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 NOTES AND COMMENTS
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 Our purpose is to provide an inclusive-fitness model
 for Wilson's (1987) simulation model of altruism in
 haystacks. In Wilson's population, groups are founded
 by single mated females and grow in isolation for a
 sequence of G nonoverlapping random-mating gener-
 ations, at which point they disperse. Females either
 mate in the group before dispersal (with probability

 m), or mate at random in the whole population after
 dispersal (probability 1 - m). All mated females then
 compete to be the foundresses for the next cycle. This
 situation was first studied in a model of altruism by
 Maynard Smith (1964) who represented it as a popu-
 lation of mice living in haystacks.

 We suppose that, between two individuals in the
 dispersal generation of the same group, there is the
 possibility of an altruistic act controlled by a pair of
 alleles at a single locus. The standard inclusive-fitness
 condition that the altruistic behavior be selectively fa-
 vored is that

 bR > c

 where b is the benefit to the recipient, c is the cost to
 the donor, and R is the coefficient of relatedness be-
 tween them. We will discuss the conditions under which
 this condition will correspond to the increase in fre-
 quency of the "altruistic" allele and will show how R
 can be calculated under assumptions of weak selection
 and additive gene action.

 If there is no within-group mating and G = 1, then
 offspring dispersing from the same group are outbred
 sibs and R = 1/2; but if G > 1, then R exceeds 1/2, and,
 in general, the smaller is the group size (N) and the
 larger is G, the larger will be R, though it is difficult to
 obtain an exact formula for R in terms of G and N.
 We obtain formulas for R for G = 1 and G = 2, and
 we perform some numerical calculations for large val-
 ues of G, assuming both a constant group size and an
 exponentially growing group. We compare our results
 with Maynard Smith's (1964) model and with Wilson's
 (1987) simulations, though both models differ from
 ours in some respects.

 The Inclusive-Fitness Model

 We begin by looking at a general model of altruism.
 Suppose we have a population with a periodic life cycle
 (which may or may not be a single generation) and at
 some point in this cycle, individuals find themselves
 in groups, possibly formed at random, or more likely
 derived from some local or family structure in the pop-

 ulation. 'Suppose each individual x performs, with
 probability Hx, an altruistic act towards a random
 member y of the same group. If the act is performed,
 we suppose the fitness of x is decreased by c and the
 fitness of y is increased by b. The question to be an-
 swered is, when will such behavior be selectively fa-
 vored?

 The first thing to note is that b and c are usually
 taken as immediate measures of fitness, but natural
 selection acts on the way in which these translate into
 contributions to the next cycle. In our haystack model,
 what counts are contributions to the next foundress

 generation, and, if the altruistic act occurs early in the
 life of the group, this may be difficult to calculate and
 will depend on the nature of the forces limiting the
 growth rate or the final size of the group. It is for this
 reason that we restrict attention to altruistic acts in the
 dispersal generation, so that b and c can be taken to
 measure changes in probability of founding a new group.

 As an extreme example, suppose that there is some
 maximum group size and that every group attains that
 size at some point. Then an altruistic act will not result
 in an altered number of dispersing individuals from
 the group but can only change the genetic composition
 of the dispersers; in fact, the effect of the act will be to
 change the expected number of dispersing descendants,
 not only of the donor and recipient, but of every in-
 dividual in the group. Under these circumstances, the
 ultimate total benefit to the recipient and other group
 members must be equal to the ultimate cost to the
 donor, and it would seem that altruism could never be
 favored unless the group was completely inbred. Wil-
 son (1983) and Grafen (1984) have discussions of this
 matter.

 The second thing to note is that there are two dif-
 ferent types of altruism that may be described by this
 model. In the first type, the beneficiary is a single,
 randomly chosen, recipient (for example, a grooming
 act), and, in the second type, the act is directed towards
 the group as a whole (for example, a warning call). In
 the second case, the average benefit will be the same
 for all members of the group, other than x, and b will
 be chosen so that this is b/(N - 1), where N is the size
 of the group.

 In summary, for the purpose of the general condition
 (1) below, we will assume that b and c measure changes
 in contributions to the next cycle and that b measures
 the total change in benefit of a single act of x to all his
 group mates.
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 Now we consider a simple genetic model for de-
 scribing this behavior. We suppose that we have an
 infinite diploid population, in which the behavior is
 controlled at a single locus with two alleles, one des-
 ignated "altruistic" and the other "normal." If we de-
 fine the genotypic value Px of x to be the frequency in
 x of the altruistic allele, then the condition for the
 population-wide frequency of this allele to increase is

 bR > c (1)

 where

 R = Cov(P,, Hx) (2)
 Cov(Px, Hx)

 provided the denominator of R is positive. Condition
 (1) was first provided by Hamilton (1964a, 1964b),
 and, since that time, a considerable amount of discus-
 sion has focused on the correct and most general def-
 inition of R (Crozier, 1970; Hamilton, 1972; Michod
 and Hamilton, 1980; Pamilo and Crozier, 1982;
 Charlesworth, 1980; Seger, 1981; Uyenoyama, 1984;
 Grafen, 1985; Taylor, 1988). It was first noticed by
 Seger (1981) that the most direct way to obtain (1) and
 (2) is from Price's (1970) covariance formula for gene-
 frequency change.

 To calculate R we have to know how Hx, which we
 call the phenotypic value of x, depends on genotype.
 One thing to note is that it is possible that HX will
 depend on the genotypic value not only of x, but per-
 haps of y (if x is able to recognize the extent to which
 y is altruistic and modify his actions accordingly), or
 even of some third individual z (perhaps the groups
 are sib groups, and it is the mother of x who can control
 whether her offspring are altruistic towards one another).
 Therefore, in the most general case, HX is a function
 of several genotypic values Px, Py, and Pz, and to cal-
 culate R we will have to know this function. Seger
 (1981) had an interesting example in which HX is a
 function of Px and PY: HX is 1, 1/2, or 0 depending on
 whether Px is greater than, equal to, or less than Py.

 We will assume, as did Wilson (1987), that HX de-
 pends only on Px and is 1, h, or 0, depending on whether
 PX is 1, 1/2, or 0. In fact, we will perform our calculations
 ofR for the special case h = 1/2 of "additive gene action,"
 because in this case R can be calculated from recursion
 formulas, at least when selection is weak. We note that
 Wilson (1987), in his simulations, took h = 1, the case
 of dominance of the altruistic allele.

 Thus, assuming h = 1/2, HX = Px, and the numerator
 and denominator of (2) are covariances of genotypic
 values:

 R = Cov(PY, PX)
 Cov(PX, PX)

 If the alleles are neutral, that is, if b = c = 0, then

 R- 2fxy (3)

 (Michod and Hamilton, 1980), which is the coefficient
 proposed by Hamilton (1972). Here, fxy is the coeffi-
 cient of consanguinity between x and y (Crow and Ki-
 mura, 1970 p. 68) and is defined as the probability that
 random alleles from x and y are identical by descent,
 and fx is the inbreeding coefficient of x. These coeffi-
 cients,fxy andfx, can be expressed in terms of the "con-

 densed identity state probabilities" A, (Jacquard, 1974;
 Michod and Hamilton, 1980), which are independent
 of allele frequency, and so, in this case (of neutral al-
 leles), R is independent of allele frequency. Of course,
 in practice, the alleles will not be neutral, but if selec-
 tion is weak, R should be almost independent of allele

 frequency. In practice, f, and f, are calculated recur-
 sively, assuming the population is at equilibrium. This
 is how we shall calculate R.

 Calculation of R

 Now we focus attention on the "haystack" life cycle
 described at the beginning, and let x and y be random
 individuals of the same generation in the same group.
 The coefficients of consanguinity and inbreeding will
 change with each generation, so we will index them
 with the generation number. Thus, we let fo be the
 inbreeding coefficient of the founding generation and
 let go be the coefficient of consanguinity between the
 foundress and her mate (we assume that she is singly
 mated); for each t >- 1, we let ft be the inbreeding
 coefficient and let gt be the coefficient of consanguinity
 between two different individuals of the same group
 in generation t. For altruism in the dispersal generation,
 we will have, from (3),

 R 2g * (4)

 Under the assumption of random mating in the group,
 the values off and gt can be recursively calculated
 from the formulas

 1>1 =g

 1 Nt- I
 gt+ = (1 +f) + (5)

 2Nt Nt

 (Crow and Kimura, 1970 p. 102), where Nt is the ef-
 fective size of generation t in the group (Crow and
 Kimura, 1970 p. 103). These formulas are valid for all
 t - 0 provided we use No = 2. By solving these recur-
 sively we can find eachf and gt in terms of the starting
 values fo and go.

 It remains to calculate fo and go, and these will, of
 course, depend on the past history of the population.
 The usual thing to do is to suppose that the population
 is in equilibrium, that is, the values off and g do not
 change from one cycle to the next. Using the fact that
 the dispersal generation (generation G) of one cycle is
 the founding generation of the next, we find the equi-
 librium equations to be

 fo =fG

 90= mgG, (6)

 noting that the foundress has a probability m of choos-
 ing her mate from her dispersal group. This gives us a
 set of two equations, which can be solved for fo and
 go. Finally, having foundfo and go, we can findfG and
 gG from (6).

 As examples, we do the calculations for G = 1 and
 G = 2. When G = 1, the dispersal generation is the sib
 generation, and we have a standard model for discrete,
 nonoverlapping generations with partial sib-mating. The
 equilibrium calculation gives us

 fo= f = m
 4 - 3m
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 m

 go = mg = 4 - 3m' (7)

 and, for altruism in the dispersal generation (which is
 sib-altruism), (4) gives us

 2-rn' (8)

 a standard result for sib-altruism under partial sib-
 mating (Uyenoyama, 1984 eq. 10). If m = 0, there is
 no inbreeding, and we get the classical result, R = 1/2.

 For G = 2 we get

 2N+ m

 = 6N - 4mN + m

 90 = M92 m(2N + 1) 9 o g2 =6N-4mN + m (9)

 where N = N1 is the size of the sib generation. For
 altruism in the dispersal generation, we get

 2N + 1

 4N - 2mN + m(

 If m = 0 this equals (2N + 1)/4N, which is slightly less
 than two. The effect of the extra generation in the group
 is to increase the advantage of altruism in the dispersal
 generation.

 In both (8) and (10), R increases with m. This cer-
 tainly makes sense; larger m means more inbreeding
 and higher relatedness between members of the same
 group. In the extreme case of m = 1, all mating takes
 place before dispersal, and both the above equations
 give R = 1. It is not hard to argue that this will happen
 for all G. If there is no population-wide mating, the
 only equilibrium isfo = go = 1, and any two individuals
 in the same group are genetically identical.

 We now compare these results with Wilson's (1987)
 simulations, though it is important to note that his
 model differs from ours in three different aspects. First
 of all, as we have mentioned, Wilson (1987) assumed
 the altruistic allele was dominant (h = 1), whereas we
 assume no dominance (h = 1/2). Second, Wilson (1987)
 used nonzero b and c (of course), whereas our calcu-
 lations of R assume b = c = 0. Third, although Wilson
 (1987) had many generations in the group, he did not
 build in any change in gene frequency due to sampling
 error after generation 2. This is a somewhat artificial
 situation, but it would seem that if the variance in gene
 frequency between stacks does not change, then neither
 should f and g, and the effect of the extra generations
 on the value of R should be minor. It is perhaps not
 unreasonable then to compare our results for G = 2 to
 his version 6 (Wilson, 1987 fig. 2d), with N equal to
 his clutch size which he took to be C = 5. Setting N =
 5 and m = 0 in (10), we get R = 11/20 0.55, and so
 the threshold value of b/c is approximately 1.8; Wil-
 son's graph shows a rapid increase in the equilibrium
 frequency of A at just about this value (Wilson, 1987
 fig. 2d [m = 0]). Setting N = 5 and m = 0.5 in (10),
 we get R = 22/31 _ 0.71, giving a threshold b/c of 1.4,
 which also agrees well with Wilson's graph.

 DISCUSSION

 What we have called a group is a colony, founded
 by a single mated female and existing for a sequence
 of G nonoverlapping random-mating generations with

 effective size N, in generation t. We have supposed that
 generation G females mate at random in the group with
 probability m and then disperse to found the groups
 for the next cycle, the unmated females mating at ran-
 dom in the whole population.

 For any particular neutral locus, the foundress and
 her mate contribute four alleles to the group, and in
 each generation every individual possesses two copies
 from this set of four. As each generation is formed, the
 new allele pool is obtained by sampling at random from
 the old. Sampling error will cause the four original
 alleles to be unequally represented in the group. In fact,
 the distribution of these four alleles will tend to become
 lopsided with one or two, (and ultimately just one)
 allele remaining. This process of "genetic drift" will
 proceed more quickly when the effective group sizes

 N, are small, and will proceed farther for greater G.
 The effect of this will be to increase the size of the

 genetic identity coefficients fly and f, of the dispersal
 generation, and these are our gG and fG

 There are two general questions one might ask: 1)
 how does the selective advantage of altruism change
 over the life of the group, that is, is altruism more
 likely to occur in a young or in a mature group? and
 2) how does this advantage in a fixed (say the dispersal)
 generation, depend on the important group parameters
 G and N,. The first question is partly answered by the
 above discussion. As t increases, so, on the whole, do
 the coefficients f and g, and altruistic genes are more
 likely to find themselves in the company of other al-
 truistic genes and are more likely to flourish. But the
 situation is complicated by the fact that, at different
 times, b and c may translate differently into contri-
 butions to the next cycle.

 To avoid this problem, we have restricted attention
 to altruism in the dispersal generation, and so it is the
 second question that our model really addresses, though
 even here we run into some mathematical difficulties.
 Certainly our intuition tells us that as the number G
 of generations in the life of the group increases, so
 should the equilibrium values offG and gG, and this is
 borne out by our results for G = 1 and G = 2. But a
 general analytic result is not easy to obtain, mainly
 because the recursion formulas (5) cannot be solved in
 any simple way, and we leave it as an open problem.
 It appears to be also true that smaller group sizes (Ne)
 will result in higher equilibrium values for fG and g,
 and, therefore, probably a higher R, but this is also
 hard to show.

 As a check on our intuition, we have calculated some

 equilibrium values of fG and g, for large values of G
 under two scenarios: constant group size (N, = C for
 all t - 1) and exponentially growing group size (N, =
 2(C/2)' for all t), assuming no mating before dispersal
 (m = 0).

 For the case of constant group size, the equilibrium

 values of fG and g, increase to 1 as G increases, and
 so R increases to 1. For C = 20, the values of R for
 G= 1, 10, 20, 40, and 80 are 0.50, 0.66, 0.77, 0.88,
 and 0.96, respectively. For C = 50, the same values
 are 0.50, 0.58, 0.64, 0.74, and 0.85. When the group
 is allowed to grow exponentially, the equilibrium val-
 ues of fG and gG appear to be independent of G for
 reasonably large G. For C = 6, R stays close to 0.56
 for all G between 30 and 50. For C = 10, R is close to
 0.54 for the same values of G.
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 It is interesting to compare our results to Maynard
 Smith's (1964) original haystack paper. In his model,
 selection is strong (b and c are large), and the number
 ofgenerations G in the group is large. These parameters
 are large enough that any group whose founders possess
 at least one nonaltruistic allele, will, by generation G,
 have lost all altruistic alleles, due to the combined
 forces of drift and selection. In this case, he showed
 that the selective advantage of altruism was highly fre-
 quency-dependent and, if the probability m of within-
 group mating was fairly low, selection could only favor
 altruism if it had a two-fold advantage and was the
 common allele in the population. If the allele for al-
 truism was rare, it could never be favored unless m
 were close to one. Thus, our numerical calculations for
 constant group size, reported above, which had R in-
 creasing nearly to one as G increased to 80, could only
 be expected to reflect the action of selection [in Equa-
 tion (1)] if b and c were extremely small, so that the
 process of drift has far more influence on the change
 in genetic composition of the groups than does selec-
 tion.

 Wilson's ( 1987) simulations also show a small amount
 of frequency dependence. His graphs of ESS (evolu-
 tionarily stable strategy) allele frequency against b/c
 show stable polymorphisms for small b/c intervals. The
 difference between these results and our frequency-in-
 dependent values of R can be due to any (and probably
 to all) of the three ways in which his model differs from
 ours: nonzero selection instead of neutral alleles, dom-
 inance instead of no dominance, and his accounting of
 genetic drift only at the beginning of the life of the
 group.

 ACKNOWLEDGMENTS

 We are grateful to J. Seger for a number of helpful
 comments on the manuscript. This work was partially
 supported by grants from the Natural Sciences and
 Engineering Research Council of Canada, and from the
 National Science Foundation (BSR 8320457).

 LITERATURE CITED

 CHARLESWORTH, B. 1980. Models of kin selection,

 pp. 11-26. In H. Markl (ed.), Evolution of Social
 Behaviour: Hypotheses and Empirical Tests. Verlag
 Chemie, Weinheim, W. Ger.

 CROW, J. F., AND M. KIMURA. 1970. An Introduction

 to Population Genetics Theory. Harper and Row,
 N.Y.

 CROZIER, R. H. 1970. Coefficients of relationship and
 the identity of genes by descent in the hymenoptera.
 Amer. Natur. 104:216-217.

 GRAFEN, A. 1984. Natural selection, kin selection,
 and group selection, pp. 62-84. In J. R. Krebs and
 N. B. Davies (eds.), Behavioural Ecology. Sinauer,

 Sunderland, MA.
 1985. A geometric view of relatedness. Ox-

 ford Surv. Evol. Biol. 2:28-89.
 HAMILTON, W. D. 1964a. The genetical evolution of

 social behaviour, I. J. Theoret. Biol. 7:1-16.

 1964b. The genetical evolution of social be-
 haviour, II. J. Theoret. Biol. 7:17-52.

 1972. Altruism and related phenomena,
 mainly in social insects. Ann. Rev. Ecol. Syst. 3:
 192-232.

 JACQUARD, A. 1974. The Genetic Structure of Pop-
 ulations. [D. Charlesworth and B. Charlesworth
 (transl.)]. Springer-Verlag, N.Y.

 MAYNARD SMITH, J. 1964. Group selection and kin
 selection. Nature 201:1145-1147.

 MICHOD, R. E., AND W. D. HAMILTON. 1980. Coef-

 ficients of relatedness in sociobiology. Nature 288:
 694-697.

 PAMILO, P., AND R. H. CROZIER. 1982. Measuring
 genetic relatedness in natural populations: Meth-
 odology. Theoret. Popul. Biol. 21:171-193.

 PRICE, G. R. 1970. Selection and covariance. Nature
 227:520-521.

 SEGER, J. 1981. Kinship and covariance. J. Theoret.
 Biol. 91:191-213.

 TAYLOR, P. D. 1988. Inclusive fitness models with
 two sexes. Theoret. Popul. Biol. In press.

 UYENOYAMA, M. 1984. Inbreeding and the evolution
 of altruism under kin selection: Effects on related-
 ness and group structure. Evolution 38:778-795.

 WILSON, D. S. 1983. The group selection controversy:
 History and current status. Ann. Rev. Ecol. Syst.
 14:159-187.

 1987. Altruism in Mendelian populations de-
 rived from sibling groups: The haystack model re-
 visited. Evolution 41:1059-1071.

 Corresponding Editor: M. K. Uyenoyama

This content downloaded from 130.15.241.167 on Sat, 10 Sep 2016 02:28:13 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 193
	p. 194
	p. 195
	p. 196

	Issue Table of Contents
	Evolution, Vol. 42, No. 1 (Jan., 1988) pp. 1-216
	Front Matter [pp. ]
	The Role of Phyllotatic Pattern as a "Developmental Constraint" On the Interception of Light by Leaf Surfaces [pp. 1-16]
	Constraints on Reproductive Investment: A Comparison between Aquatic and Terrestrial Snakes [pp. 17-27]
	Ontogenetic Variation in Patterns of Phenotypic Integration in the Laboratory Rat [pp. 28-41]
	Genetic and Maternal Influences on Brain and Body Size in Randombred House Mice [pp. 42-53]
	Quantitative Genetics of Morphological Differentiation in Peromyscus. II. Analysis of Selection and Drift [pp. 54-67]
	Evaluating a Hypothesis about Heterochrony: Larval Life-History Traits and Juvenile Hind-Limb Morphology in Hyla Crucifer [pp. 68-78]
	Responses to Selection among Life-History Traits in a Nonmigratory Population of Milkweed Bugs (Oncopeltus fasciatus) [pp. 79-92]
	Quantitative Genetics, Development and Physiological Adaptation in Host Strains of Fall Armyworm [pp. 93-102]
	Geographic Variation and Heterochrony in Two Species of Cowries (Genus cypraea) [pp. 103-117]
	Variation in Preference and Specificity in Monophagous and Oligophagous Swallowtail Butterflies [pp. 118-128]
	Gene Flow in Ground Beetles (Coleoptera: Carabidae) of Differing Habitat Preference and Flight-Wing Development [pp. 129-137]
	Evolution of Atlantic and Pacific Cod: Loss of Genetic Variation and Gene Expression in Pacific Cod [pp. 138-146]
	Clonal-Diversity Patterns and Breeding-System Variation in Daphnia pulex, asexual-Sexual Complex [pp. 147-159]
	Sex-Investment Ratios and relatedness in the Monogynous Ant Lasius niger (L.) [pp. 160-172]
	Dispersal and Population-Genetic Structure of the Cooperative Spider, Agelena consociata, in West African Rainforest [pp. 173-183]
	Spatial and Temporal Variation in Group Relatedness: Evidence from the Imported Willow Leaf Beetle [pp. 184-192]
	Notes and Comments
	A Mathematical Model for Altruism in Haystacks [pp. 193-196]
	Sexual Selection in a Natural Population of Drosophila melanogaster [pp. 197-199]
	Genetic Component of Morphological Differentiation in Coal Tits Under Competitive Release [pp. 200-203]

	Book Reviews
	Furthering the Maturation of Evolutionary Biology [pp. 204-206]
	Review: untitled [pp. 206-208]
	DNA Evolution [pp. 209-210]

	Back Matter [pp. ]



