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A series of papers, Hamilton & May (1977), Motro (1982, 1983) and Frank (1986) 
have developed and generalized a model of dispersal of offspring to random sites 
in a stable environment. I present an inclusive fitness model for such dispersal 
behaviour, applicable in diploid or haplodiploid populations with dispersal under 
offspring or maternal control. This model provides an illustration of the general 
discussion of inclusive fitness models found in Taylor (1988a, b). In particular, it 
provides a good example of the way in which relatedness coefficients can depend, 
not only on the genetic structure of the population, but on the mechanism of control 
of the behaviour under study. 

1. Introduction 

The dispersal of  offspring from their natal territory is a widespread phenomenon 
in both plants and animals. A not unreasonable view of the evolutionary advantage 
of  such behaviour is the "grass is greener" idea, which says that those offspring 
which disperse must have, on the whole, a better chance of  establishing themselves 
as breeders than if they had stayed at home and competed with their siblings and 
cousins. But just where does the advantage come from? Is it that they might find a 
better or an emptier patch of  ground? For example, consider the following popula- 
tion-wide behaviour. Suppose half  of  every brood disperses, and the remainder stay 
at home. Those that disperse have only a 50% chance of  finding a breeding patch, 
and those that do find such a patch face competit ion that is just as stiff as that faced 
by their siblings who remained at home. Could such behaviour be evolutionarily 
stable? 

One guesses at first that the answer should be no, but a remarkable paper by 
Hamilton & May (1977) showed, with a simple game theoretic argument, that the 
answer could well be yes. This was for an asexual population, but they also obtained 
a similar result for a diploid sexual population. Motro (1982, 1983) extended this 
work with explicit genetic models, and Frank (1986c) obtained the same results 
using Price's (1970) formula for gene frequency change. My purpose is to extend 
Frank's results with an inclusive fitness model and at the same time illustrate a 
general approach developed in Taylor (1988a, b). 

To be more precise, Frank (1986c) considered a diploid model with mating before 
dispersal, and derived the ESS dispersal rate d* as a function of  the cost of  dispersal 
c and the relatedness R between mated females on the same patch. 1 extend his 
work by calculating R for various cases (mating before and after dispersal, diploid 
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and haplodiploid genetics, and maternal and offspring control) and obtain the ESS 
dispersal rate d* in terms of  c and the number N of  breeding Females on each patch. 

For the assistance of  the reader I will summarize the main variables that are used 
in the paper: (Their meanings will be defined more clearly in the text.) 

N number of mated females breeding on a patch 
d or d~ dispersal probability of  individuals (of  sex i) 
6 differential increase in d or d~ 
c cost of dispersal 
k = ( t -  d ) / ( 1 -  de) the probablity that a random female breeding on a patch is 

native 
x an individual chosen at random prior to dispersal 
y a random patchmate of  x of  the same sex 
z the individual controlling the dispersal behaviour of  x 
G,  genotypic value of  x 
H~ phenotypic value of  x 
R = R~_~ relatedness of  y to x from z's point of  view 
f coefficient of  inbreeding 
g coefficient of  consanguinity between offspring born on the same patch. 

L I F E  H I S T O R Y  

I assume an infinite, sexually reproducing population, with diploid or haplodiploid 
genetics, and discrete non-overlapping generations with the following life history. 
Mated females gather on breeding patches, N females to a patch, and have a large 
number of offspring each. There are then two possible dispersal patterns. In dispersal 
after mating, the offspring mate at random on the patch, and then the new mated 
females disperse to a random patch with probability d and remain on their native 
patch with probability 1 - d. Those that disperse incur a cost e. I will interpret c as 
a viability cost and assume that a proportion 1 - c  of  the dispersers survive to find 
another  patch, but a fecundity interpretation is also possible. In dispersal before 
mating, the offspring disperse with possibly sex-dependent probabilities di and cost 
c~, and then mating is at random on each patch amongst the natives and immigrants. 
In either case, the mated females on each patch then compete for the N breeding 
spots and the cycle begins again. 

This life history has also been studied in models of  sex allocation under  local 
mate competition, by Hamilton (1967) with d = 1 and c =0,  by Bulmer (1986) and 
Frank (1986a) with c = 0 ,  and with an inclusive fitness model by Taylor (1988a). 

I N C L U S I V E  FITNESS 

The inclusive fitness method originated with Hamilton (1964, 1970, 1972) and 
has since been studied and refined by many others. Using a dispersal model as an 
example, it proceeds as follows. We look at the population at the moment of  
dispersal, and consider one "mutan t"  individual (suppose it is a female) who has 
a differentially altered dispersal probability of  d + 6. We then calculate her fitness 
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(the number of  offspring projected to the start of  the next cycle) and the fitness of  
each of  her patch mates (which may have been altered by her own mutant behaviour).  
Her inclusive fitness increment A W is her own fitness change plus the sum of  the 
fitness changes of each of  her neighbours, each of  these weighted by the coefficient 
of relatedness of  that neighbour to the mutant individual. (For  an example see 
equation (7) below.) If some of  these neighbours are of  different sex, it may also 
be necessary to weight their fitness changes with a relative reproductive value. If 
the inclusive fitness increment is positive, selection should favour a change in 
behaviour from d to d + 8. The equilibrium value of  d is the one which makes this 
increment zero. Thus, if the number  of  offspring is large, at equilibrium, an individual 
who decides to disperse instead of  remaining at home will experience no change 
in inclusive fitness. 

For the inclusive fitness approach to provide the same condition as an exact 
genetic model, we need an assumption about  the relationship between phenotype 
and genotype. Let the dispersal probability of  an individual x be d + H~6 where Hx 
is called the phenotypic value of  x. Suppose the fitness of  any individual depends, 
to first order  in 6, linearly on both her own phenotype and on the phenotype of a 
random patchmate y (or, if you like, on the average phenotype of  her patchmates).  
Now we relate phenotype to genotype. Suppose dispersal behaviour is controlled 
at a single locus at which there are two alleles, a "mutan t"  allele and a "normal"  
allele, and let the genotypic value Gx of an individual be the frequency of  the mutant 
allele among her gametes. To specify the control of  behaviour is to say how /-/~ 
depends on genotype. In the usual case H,. depends only on Gx, but it can be 
conceptually useful to have H,. depending also on the genotypes of  relatives or 
neighbours of  x. For example, in the case of maternal control of  dispersal, the 
phenotypic value Hx of  an offspring x will depend only on G:, where z is the mother  
o f x .  

Having related H to G, the precise result (Hamilton,  t970, 1975; Charlesworth, 
1980; Seger, 1981; Grafen,  1985; Taylor, 1988a, b) is that, under  fair meiosis 
(Mendelian assortment of  genes into offspring), the inclusive fitness increment A W 
of  a mutant individual x and the change AQ in mutant allele frequency, as given 
by the covariance formula (Price, 1970), have the same sign, to first order  in B, if 
the relatedness coefficient used is 

coy (G,., H , )  
R = R~.: , . -  (1) 

cov ((3.,-, H , )  

provided the denominator  of  R is positive. Michod and Hamilton (1980) compare 
this formulation of the coefficient with a number of others that have appeared in 
the literature. 

C A L C U L A T I O N  O F  R 

In practice, R is only easy to calculate when Hx depends linearly on genotypic 
value, either of  x herself (this is the standard case of  additive gene action), or of  
another  "cont ro l"  individual z who determines the behaviour of  x. In the latter 
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case, H~ = G_ and R is a quotient of  covariances of  genotypic values: 

coy (G,., G=) 
R = R ~ _ , -  (2) 

cov (G,., G_.) 

which can be regarded as "the relatedness of  y to x from the point of  view of z". 
If  the alleles are neutral (which means 6 = 0), then 

R~_,. = f": (3) 
• f,.. 

(Michod & Hamilton,  1980) which is the coefficient proposed by Hamil ton (1972). 
Here f u  is the coefficient ofconsanguini O, between I and J (Crow & Kimura,  1970), 
and is defined as the probabil i ty that random alleles from I and J, at the locus of  
control, are identical by descent. Of  course, in practice, the alleles will not be neutral,  
but if selection is weak, this should very nearly hold. (See Taylor  (1988b) for a 
precise theorem along these lines.) I f  x is diploid and controls her own behaviour  
so that z =x ,  (3) becomes 

R = 2/,..,. (4) 
1 +f,- 

which is actually the form given by Hamil ton (1972). Here, f~ is the inbreeding 
coefficient o f  x. 

Formula (3) provides a very intuitive expression of  the relatedness of  y to x. It 
displays R as an assessment by z of  the relative quality of  the gametes of  y and x, 
where quality is measured by similarity to the gametes of  z herself. The notation 
for R is not quite standard,  and the superscript  z is my own. There may be a better 
way of bringing the control into the notation, but I do think that for many  applicat ions 
of  unusual control, it is important  to have a notation which displays all three 
individuals. 

In this paper  we will encounter  two different examples  of  (3). In one (dispersal 
before mating), x and y will be unmated offspring born on the same patch, and z 
will be either the mother  of  x (maternal control) or x herself  (offspring control). 
In the other (dispersal after mating),  x and y will be mated females born on the 
same patch and z will be the "'female par t"  o f  x. The point here is that G~ and G~. 
in (1) measure contribution to offspring, and so if, at the t ime of  the dispersal, x 
and y are mated females, the correct G must be the average genotypic  value of  the 
mated pair; on the other hand, if the female controls her own behaviour,  /4,. is 
determined only by her own genotype. An example  of  the calculation is given in 
(13) below. 

2. The Inclusive Fitness Condition 

DISPERSAL AFTER MATING 

We suppose  that mating is at random on each patch, and then each mated female 
disperses with probabil i ty d, incurring a cost c. After the dispersal phase,  the mated 
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females on each patch (natives and immigrants)  compete  for the N mating spots. 
Denote by p the probabil i ty that each of these females will be a "winner" ,  that is, 
will breed on the patch, and let k denote the probabil i ty that each breeding female 
is native to that patch. Since a proport ion d of  all females disperse, and are replaced 
by 1 - c  as many immigrants,  we have that 

1 - d  1 - d  
k -  (t - d ) + ( 1 - c ) d -  1 - d c "  (5) 

Now fasten attention on a patch with one mutant  mated female with dispersal 
probabil i ty d + 6. With probabil i ty 6 she has the fitness (probabili ty of  breeding) 
( 1 - c)p of  a dispersing female instead of  the fitness p of  a non-disperser.  Thus the 
change in fitness due to her mutant  behaviour  is 6cp. Now look at the effect of  her 
behaviour  on the fitness of  her patchmates.  With probabil i ty 6 an extra p of  these 
females will breed. Since each such female has probabil i ty k of  being native, the 
fitness increment of  the original female through relatives is 6pRk where R is the 
relatedness between two mated females born on the same patch. Her inclusive fitness 
increment is then 

h W = 6 p ( - c +  Rk)  (6) 

and the condit ion for selection to favour  an increase in d is 

Rk > c. (7) 

Condit ion (6) can be interpreted as if dispersal were an altruistic act. It has the 
form A W = 6 ( R B - C )  where C = c p  is the cost of  dispersal (in terms of  lost 
probabil i ty of  breeding) and B = kp is the benefit to others born on the same patch. 
In the usual way (Hamil ton ,  1964, 1972) this benefit is weighted by the average 
relatedness of  these others to the actor. 

Condi t ion (7) can be written as 

R - c  
d < R _ c 2  (8) 

the form obtained by Frank (1986c). If  N = 1, then at equilibrium R turns out to 
be 1 and we get the ESS dispersal probabil i ty to be 

1 
d* - (9) 

l + c  

obtained by Hamil ton & May (1977). 

D I S P E R S A L  B E F O R E  M A T I N G  

Now I fasten attention upon the offspring and suppose that each sex has its own 
dispersal rate di. Since the dispersal behaviour  of  members  of  one sex will not affect 
the fitness of  members  of  the other, I can treat the sexes separately. 
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After dispersal and immigration, mating takes place at random on each patch, 
and I let p and k be defined as above. The inclusive fitness increment of  a mutant  
female is calculated exactly as above, and is given by (6) where R is the relatedness 
of  one Female offspring to another  born on the same patch. The same argument  
holds for male offspring, and so the condition for d, to increase under  selection is, 
from (7), 

Riki > c; (10) 

where the parameters  are sex-specific. 
It is interesting to ask what are the factors which might make the di different. 

The first factor is certainly different costs of  dispersal: if c~ is different from c2 then 
we certainly expect different rates of  dispersal, and this would seem to be the main 
factor in most observed cases of  sex-dependent  dispersal rates. I propose  not to 
pursue this question of  differential costs, and for the rest of  this paper  will suppose 
that c, = c2 = c. In this case, if the assumptions of  the model are met, the only factor 
that could produce different ESS dispersal rates is different relatednesses R; for the 
two sexes. Since this does not happen under  diploidy, ! conclude that in diploid 
populations,  if the dispersal costs are the same for both sexes, we expect identical 
dispersal rates. But in haplodiploid populat ions there may well be differences in 
dispersal patterns due only to factors of  relatedness. Since k decreases with d, we 
see that the effect of  higher relatedness will be a higher rate of  dispersal. 

3. Calculation of R 

To calculate the relatedness coefficients R, I assume semi-dominant  gene action, 
and use (3), calculating the f u  by assuming they are unchanged from one cycle to 
the next (the populat ion is at equilibrium), and solving the resulting recursion 
equations. I do the calculations separately for diploidy and haplodiploidy,  and, as 
before, 1 treat the cases of  dispersal after mating, and dispersal before mating. In 
the case of  dispersal after mating, the individuals are mated females who control 
their own dispersal, so the genotypic value G will be the average of that of  the male 
and female genotypes,  whereas the phenotypic  value will be the female genotypic 
value (Taylor, 1988a). In the case of  dispersal before mating, there will be two cases 
depending on whether dispersal of  the offspring is controlled by the offspring 
themselves or by their mother.  I also remark that our  expression for R wilt generally 
depend on d, and so (7) and (8) will be conditions to be solved for d. 

There is one easy result, worth mentioning at the beginning, and that is if  there 
is no cost to dispersal (c =0) ,  then dispersal rates must be 1 in all cases considered 
here. Indeed, if d or any d~ were less than 1, then the corresponding relatedness R 
or R~ would exceed zero, and (7) or (10) would always hold, causing d or d; to 
increase. 

D I P L O I D - - D I S P E R S A L  A F F E R  M A T I N G  

1 let f denote the inbreeding coefficient of the offspring (the probability that the 
two alleles at the locus in question are identical by descent) and g the coefficient 
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of consanguinity (see (3)) between two offspring born on the same patch. The values 
of  these coefficients for the next generation can be expressed in terms of  those for 
this generation by the equations f ' = g  and 

1 [ l + f + 2 g ] + N - 1  k ~ 
g ' = N  4 - N - [  -g]" ( l l )  

The two terms on the right correspond to the cases in which the offspring are sibs 
and not sibs. For this equation to hold, we must assume either that the number  of  
offspring of  each parent is large or, if not, that the number  of  offspring of each 
female is independent  of  the numbers of  offspring of  the other females on the patch. 
These two equations are solved by setting f '  = f  and g '  = g, and we get 

1 
f = g - 4 N _  3 _ 4 (  N _  l )k  2. (12) 

Now I calculate the relatedness R between two mated females on the same patch. 
1 use (3) where x is a mated female, z is her female part, and y is another  mated 
female on the same patch. The genotypic values G~ and Gy are averages of  the 
male and female values. Then ~... = g and f,.- = (1 + f +  2g)/4,  and so the relatedness 
between two mated females, born on the same patch, is 

4g 1 
R l + f + 2 g  N - ( N - 1 ) k  2 (13) 

obtained by Frank (1986a) for the case c = 0 .  
When we substitute this into (7) we get that selection will favour an increase in 

d whenever d > d* where 

H + I - 2 N c  
d* = (14) 

H +  1 - 2 N c  2 

with 

H = ~/I + 4 N (  N - 1 ) c  2. 

This is the formula for the ESS dispersal probabil i ty of  mated females in terms of  
the size N of  a breeding patch and the cost c of  dispersal. It is graphed in Fig. 1. 
I f c = 0, it gives us complete dispersal d* = 1, and if c = 1 we get d* = 1/2 N. (Actually, 
at c = 1, H = 2 N  - 1, and d* = 0/0, so one must take a limit to resolve the expression.) 
It is interesting that the model predicts some dispersal even when mortali ty is nearly 
certain. At c = 1, of  course, there are no immigrants entering a colony, and the 
equilibrium value of  the coefficients f, g, and R is unity. 

I f  each breeding patch is occupied by a single female, which is the case studied 
by Hamil ton & May (1977) and Motro (1982, 1983), we have N =  1, and d * =  
1 / ( l + c )  which is the result obtained by Hamil ton & May (1977) for a haploid 
populat ion.  
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FtG. 1, ESS dispersal rate d* of mated females against  the cost c of  dispersal for different values of  
patch size N, given by equation (14). This applies for both diploid and haplodiploid genetics. These 
graphs  also obtain in a diploid populat ion for dispersal of  both sexes before mat ing with maternal  
control and offspring control, except under  offspring control, the N values in the diagram should be 
halved. For example (for diploid, dispersal before mating) the above curve labelled N = 2, gives the 
N = 2 result for maternal control and  the N = t result for offspring control. 

D I P L O I D - - D I S P E R S A L  BEFORE M A T I N G  

Since I am assuming the same costs for both sexes, and under diploidy the genetics 
are symmetric,  we will have d, = d2 = d, and hence k2 = k_~ = k, and i f f  and g have 
their previous meanings, the recursion equations are f '  = k2g and 

1 II+f+2k2gl+N-1 
g'=--N 4 - - - ~  [k2g] (15) 

which solve to give 

f 1 
g = k z -  4 N - ( 4 N -  1)k 2' (16) 

Maternal control 
The phenotype of an offspring is determined by the genotype of  her mother,  and 

so we take z to be the mother  of  x in (3). The coefficient of  consanguinity between 
an offspring and the mother  of  a patch mate, .~.-, is the same as that between an 
offspring and the father of  a patch mate, and so equals g, the coefficient between 
two offspring. The coefficient between an offspring and her own mother,  f~_., is easily 
seen to be (l+f+2k'-g)/4, and so from (3), 

4g 4g 1 
(17) R=l+f+2k2g l + 3 f  N - ( N - 1 ) k  2 
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which is the same as (13) for dispersal after mating. Thus the ESS value of  d*, for 
both male and female offspring, is given by (14). A mother wants the same dispersal 
pattern for her offspring before they have mated as the offspring would want for 
themselves if dispersal followed mating. 

Offspring control 

The phenotype of an offspring is controlled by its own genotype, so z = x in (3) 
and the relatedness between offspring born on the same patch is then 

2g 1 
R = 1 +---f- 2N - (2N - 1)k 2 (18) 

which is identical to (13) with N replaced by 2N. Thus the ESS value of  d*, for 
both male and female offspring, is given by (14) with N replaced by 2N. A female 
whose dispersal phase precedes mating will be less likely to disperse than one whose 
dispersal phase follows mating. In fact she wilt behave the same as a post-mating- 
dispersal female on a patch twice the size. 

A comparison of  offspring and maternal control allows us to see the effect of  
parent-offspring conflict over dispersal rates of  offspring. In both cases the condition 
is (9), Rk > c, but R, the relatedness between patchmates, is higher under  maternal 
control than under offspring control. Indeed, using (3), the numerator ~.~ is the 
same for both cases (and equal to g) but the denominator  f , .  is lower for maternal 
control, being (1 + 3 f ) / 4  as opposed to (1 + f ) / 2 .  Thus the mother  wants a higher 
dispersal rate than the offspring; in fact the offspring rate coincides with the maternal 
rate for a ptach twice the size. 

H A P L O D I P L O I D Y - - D I S P E R S A L  AFTER MATING 

Now let g~j be the coefficient of  consanguinity between two individuals of  sex i 
and sex j, born on the same patch, and let f be the inbreeding coefficient of  a female. 
Then, at equilibrium, f =  g~2 and 

1 l + f + l + g , 2 1 + N - I  k .[g , ,+2g32+g22] 
g l l = -~ 8 4 2 ..1 N 4 

1 N - 1  k-" gll  gl2 +---ff- 

g2-~=-N + N k-gll .  

These equations are not hard to solve, though I will not give the solution explicitly. 
To calculate the relatedness between mated females, the genotypic value, which is 
an average of the female and male values, must now, because of the genetic 
asymmetry between females and males, be a weighted average, where the female 
contribution gets a relative weight of 2 (Hamilton, 1972; PamiIo & Crozier, 1982; 
Taylor, 1988a). This gives us 

2gll + gl-~ 
n - (19) 

1 + . f +  g~2 
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which, unexpectedly enough, works out to be the same as (13) above. Thus the 
value of  d* for haplodiploidy turns out to be the same as that for diploidy, at least 
for dispersal of  mated females, and is given by (14). 

H A P L O D I P L O I D Y - - D I S P E R S A L  B E F O R E  M A T I N G  

We are assuming that the costs ci are identical, both equal to c, but the relatednesses 
R, may not be the same, and so we must allow for the possibility of  different dispersal 
rates di for each sex, and thus the k, may be different. The recursion relations are 

g " = # L T  4 T J  N 4 

gl_~ - ~  

g_~_-=~ T g , , .  

where ~,j = k,kjg~,, and f the inbreeding coefficient of  a female, equals k~ kzgl~_. When 
solved for go in terms of  N and the ki, the expressions are quite complicated.  

Maternal control 

The phenotype of an offspring is determined by its mother 's  genotype. Suppose 
I am a female offspring. The coefficient f~.: between my mother  and another  random 
female offspring is the same as the coefficient between my brother  and another  
female offspring, which is gt_~. And the coefficient between me and my mother  is 
(1 +./+2k~k2g~2)/4, hence the relatedness between two female offspring born on 
the same patch is 

4gz~ 
Ri = (20) 

1 +f+2ktk,_g12" 

Similarly, the coefficient between a male offspring and the mother  of  another  male 
offspring is the same as the coefficient between two male offspring [a random gamete 
from a mother  is the same as a random gamete from a random son], and this is 
gz,. Also the coefficient between a male and his own mother  is (1 + f ) / 2 .  Hence the 
relatedness between two males born on the same patch is 

2g22 
R , -  (21) 

l + f "  

The inclusive fitness conditions (10) give us two inequalities of  quite a high order 
in the two unknowns k, and appear  to be analytically intractible. I have generated 
some solutions by computer ,  and these are graphed in Fig. 2. Females are seen to 
have a higher dispersal rate than males, and we can conclude from (10), since k 
decreases with d, that female patchmates are more closely related than male patch- 
mates. It is notable that for N _> 2, males should not disperse if the cost c is sufficiently 
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FIG. 2. ESS dispersal rates d* for female and male offspring (before mating) under  maternal control, 
against cost c of  dispersal, for different patch sizes N, in a haplodiploid population.  The curves were 
obtained by computer  calculation from equation (10), with R values given by (20) and (21J. For N->2 ,  
the c = 1 intercepts are given by (A2). 

large. The special case N = 1 turns out to be tractible: indeed, both R~ turn out to 
be 1 (from a mother ' s  point o f  view all her daughters  are equivalent and so are her 
sons), and (10) solves to give d~ = 1/(1 + c) for both i, the same as in the diploid case. 

Offspring control 

The phenotype  of  a female is determined by her own genotype,  and the relatedness 
between two females born on the same patch is 

2gll 
R t  = (22) 

l + f  

and similarly for the males, 

R~ = g2_~. ( 2 3 )  

The inclusive fitness condition (10) seems again to be analytically intractible, and 
some computer-generated solutions are graphed in Fig. 3. It is now the case that 
for all N, if  the dispersal cost c is high enough, males will not disperse. Unlike the 
case of  maternal  control, I cannot  obtain an explicit solution for the case N = 1, 
but I can calculate the transitional value of  c above which males will not disperse: 
it is c = (3 + v~ ) /6  which is approximately 0.79, as illustrated in Fig. 3. 

With the intractibility of  this case, one looks for special cases that can be solved, 
and the case c = 1, of  certain mortality of  migrants, is one of these. The mathematical  
method used is also quite interesting and is presented in the appendix.  
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F1G. 3. ESS dispersal rates d* for female and male offspring (before mating) under offspring control, 
against cost c of dispersal, for different patch sizes, N, in a haplodiploid population. The curves were 
obtained by computer calculation from equation (10), with R values given by (22) and (23). For all N, 
the c= 1 intercepts are given by (A3). 

4. Discussion 

In the population modeled here, at equilibrium, an individual who chooses to 
disperse will die with probability c and otherwise will establish herself on a patch 
on which her expected reproductive success is identical to the one she emigrated 
from. Why, if c is positive, would she want to disperse'? The "'inclusive fitness" way 
to answer the question is to observe that by dispersing she improves the reproductive 
success of all individuals of the same sex that she leaves behind, and if some of  
these are related to her, then she will improve the fitness of  relatives, and this may 
compensate for her own fitness loss. It is this "'altruistic" aspect of  dispersal 
behaviour which makes inclusive fitness a particularly appropriate modeling 
approach. Not only do the equations of the model (7) and (10) have a simple form, 
but their interpretation in each instance helps us to understand the exact nature of  
the selective forces which encourage dispersal behaviour. 

The model can be modified to fit other assumptions on genetic and mating patterns. 
Two interesting examples are found in the diploid models of  Hamilton & May 
(1977) and Motro (1982, 1983). The first of  these is identical to my dispersal-before- 
mating, offspring-control model except the male offspring are required to disperse 
completely, so that in these models there is no inbreeding. The condition for female 
dispersal rate d~ is still given by (10), except R, is different from (18). In fact, in 
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this case, 

2 
R1 = 4 N _ ( N _  1)k 2" (24) 

If we put this into (10), we get the solution of  Hamilton & May (1977) for the case 
N = 1, considered by them: 

1 - 2 c  
d* = for c < 1/2, (25) 

1 - 2 c  2 

otherwise d* = 0. 
In Motro's  (1983) model, the breeding individuals are diploid hermaphrodites 

whose male gametes disperse completely, and the problem is to find the dispersal 
rate d of  the fertilized "seeds".  This can be seen to be formally equivalent to the 
model of  Hamilton & May (1977), except that the relatedness of  two seeds on the 
same patch is only half  of  the value in (24). The reason for the difference is that 
two seeds with the same mother had the same father in the first case, but will have 
different fathers in the second. The solution for N -- 1 is 

1 - 4 c  
d * = - -  for c <  1/4, (26) 

1 - 4 c  2 

as obtained by Motro (1983). Motro was under  the impression that since his answer 
was different from that of  Hamilton & May, an inclusive fitness argument would 
not work for his model, but we now see that what is required is to use the correct 
relatedness. This has been pointed out by Frank (1986c). 

Comparing these outbred models with the diploid models of  this paper, we see 
that one of  the effects of  outbreeding is to prohibit dispersal when the cost is high, 
whereas the inbred models show some positive probability of  dispersal no matter 
how large N is or how high the cost. (However,  as Figs 2 and 3 show, this is not 
the case for male dispersal under haplodiploidy with dispersal before mating.) 

The value of  this paper is not so much that it calculates optimal dispersal rates 
for particular models, for the models are biologically quite unrealistic, but that it 
demonstrates that inclusive fitness arguments can provide a simple and unified tool 
for analyzing a collection of  related genetical models. The collection of  models 
studied here all use the same basic ESS condition (7), but the coefficient R of  
relatedness between patchmates will change as the assumptions of  the model 
concerning control and genetics are varied. 

It is important  to have a notation for R which reflects these complexities, and I 
have suggested an extension of  the usual notation to include the control individual. 
The notation Rx_y of  (1) is quite standard and is usually called to the relatedness 
of y to x (rather than x to y) to bring the terminology into line with that for 
regression, for when H,  = G,  it is the coefficient of regression of  G,. on G~. In 
general, it provides the weighting given to G,. relative to Gx by the individual (or 
"mechanism")  controlling the behaviour of  x. But when this notation is used it is 
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important  to keep in mind that the mechanism of  control must be specified before 
the coefficient is determined. In practice, this means specifying the way in which 
the phenotype of x, H~, depends on the genotype of  one or more individuals. In 
case H~ is a function of  G: for a single individual z, I suggest that the notation 
R] . : ,  be used, and in case this function is affine (which means additivity of  gene 
action in z), R is given by (2). I have called this the relatedness of  y to x from the 
point of  view of  z, and in the absence of  selection (Michod & Hamil ton,  1980) it 
can be calculated using coefficients of  consanguinity as in (3). 

The best way to interpret (3) is with a "gene 's  eye view". A random gene in z, is 
trying to decide whether to make x adopt  a certain behaviour  which will change 
the fitness of  both x and y, and to do this, the gene must assess the overall effect 
of  this behaviour  on the propagat ion of  "'identical by descent"  copies of  itself. It 
calculates the probabilities f,~ and f~: that such copies will appear  in gametes of  y 
and x, respectively, and it weights the fitness changes of  y and x, respectively, with 
these probabilities, which is the same as saying that it weights y relative to x with 
their quotient R~,_;.. 

As a striking example of  the effect of  z on the relatedness coefficient R.~_,. of  y 
to x, observe that the relatedness of  sibs of  the same sex under maternal  control (x 
and y are sibs and z is their mother)  is always 1 (clear from (3)), whereas under  
control o f  one of  the sibs it is typically less than one and under  outbreeding is in 
fact one half. It is really this fact that accounts for the higher relatedness of  
patchmates  under maternal rather than offspring control and hence produces higher 
rates of  dispersal. 

! am grateful for the help of Steve Frank who did a very careful job of refereeing the paper 
and made many suggestions which improved and clarified the exposition. His comments 
about relatedness were particularly important. This work was supported by a grant from the 
Natural Sciences and Engineering Research Council of Canada. 
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APPENDIX 

Under  haplodiploidy,  the calculation of  R in the case of  dispersal before mating 
turned out to be intractible. However  the case c = 1 of  certain mortali ty of  migrants 
can be solved. I begin by making a general remark about  this case. When c = 1 there 
may be emigrants, but there are no immigrants,  so each patch is a closed finite 
popula t ion and at equilibrium all alleles in one patch will be identical by descent 
and the value of all relatedness coefficients will be 1. In this case, as long as there 
are enough offspring remaining to colonize the patch, it should not matter  what the 
dispersal rate is, and so we do not expect to have an ESS dispersal rate at c = 1. 
Rather what we should be looking for is the l i m i t i n g  ESS dispersal rate as c 
approaches  1. 

Checking this out mathematical ly,  when c = 1, both k~ are equal to 1, and a glance 
at the recursion equations shows all go to be equal to 1, hence both the relatedness 
coefficients R~ equal 1. So in fact the d~ do not appear  in the inequalities (10) (both 
sides equal 1). To take the limit as c approaches  1, we set c =  1 - e  and use the 
differential approximat ion:  

R ,  = 1 - eR~ c / k ~  = 1 - e ( c / k ~ ) '  

where the prime denotes derivative with respect to c, evaluated at c = 1. I f  we 
calculate ( c / k ~ ) '  and plug into (10) we get that the condition for di to increase is 

d~ 
R~<I l-d," (A1) 

This condition is not quite as simple as it looks, because the R~ depend on both dj. 

In the haplodiploid case, the conditions (A1) can be solved. Under  maternal 
control, we have shown in section 3 that the case N = 1 gives di = 1/(1 + c) for both 
i, as in diploidy, and with c =  1 we get d ,=  1/2. But for N->2 ,  the solution to (A1) 
is 

6 N  - 2  
d l - 6 N 2 + 5 N _ 3  d2=0.  (A2) 
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Asympto t i ca l ly  (for large N ) ,  the diploid  value o f  d~ = 1/2N For both  i, is the average  
o f  d I and  d, in (A2). 

Unde r  of tspr ing control ,  the c = 1 solut ion is 

3 N - 1  
dl 6 N : -  N d ~ = 0  (A3) 

for  all N. Asymptot ica l ly ,  the diploid  value o f  d~ = 1/4N for  both  i, is the average  
o f  d~ and  d_, in (A3). 


