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Summary 

We construct an inclusive fitness model of the relative selective advantage of sibmating and outbreeding 
behaviour, under the assumption that inbred offspring pay a fitness penalty. We are particularly interested 
in the question of whether such inbreeding depression is enough to generate a stable phenotypic 
polymorphism, with both kinds of breeding observed. The model predicts that, under diploidy, such a 
polymorphism is never found, but under haplodiploidy, it exists for a narrow range of parameter values. The 
inclusive fitness argument is technically interesting because care must be taken with reproductive values. We 
also present a corrected version of a one-locus genetic model for sibmating and find that the inclusive fitness 
and genetic models give identical results when selection is weak. 
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Introduction 

Animal populations, especially insects, often exhibit a certain level of sibmating. The principal 
evolutionary advantage of this behaviour must be the increased number of copies of her genes 
that a female will pass to her offspring and this is perhaps principally balanced by the 
disadvantage of producing less viable offspring (inbreeding depression). It seems reasonable to 
conjecture that if the fitness penalty s attached to inbred offspring is small, then sibmating should 
be observed, whereas if this penalty is large, the population should outbreed. But intermediate 
levels of sibmating are often observed and so an obvious question is whether a simple genetic 
model which incorporates the above two factors can predict a stable polymorphism of 
outbreeding and sibmating behaviour for some range of values of inbreeding depression. 
Another question comes from the observation that sibmating is particularly common in 
haplodiploid organisms, in which the cost of inbreeding is paid only by the female offspring. Are 
the conditions for the relative evolutionary advantages of sibmating and outbreeding qualitatively 
different in diploid and haplodiploid populations? 

Building on the work of Feldman and Christiansen (1984), Getz et al. (1992) examined these 
questions using a one-locus genetic model to analyse the invasion dynamics of sibmating and 
outbreeding genes in diploid and haplodiploid populations. In their model they assumed the 
existence of two alleles A and a at a mating behaviour locus such that each of the female 
genotypes AA,  Aa and aa sibmate at frequency O~I<O~2NOL 3 respectively (i.e. the AA genotypes 
have a propensity to outbreed and the aa genotypes to sibmate with respect to the population 
mean). Their diploid and haplodiploid model, which develops dynamic equations for the 
frequencies of the different mating combinations, is incorrectly formulated: it does not account 
for the fact that, although the overall sibmating frequency of aa females is %, the frequency of 
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those mating with aa males may be larger than %, while those mating with A A  males may be 
smaller than a3 (and similarly for the other mating frequencies). Also, they omitted a 
normalization step pertaining to male mating frequencies. 

We have three objectives here. The first is to provide the correct equations for the one-locus 
genetic model and obtain sample numerical results and the second is to construct an inclusive 
fitness model (Hamilton, 1964) for the same problem. We restrict ourselves to the case in which 
there is no mating cost for a male who sibmates in terms of lost opportunities for outbreeding (the 
case p~ = 0 of Getz et al. (1992)). The advantage of the inclusive fitness approach is that it 
provides analytical stability conditions which allow us to construct a simple map of the 
evolutionary forces in a - s phase space (Fig. 1). Our third objective is to compare the results of 
the two models and thereby support a general mathematical result that under the assumptions of 
weak selection and semi-dominant gene action, the one-locus genetic model and the inclusive 
fitness model should obtain identical conditions for the evolutionary advantage of sibmating 
behaviour. We explain this result more fully below. 

Results  

Our models assume an infinite population with non-overlapping generations. We assume that 
females mate only once, with a sib with some probability a and at random among all the males in 
the population with probability 1 - a. In the outbreeding phase, all males compete equally, 
regardless of the level of sibmating (the case ix = 0 of Getz et al. (1992)). Inbred offspring 
(offspring of sibmated parents) survive to breed with relative probability 1 - s  relative to 
outbred offspring. Under  diploidy this applies to both sexes and under haplodiploidy, only to 
female offspring. 

The inclusive fitness analysis is presented in Appendix 1 and the results are displayed 
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Figure 1. Inclusive fitness results under (a) diploidy and (b) haplodiploidy. In regions with an 'up' arrow 
Ws(a ) > Wo(a ) and selection will act to increase a; in regions with a 'down' arrow, Ws(a) < Wo(a ) and 
selection will act to decrease et. The boundary curves are described by the equations (1) diploid, 
2as 2 + 1 - 3s = 0 and (2) haplodiploid, c~2s(1 - 3s 2) + as(7s - 3) + 1 - 3s = 0. Only under haplodiploidy 
do we find intermediate (0 < c~ < 1) values of sibmating which are stable; these correspond to the points on 
the lower arm of the boundary curve. The transitional value s ----- 0.30 mentioned in the text for the 
haplodiploid case is the point at which the boundary curve is vertical and is the value of s which makes the 
discriminant D of the boundary equation vanish: D = s2(7s - 3) 2 - 4s(1 - 3s2)(1 - 3s) = 0. It is shown in 
(b) by a vertical broken line. 
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graphically in Fig. 1. The model  assumes a population-wide level of sibmating ~ and calculates 
the inclusive fitnesses W~(a) and Wo(a ) of sibmating and outbreeding behaviour.  

In the one-locus genetic model ,  females sibmate with genotype-dependent  frequencies % as 
described above. The mating type recursion equations are presented in Appendix 2 and sample 
numerical  results appear  below. They are qualitatively similar to the results of Getz et al. (1992). 

There  is a general result (Taylor,  1989) which gives conditions under which the inclusive fitness 
analysis can predict the results of the one-locus genetic model.  Suppose we have two alleles at a 
single locus, a normal  allele coding for a sibmating probabili ty of a and a mutant  allele coding for 

+ 8 (in the homozygous state). Under  the assumption of weak selection (8 ~ 0) and semi- 
dominance (the heterozygote has sibmating probabili ty a +(8/2)), the normal allele will resist 
invasion (i.e. the mutant  allele will decrease in frequency) when 

Ws(e 0 < Wo(e 0 in the case 8 > 0 

Ws(a ) > Wo(a) in the case 8 < 0 

These are the conditions for the e~-allele to be stable to invasion by ' local '  semi-dominant 
mutants.  

According to this general result, Fig. 1 can be given a genetic interpretation. Under  diploidy, a 
sibmating allele (a  = 1) is stable to invasion when s < 1/2 and an outbreeding allele (e~ = 0) is 
stable when s > 1/3. Thus, in the region 1/3 < s < 1/2, both pure states are stable. Under  
haplodiploidy, a sibmating allele (e~ = 1) is stable when s < 1/3 and an outbreeding allele 
(e~ = 0) is stable when s > 1/3. When s is between 0.30 (approximately) and 1/3 there is another  
stable allele given by the a-value on the lower branch of the boundary curve (Fig. lb) .  Thus, in 
this case, there are two possible stable alleles: one is pure and the other represents a phenotypic 
polymorphism. 

We have verified this genetic interpretation of Fig. 1 with our one-locus model.  For example 
we summarize below the results for the invasion of a rare semi-dominant sibmating allele. 

Diploid 
Inclusive fitness: for et = 0 sibmating invades for s < 1/3. Genetic: for % = 0, ~2 = 0.01, 
% = 0.02 sibmating gene invades for s - 0.333 but not for s -> 0.334. 

Inclusive fitness: for e~ = 0.5 sibmating invades for s < 0.382. Genetic: for % = 0.49, 
% = 0.50, % = 0.51 sibmating gene invades for s -< 0.381 but not s --- 0.382. 

Inclusive fitness: for a = 1 sibmating invades for s < 0.5. Genetic: for % = 0.998, % = 0.999, 
% = 1 sibmating gene invades for s -< 0.499 but not s -> 0.5. (Note that for % = 0.98, % = 0.99 
and % = 1, sibmating gene invades for s -- 0.494 but not s -> 0.495.) 

Haplodiploid 

Inclusive fitness: for e~ = 0 sibmating invades for s < 1/3. Genetic: for a n = 0, % = 0.01, 
% = 0.02, sibmating gene invades for s <- 0.333 but not s >- 0.334. 

Inclusive fitness: for e~ = 0.5 sibmating invades for s < 0.309. Genetic: for % = 0.495, 
a2 = 0.500, a3 = 0.505 sibmating gene invades for s - 0.308 but not s >-- 0.309. 

Inclusive fitness: for a = 1 sibmating invades for s < 1/3. Genetic: for % = 0.998, % = 0.999, 
% = 1 sibmating gene invades for s -< 0.333 but not s -- 0.344. (Note that for ~1 = 0 . 9 8 ,  

% = 0.99 and % = 1, sibmating gene does not invade for s - 0.33.) 

Effect of strength of selection and dominance 
In the two cases a = 1 above,  the parenthetical  remark  indicates an effect of strength of selection 
on invasion dynamics. Further  such results are presented in Table 1. For  invasion of sibmating 
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Table 1. The effect of strength of selection and dominance on invasion dynamics 

Genetic system: Diploid Haplodiploid 

Invasion of Sibmating Open-mating Sibmating Open-mating 
selection strength s < s > s < s > 

~ 0 0.333 0.5 0.333 0.333 
= 0.25 0.343 0.454 0.334 0.313 

8 = 0.5 0.355 0.425 0.334 0.300 
= 0.75 0.368 0.403 0.335 0.291 
= 1.0 0.395 0.386 0.338 0.282 
= 1.0 0.400 0.333 0.414 0.250 

the mating parameters are ~1 = 0, o~ 2 = ~[2 and % = ~, while for the invasion of outbreeding the 
mating parameters are % = 1 - ~, o~ 2 : ] - -  ~ [ 2 ,  and % = 1. These results indicate that 
increasing the strength of selection increases the range of the parameter  s for which a sibmating/ 
outbreeding polymorphism might exist. The results also imply that such polymorphisms are more 
likely in haplodiploid than diploid systems. When selection is weak, dominance has negligible 
effect; for the case ~ ~ 0, the conditions for the invasion of dominant or recessive alleles are 
identical to those of the first row of Table 1. However,  dominance has some effect when coupled 
with strong selection, as illustrated by the last two rows of the table. In the last row (~ ~ 1"), the 
mating parameters are ~1 = 0, oL 2 : 0 and % = 1. 

Discussion 

In all the cases we have checked, when selection is weak and gene action is additive, the inclusive 
fitness model provides exactly the same results as the one-locus model. This result is expected and 
has been discussed and demonstrated in greater or less generality by a number of authors 
(Hamilton, 1964, 1975; Charnov, 1977; Charlesworth, 1980; Seger, 1981; Grafen, 1985; Taylor, 
1989). In spite of our theoretical expectation that the two models will coincide, one still has a 
feeling of awe (and a sigh of relief!) when an analytical formula gives exactly the same results as 
the numerical calculations of an 18 x 18 matrix. 

An important difference between the two genetic systems is that, under diploidy, offspring of 
both sexes bear the cost of sibmating, whereas under haplodiploidy, this cost is borne only by the 
females. We might expect that this would make sibmating behaviour rather more common in 
haplodiploid populations (and this is observed in nature),  but our results (Fig.l) offer no 
mathematical evidence for this. A general discussion of other factors which might account for the 
observed difference in sibmating levels in the two genetic systems is found in Getz et al. (1992). 

From a gene invasion dynamics point of view, our results show no qualitative difference 
between the two genetic systems: when the inbreeding cost s is low, high values of et are stable 
and when the inbreeding cost is high, low values of oL are stable. For intermediate inbreeding 
costs, we do find a qualitative difference - under diploidy, there is an intermediate range of s 
where both fixation states are stable, but under haplodiploidy there is an intermediate range of s 
where a stable polymorphism can exist. Thus, a mating strategy polymorphism is more likely to 
exist in haplodiploid than diploid systems. 

We have restricted attention to the case in which there is no male penalty for sibmating in 
terms of reduced representation in the outbreeding pool (the case Ix = 0 of Getz et al. (1992)). 
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The imposition of a male penalty complicates the model in a number of ways, one of which is that 
fitness of sibmating behaviour is now dependent upon the sex ratio so that this must also be 
calculated. (For example, the more female-biased is the sex ratio, the more significant will be the 
sibmating penalty on the male offspring.) In addition, the ESS sex ratio will in turn depend on the 
level of sibmating, so that we in fact have a two-parameter ESS problem. 

The inclusive fitness model constructed in Appendix 1 is interesting for two reasons. One of 
these is that it provides an analytic version of a mathematically complicated genetic model, which 
otherwise can provide only numerical results. The other is that the argument for haplodiploidy is 
technically interesting because care is required with reproductive values. It turns out that, in this 
case, the reproductive value of a male offspring depends on whether or not his parents were sibs, 
because the inbreeding depression suffered by his sisters affects the sex ratio among his sibs and 
this affects his expected number of matings with sisters. This problem does not arise under 
diploidy because inbreeding depression affects male and female offspring equally. 
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Appendix 1: the inclusive fitness model 

A female has a choice of two mating strategies, sibmating and outbreeding. In each case, her 
inclusive fitness W is calculated as her total expected number of offspring attaining breeding age, 
each offspring weighted by its relatedness to her and by its reproductive value: 

W = nfRfvf + nmRmv m (A1) 



66 T a y l o r  a n d  G e t z  

where hi, R i and v i are the number (reaching breeding age), relatedness and reproductive value of 
her sex i offspring. 

I begin with some general notation. 

ct The probability of inbreeding. Assumed uniform in the population. 
t The sex ratio. Assumed to be independent of the mating strategy. 
s The inbreeding penalty. Offspring of sibmated pairs breed with relative probability 1 - s. 

Except that haplodip!oid males do not incur this penalty. 
F The mean inbreeding coefficient among breeding females. 
G The mean coefficient of consanguinity (probability random alleles are IBD) between 

breeding sibs (Crow and Kimura, 1970, p. 68). 
r i Relatedness of outbred mother to sex i offspring. 
r t Relatedness of sibmated mother to sex i offspring. 

The coefficients F and G are determined by one-generation recursions and the same argument 
works for both genetic systems. If we use primes to denote next-generation values, then the F- 
equation is 

F '  =oL(1 - s) G (A3) 
1 - m y  

using the fact that, with relative probabilities 1 - u and u(1 - s), a breeding female has outbred 
parents (F' = 0) and sibmated parents (F' = G). A similar argument, looking at the parents of a 
random sibmating female, yields the G-equation 

( 1 - u )  I + F  a ( 1 - s )  I + F + 2 G  
G' = 1 - a s  4 + l - - u s  4 (A4) 

The solution to Equations A3 and A4 is 

F = u(1 - s) 
4 - 3u - as 

1 - ~ s  
G -  

4 - 3o~ - cy~s 

for both genetic systems. In terms of these, 
Hamilton, 1980) 

1 
Diploid: r i = ~ r t - 

(A5) 

the relatedness coefficients are (Michod and 

I + F + 2 G  
2(1 + b-) (i = m,f) 

1 I + F + 2 G  
Haplodiploid: rf = ~ r m = r~ = 1 rf - 2(1 + F) 

(A6) 

D i p l o i d y  

If we normalize so that eachfemale expects one offspring, then, using Equation A1, a sibmated 
female has fitness 

W s =(1 - t)(1 - s)r~vf  +(t)(1 - s)rfiav m = 2(1-  s ) r f  

and an outbred female has fitness 
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W o =(1 - t)rfvf +(t)rmV m = 2r i (A7) 

where I have taken v m = 1/t vf = 1/(1 - t) since the reproductive value v i of a sex i offspring at 
breeding age is proportional  to its breeding success which is inversely proportional to the 
frequency of sex i. Using Equations A5, A6 and A7, the condition for sibmating to be at an 
advantage becomes: 

W s > Wo: 2as 2 + 1 - 3s > 0 (A8) 

Haplodiploidy 

What makes this system more complicated is that the reproductive value of a male depends on 
whether his parents were sibmated (Vms) or outbred (Vmo). The reason for this is that the two 
types of male have different sex ratios among their mature sibs. It is shown below that the relative 
reproductive values are 

1 
V f - - l _  t 

2@[ a(1 - s)21 (A9) Vms= ( 1 - o  0 + 1 - a s  ] 

Vm° = N (1  - -  a )  + 

A sibmated female has fitness 

= (1  - 0 ( 1  - s )  r vf 

and an outbred female has fitness 

W o = (1  - t)rfvf + ( 0 rm l , ' m o  

Using Equations A5, A6 and A9, the condition for sibmating to be at an advantage becomes: 

W s > Wo: a2s(1 - 3s 2) ÷ as(7s - 3) + 1 - 3s > 0 (A10) 

I now calculate the reproductive valu.es for the haplodiploid case, defined as the relative 
genetic contribution of the individual to the future gene pool. There are general matrix methods 
for doing this (Taylor, 1990), but in the present case there is also an elementary approach which is 
based on the fact that males make genetic contributions only through female offspring and, thus, 
we can use 'numbers of breeding daughterS' as a currency to measure relative reproductive value. 
Indeed, with the assumption of a constant population size, the reproductive value of a male will 
then be (w o + ws)v f where w o and w s are his expected numbers of breeding daughters through 
outbreeding and sibmating, respectively. To calculate these, I count the numbers of breeding 
offspring of a breeding female. She can expect 

t 1 
m - -  

1 - t l - a s  

sons, but her number f of breeding daughters depends on whether she sibmates or not. 

1 - - s  
Sibmates: fs = 1 - as 

1 
Outbreeds: fo - 1 - as 
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These counts have been normalized by the condition that the mean number  of breeding 
daughters of a breeding female must be unity: 

Otfs + (1 - oOf o = 1 

Using this, I note that the breeding sex ratio will be 1/m. It  follows that each male can expect 
(1 - ot)/rn outbreedings,  which gives him 

w o = (1 - COfo/m 

daughters through outbreeding. To calculate Ws, his number  of daughters through sibmating, we 
need to know about  his parents.  If  they were sibmated, he has afs/m sibmating sisters and if they 
were outbred he has afo/m sibmating sisters and in both cases these sisters get fs breeding 
daughters each, so his number  of  breeding daughters is 

s ibmated parents: w s = o~f2s/m 

outbred parents: w~ = OLfofs/m 

Then the reproductive values are: 

s ibmated parents: Vms = Wo + Ws = ---~-[(1- OOfo + oLf2s] V f 

( A l l )  

outbred parents: 12mo = w o + w s = - -  1 - a f r  o + afof~ vf 
m 

If, as above,  we normalize by setting the reproductive value of a female to be vf = 1/(1 - t), then 
we get Equat ion (A9) above. 

Appendix 2: the revised genetic model 

Let  xi] and yq denote the frequency respectively of sibmating and outbreeding combinations of 
female g e n o t y p e -  i x male g e n o t y p e -  j, such that 

Z xi] + Yiy = 1 (A12) 
ij 

where a sum over  genotypes will always be understood to be over  all three genotypes, except in 
the case of male haplodiploidy when there are only two. Let  Pfk and p qm t, respectively denote the 
proport ions of females of genotype k and males of genotype l among the progeny of these mating 
combinations i x j. The values of these progeny proport ions are determined by a random 
assortment  of  alleles assumption. 

I f  each female genotype produces an equal number  of progeny (before the viability effects of 
inbreeding) then the relative (before normalization) proport ion of sexually mature  females and 
males, respectively of type k and I f rom panmictic matings of type ij is Pf~ij and p~yq while the 
sexually mature  progeny proport ions arising from sibmatings are reduced by a factor 1 - s f for 
females and 1 - s m for males to obtain p~jk(1 - sf)xq and p~l(1 - sm)xq, respectively. For 
diploidy, s f = s m = s and for haplodiploidy, s f = s and s m = 0. 

To construct the next-generation proport ions of mating types we take account of the 
probabil i ty ~k that a type k female offspring will sibmate, calculate the genotype of the male she 
will mate  with and sum over  all parental  crosses i x j. For sibmating, a female from an i x j 
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mating will mate with an /-male with probability p ijml and so the new proportion of k x l 
sibmatings is 

ij 

where K f is a normalizing constant determined below. 
To find the new outbreeding proportions, we note that the proportion of type I males in the 

outbreeding pool (equal representation from all mature males) is 

ql = Km 2 p iJ mk(1 - sm)xij -]- P ijmkYij (A14) 
ij 

where K m is a normalizing constant determined so that the ql have sum 1. Then the new 
proportion of k x l outbreedings is 

Y~kl = K f ~ ,  (1-ak)[p~k(1--sf)xijq - pfkYij I ql (A15) 
ij 

where K f is determined by the condition 2 x'kl + Y'kl = 1. 

kl 


