dependency. Under these assumptions, we have

R, = peie f: e~ m(x + a)dx, (1a)

and a necessary condition for maximizing R, is

J:o e ¥ %’3 dx

— = . (1b)
f e " “mdx
0

Equation (1b) is an optimization condition and reveals the trade-off between
the relative rate of gain in fecundity from postponing reproduction (left-hand side)
and the corresponding relative rate of decrease in the probability of surviving to
maturity (right-hand side). The optimal age at maturity occurs when these two
factors exactly balance. To make more use of equations (1), we need to specify
how an organism grows and how size is related to reproductive success. We
follow most treatments in assuming that increased size translates into increased
fecundity, and we refer to the function of mass versus age as the growth tra-
jectory.

What properties should a suitable growth trajectory exhibit? A common al-
though sometimes implicit assumption is that growth and reproduction are ‘‘com-
peting”’ energy sinks (for evidence, see Roff 1992, pp. 150-157; Stearns 1992,
app. 2D). Thus, the onset of maturity involves a reduction of energy devoted to
growth to “‘fuel’”’ reproduction (Koztowski 1992). As a result, the growth trajec-
tory used in such a model should exhibit a fundamental change at this point
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(Koztowski and Wiegert 1986; Koztowski 1992). Therefore, a very important
property that any suitable growth specification should have is a distinction be-
tween pre- and postmaturity growth processes.

The prematurity growth trajectory should describe pure growth. Its shape
should reflect the size-age relationship when all available resources are devoted
to growth. Two common postmaturity growth patterns are modeled: determinate
and indeterminate growth. Determinate growers devote most surplus energy to
reproduction after maturity; thus, their postmaturity trajectory should be flat.
Indeterminate growers show a gradual decline in the energy devoted to growth
and an increase devoted to reproduction; thus, their postmaturity trajectory
should be increasing but gradually plateau.

The importance of having separate equations for pre- and postmaturity growth
is illustrated by considering the optimization procedure. The previous specifica-
tion of growth results in a trajectory in which the pre- and postmaturity pieces
are spliced together at a. To determine if « is optimal, we vary a and determine
the resultant change in fitness. When increasing o, we need to continue along the
prematurity trajectory slightly longer and then switch to a postmaturity trajectory
at a larger size. When decreasing o, we need to switch to a postmaturity trajectory
at a smaller size. Thus, we require a prematurity trajectory that describes ‘‘pure
growth” and a family of postmaturity trajectories indexed by a that describes
growth when some significant amount of energy is devoted to reproduction.

The two most common choices of growth equation for life-history models are
the VB equation, which, using the approximation mass = length?, specifies
growth rate as

VB: (fl—-‘:) = kw2 (Wl — wi?) )
(Roff 1984, 1986; Stearns and Koella 1986; Charnov 1989; Shine and Charnov
1992; Berrigan and Koella 1994), and the production relation, which specifies
growth rate as a power function (PF) of mass, that is,
Cdw
PF: i kw 3)
(Roff 1983, 1986; Koztowski and Wiegert 1986, 1987; Koztowski and Uchmanski
1987; Koztowski 1992). In both equations, the parameter & is usually interpreted
as a growth rate or habitat quality parameter; a large k corresponds to a produc-
tive habitat because it gives a larger growth rate.

The PF equation is often an accurate representation of prereproductive growth,
and its use in determinate growth models thus follows quite naturally; size is
simply assumed to remain constant after maturity. Later we consider how this
equation might be suitably extended to model indeterminate growth also. The
VB equation has been used in both determinate and indeterminate growth models.
It has gained widespread use, largely because it is believed to be an accurate
description of lifetime growth in many organisms, it is simple, and there are many
empirical estimates of its parameters (however, see Roff 1980 for a discussion of
some shortcomings). We suggest, however, that it is usually inappropriate for
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“modeling age and size at maturity under determinate growth, and using it alone
for modeling age and size at maturity under indeterminate growth is always inap-
propriate. We consider each of these cases in turn.

DETERMINATE GROWTH

Models of the evolution of age and size at maturity under determinate growth
do separate pre- and postmaturity growth phases. Some equation describing pre-
maturity growth is used, followed by a family of constant functions after matu-
rity.

What should the prereproductive growth trajectory used in age at maturity
models look like? Before maturity, surplus energy is devoted primarily to growth.
Thus, the prereproductive growth rate should be proportional to the rate of energy
acquisition minus the rate at which energy is used for maintenance. The shape
of the resulting growth trajectory will depend on how this difference scales with
body mass. Several lines of evidence suggest an approximate scaling of mass®’
(Farlow 1976; Blueweiss et al. 1978; Case 1978; Lavigne 1982; Reiss 1989), which
results in a concave-up trajectory. Such trajectories are believed to be the norm
(at least for early growth stages) (Ricker 1979; Sibly and Calow 1986), which is
often the justification for modeling determinate growth as a power function of
mass with an exponent of two-thirds to three-fourths (Reiss 1989; Charnov 1993).
Evidence also suggests, however, that larvae and juveniles of many other organ-
isms such as cephalopods (Jackson and Choat 1992; references therein), fish
(Brett and Shelbourne 1975; Brett 1979; Roff 1983; Deegan and Thompson 1987;
Tzeng and Yu 1988; Comyns et al. 1989; Hovenkamp and Witte 1991), amphibians
(Nagai et al. 1971; Alford and Harris 1988), and reptiles (Schoener and Schoener
1978) exhibit concave-up trajectories (see also Alford and Jackson 1993). These
observations suggest that the power function is often a good choice for describing
prematurity growth.

Although the VB equation is often thought of as an indeterminate growth equa-
tion, it has been employed as the prematurity equation under determinate growth
as well (Roff 1984, 1986; Stearns and Koella 1986; Berrigan and Koella 1994).
We suggest, however, that because the VB equation describes lifetime growth,
it is not likely to be an accurate representation of prematurity growth in many
organisms. This problem is often exacerbated by using empirically estimated
parameter values. The pattern of growth embodied by the parameter estimates
of a given species describes the age-specific schedule of resource allocation to
growth and reproduction after that species has ‘‘solved’’ the life-history optimiza-
tion problem. Thus, by using these parameters in the VB equation for prerepro-
ductive growth, one is largely neglecting the reason that the organism might
postpone maturity in the first place, namely, to increase size and hence fecundity.

The use of the VB equation can alter predictions of age at maturity away from
those obtained using the power function in a nontrivial way. Under determinate
growth, size remains constant after maturity, which is taken to imply that fecun-
dity, m(a) also remains constant. Therefore, equations (1a) and (1b) become
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The solutions to equations (2) and (3) (with ¢ = 2/3) for arbitrary, nonzero initial
sizes are

VB: w(t) = WP — e™*) + wiPe k)3 %)
and
PF: w(t) = (1/3 kt + wiP)?. (6)

We assume fecundity is proportional to the rate of availability of surplus re-
sources, which is given by equations (2) and (3) by substituting in size at maturity
(Koztowski and Wiegert 1986, 1987; Koztowski 1992).

Calculating the optimal age at maturity for each case using equation (4) yields

T —wi) 3k + ] 1
VB: a=ln[ i . P I @)
and
3 1/3
PF: a=}2:—— S @®)

Although their forms differ, equations (7) and (8) are both decreasing functions
of j as expected from the general consideration of equation (1b). One very impor-
tant difference, however, is the effect of the growth rate parameter, k. The VB
age at maturity is a decreasing function of k over nearly its entire range, whereas
the PF age at maturity is an increasing function of k£ everywhere (fig. 1). It is
interesting that most previous treatments employing the VB equation have as-
sumed w, = 0, which makes equation (7) everywhere decreasing in k and equation
(8) independent of k. Clearly, neglecting even a small initial size will change the
qualitative nature of equation (8) as a function of k£ everywhere, whereas it may
do so only for very small values of & in equation (7).

These results illustrate that even in this simple model, using a more suitable
growth specification has a major qualitative effect on prediction. This is easily
intuited: the VB equation is asymptomatic; therefore, using it for prereproductive
growth restricts the maximum size and hence fecundity that is attainable. In a
sense, increasing the growth rate parameter allows an individual to approach this
maximum sooner and thereby mature earlier, but it never allows for an increase
in the maximum. Thus, there is a decreasing benefit to postponing maturity as k
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W

PF GROWTH

10

k

Fi6. 1.—The relationship between predicted age at maturity and the growth rate parame-
ter, k, under both VB and PF growth. Dotted line, j = 0.2; dashed line, j = 0.5; solid line,
Jj = 0.9. Both growth functions use w, = 0.1, and the VB function also uses w,, = 10. Note
the different scale on the a-axis for VB versus PF. Under VB growth, for most values of %,
as the productivity of the habitat increases (increasing k), the model predicts an earlier age
at maturity. Under PF growth, as the productivity of the habitat increases, the model predicts
a later age at maturity.

increases. Under PF growth, however, increasing k always allows for an increase
in size and fecundity. This can be more easily seen in the corresponding size at
maturity equations obtained by substituting equations (7) and (8) into equations
(5) and (6) (fig. 2):

3
2k
VB: w(a) = w°°<3k +j)
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FiG. 2.—The relationship between predicted size at maturity and the growth rate parame-
ter, k, under both VB and PF growth. Dotted line, j = 0.2; dashed line, j = 0.5; solid line,
Jj = 0.9. The VB function uses w,, = 10. Under VB growth, as habitat productivity increases,
the predicted size at maturity increases but reaches a maximum. Under PF growth, as habitat
productivity increases, the predicted size at maturity increases dramatically and has no upper

limit.

and
%Y
PF: w(w) = <—) .
3j

These expressions reveal that under PF growth, increasing the growth rate param-
eter allows an individual to mature later at a much larger size (and fecundity),
but under VB growth there is maximum attainable size. Indeed, it follows from
the optimality condition (4) that for any S-shaped prematurity growth trajectory,
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the optimal age at maturity must occur before the trajectory begins to plateau
(i.e., the inflection point). To see this, note that fecundity, m(a), is proportional
to the rate of availability of surplus resources, and under determinate growth this
is simply dw/dt evaluated at t = a. Consequently, equation (4) requires that d’w/
dt* > 0, which implies that the optimal age at maturity must occur where the
growth trajectory is concave up. Thus, with an S-shaped prematurity equation,
the inflection point acts as a definite ceiling on the optimal age at maturity.

Using r as the fitness measure also produces different predictions. Numerical
solutions under VB and PF growth show that, although the « versus & relationship
has the same qualitative shape, large quantitative differences still result. This
point can also be intuited. When r is used as the fitness measure, there is an
additional source of decreasing benefit to postponing reproduction. In an increas-
ing population, a premium is placed on early reproduction because this will in-
crease r. Regardless of the growth trajectory used, this effect will be present if
the population size is increasing.

Stearns (1992, pp. 147-148) noticed similar discrepancies in the a versus k
relationship when comparing a model using PF growth (Koztowski and Wiegert
1987) with one using VB growth (Stearns and Koella 1986). However, because
the two models also used different fitness measures (R, vs. r), he suggested this
to be the cause. Our results suggest that this explanation is not complete. Pre-
dicted age at maturity decreases as k increases only when there is a decreasing
benefit to postponing reproduction. If r is the fitness measure, this decrease re-
sults from an increasing population size. However, the use of VB growth also
results in a decrease in the value of postponing maturity. The Stearns and Koella
model confounds both of these factors, while the Koziowski and Wiegert model
incorporates neither.

In advocating the use of an equation such as the PF for growth before maturity,
we do not suggest that a plateau in prereproductive growth never occurs. Indeed,
if prereproductive growth is extended indefinitely, it must eventually asymptote
because of physical constraints. If such an effect is believed relevant, then it
should be explicitly included in the model. The prior considerations, however,
reveal how important it is to have good information about where the inflection
point should be on such a curve.

INDETERMINATE GROWTH

In the original formulation of the VB equation by Piitter (1920; as cited in Ursin
1967) and von Bertalanffy (1957, 1960; see also Ricker 1979; Reiss 1989), growth
rate was envisioned to result from the difference between catabolism (tissue
breakdown) and anabolism (tissue synthesis). No explicit account was made of
a change in energy allocation at maturity because interest centered on understand-
ing growth through a consideration of total energy input and output. Thus, the
VB equation embodies prereproductive growth, age at maturity, and postmaturity
growth all in one composite description. Consequently, using the VB equation
alone in an optimization model under indeterminate growth implicitly assumes
that the change in energy allocation at maturity does not affect postmaturity
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growth; the postmaturity growth curve does not change when « is varied in the
optimization procedure.

What is required for age at maturity models is an equation that is faithful to
the growth processes that occur under different choices of this age. Therefore,
because the PF appears to be a reasonable description of prematurity growth, we
consider how it might be extended for use as the postmaturity trajectory when
modeling indeterminate growth. To remain consistent with both the empirical
evidence and determinate growth models, we suggest using a power function for
prematurity growth but then employing an exponential decline in resource alloca-
tion to growth after maturity. We note that this is merely intended as a suitable
description of indeterminate growth that is consistent with the life-history model
in which it will be used. We assume that the organism can acquire resources at
a rate proportional to a power function of its size as before. Growth rate and
fecundity are given by

dw

T ukw?? (10)

and
m= (1 — wkw??,

respectively (Koztowski and Wiegert 1986; Koztowski 1992). Here u is simply
the proportion of resources devoted to growth. It equals 1 before maturity and
exp(—[t — a]h) after maturity, where & scales the rate of exponential decline.

The solution to the prematurity growth equation (10), with u = 1, is the same
as before (given by eq. [6]), and the solution to the postmaturity growth equation
(10), with u = exp(—[t — alh), is

3
w(t*) = B%(l —e M) + W(a)m]

or, by using equation (6) evaluated at «,

3
L, —ht*
W) = Bk(lT" + a) + w(‘)“] , (11

where t* = ¢t — a is the time since maturity. Equation (11) specifies a family of
postmaturity trajectories indexed by «. A growth trajectory constructed by piec-
ing together equations (6) and (11) at « has a sigmoidal shape and the favorable
property that it is still smooth (differentiable) at «. The parameter / scales the
rate of exponential decline in postmaturity resources devoted to growth and thus
determines how quickly the growth trajectory plateaus after maturity (fig. 3).
Thus, changing age at maturity also changes final size (and fecundity), but the
rate of growth plateau after maturity can be varied independently.

CONCLUSION

The idea of employing a logically sound growth relation that is consistent with
the life-history model being used is not new. Roff (1983, 1984, 1992, pp. 204-207)
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Fic. 3.—A plot of the indeterminate growth equation presented in the text. Here o = 5,
and a sequence of values for the constant # are shown. The constant 4 determines the rate
of postmaturational growth plateau.

and Charnov (1993, pp. 85-86, chap. 8) have suggested that a model based on
resource allocation is preferable to one based on VB growth. Similarly, Koztow-
ski and Wiegert (1986; see also Koztowski 1992) have advocated the use of re-
source allocation and power function relations such as equations (3) and (10) in
life-history theory. The implications of not using such growth relations, however,
have not previously been investigated. Others have voiced concern over the sim-
plicity of many current life-history models and have questioned why such models
should match observation so well (Bernardo 1993; Charlesworth 1994, p. 255).

We suggest that, for models of age at maturity using VB growth, concern is
warranted on two accounts. First, using the VB equation under indeterminate
growth fails to acknowledge the change in resource allocation at maturity; growth
is not specified by two equations. Second, because the VB equation is asymptotic,
using it for prereproductive growth often does not accurately reflect the trajectory
of an organism that is devoting all energy to growth. The results we present
demonstrate that even in the simplest models, using a more suitable growth equa-
tion can substantially alter predictions.

Most determinate growth models of age and size at maturity do employ separate
equations for pre- and postmaturity growth. This is probably because of the
simplicity of the situation; it is natural to use a family of constant functions after
maturity because determinate growers stop growing. Obtaining a suitable family
of postmaturity equations under indeterminate growth, however, presents a
greater problem. Most approaches to modeling maturity under indeterminate
growth that do account for resource allocation decisions involve some type of
dynamic optimization (e.g., control theory, dynamic programming). Because
these methods are conceptually and computationally more difficult, the approach
suggested here offers an advantage. Although equation (11) has a largely descrip-
tive motivation, it reduces such dynamic optimization procedures to a simple,
two-variable optimization problem.

It is also notable that incorporating a switch at maturity in the growth rate
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function does not necessarily produce a ‘‘corner’ in the size-versus-age trajec-
tory. For example, our use of an exponential function for u in equation (10)
results in a smooth growth trajectory (fig. 3). Indeed, any specification for « that
makes growth rate a continuous function of size will have this property. We also
note that use of an exponential function in equation (10) gives the postmaturity
trajectory a particularly simple form; it is just the prematurity trajectory with a
different time parameter (compare eqq. [11] and [6]).

NOTE ADDED IN PROOF

A recent article by Koztowski (1996) demonstrates that dynamic optimization
models based on resource allocation decisions often generate lifetime growth
curves that are well approximated by the von Bertalanffy equation. His models
have VB growth as a prediction (rather than an assumption) and might explain
why the VB equation is often a good description of lifetime growth.
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APPENDIX
TABLE Al

A LisT orF NOTATION

Variable Definition

w Body mass

Initial body mass (at independence)

Asymptomatic body mass for VB equation

Fecundity

Age

Age at maturity

Proportion of resources devoted to growth

Juvenile mortality rate

Adult mortality rate

Initial burst of mortality before constant juvenile mortality rate
Growth rate parameter, presumably a function of environmental quality
Intrinsic rate of increase

0 Lifetime reproductive output

=
8 <

YT QR R R 3
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