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abstract: Kin recognition systems enable organisms to predict ge-
netic relatedness. In so doing, they help to maximize the fitness
consequences of social actions. Recognition based on phenotypic
similarity—a process known as phenotype matching—is thought to
depend upon information about one’s own phenotype and the phe-
notypes of one’s partners. We provide a simple model of genetic
relatedness conditioned upon phenotypic information, however, that
demonstrates that individuals additionally require estimates of the
distributions of phenotypes and genotypes in the population. Fol-
lowing the results of our model, we develop an expanded concept
of phenotype matching that brings relatedness judgments closer in
line with relatedness as it is currently understood and provides a
heuristic mechanism by which individuals can discriminate positive
from negative relatives, thereby increasing opportunities for the evo-
lution of altruism and spite. Finally, we propose ways in which or-
ganisms might acquire population estimates and identify research
that supports their use in phenotype matching.

Keywords: kin recognition, phenotype matching, genetic relatedness,
population estimates, similarity.

Introduction

Kin recognition systems have been tailored by selection to
make de facto inferences about the genetic relatedness of
conspecifics. Several such systems rely on a process known
as phenotype matching, whereby an evaluator (a potential
actor) assesses the similarity of the phenotypes of partners
(potential recipients) to information associated with its
own phenotype and, by consequence, its genetic identity.
Our understanding of the mechanisms that facilitate an
organism’s acquisition of information about its phenotype
has improved rapidly (reviewed in Waldman 1987; Hepper
1991; Sherman et al. 1997; Hauber and Sherman 2001;
Krupp et al. 2011), but the particulars of the cognitive
machinery underlying phenotype matching have been
taken for granted.
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Apart from information about the evaluator’s pheno-
type and that of its potential partner, we argue here that
phenotype matching requires evaluators to have infor-
mation about the distributions of (1) phenotypes and (2)
genotypes in the population. These arguments may strike
theoreticians as fairly elementary. However, in some 30-
odd years of published research on kin recognition, we
cannot locate evidence that they have been given serious
consideration in either the published descriptions of phe-
notype matching processes or the empirical tests thereof.
There appears to be a substantial gap between how phe-
notype matching is conceived to operate and how it likely
does operate.

Genotypic and Phenotypic Similarity

Genetic relatedness can be conceptualized as a measure of
differences in genetic similarity, representing the proba-
bility, beyond chance, that partners share copies of a focal
allele causing individuals to perform a social action (Ham-
ilton 1970; Grafen 1985; Queller 1994; Gardner and West
2004). If we measure genetic similarity by the coefficient
of consanguinity, G—the probability that a partner shares
a randomly selected allele identical by descent with an
evaluator—then relatedness of the evaluator to its partner
is (Rousset and Billiard 2000; Taylor et al. 2000)

G � G
r p , (1)

1 � G

where is the average coefficient of consanguinity in theG
evaluator’s “interaction neighborhood,” or local popula-
tion. Here, we use Queller’s (1994) formulation of relat-
edness, which automatically accounts for local secondary
effects (West and Gardner 2010) of any primary effect of
the interaction. The relatedness of an evaluator to a partner
is positive when the partner is more likely than chance to
share copies of the allele ( ) and negative when ther 1 0
partner is less likely than chance to share copies of it
( ). That genetic relatedness can take on both positiver ! 0
and negative values has profound implications for social
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evolution, as an individual’s indirect fitness can thusly be
increased by helping positive relatives or by harming neg-
atively related ones. At the extreme, this can result in the
evolution of altruism and spite, respectively (Hamilton
1970; Gardner and West 2004).

In theoretical models, partner choice is often condi-
tioned upon demography. That is, population structure
dictates partner assortment, as when a partner is chosen
at random from the evaluator’s interaction neighborhood
(e.g., Frank 1986; Taylor 1992a,1992b; West and Buckling
2003; Foster 2004; Grafen 2007; Taylor et al. 2007; El Mou-
den and Gardner 2008). However, numerous animal spe-
cies routinely regulate their behavior as a function of part-
ner information—as in decisions regarding colony defense,
inbreeding avoidance, and parental investment—and such
is the express purpose of kin recognition systems. Thus,
relatedness may also be conditioned upon other infor-
mation that predicts genotype (Seger 1983), such as
phenotype.

For instance, animals may judge genetic relatedness by
assessing the phenotypic similarity of partners to them-
selves (reviewed in Waldman 1987; Hepper 1991; Krupp
et al. 2011). Phenotype matching is a common and ver-
satile category of kin recognition systems wherein an
evaluator matches elements of the phenotypes of social
partners to an internal representation derived from in-
formation associated with the evaluator’s own phenotype
(Holmes and Sherman 1982; Lacy and Sherman 1983;
Waldman 1987; Hepper 1991; Sherman et al. 1997; Hauber
and Sherman 2001; Krupp et al. 2011). In keeping with
convention, we will refer to this representation as the “kin
template” (though it need not represent kin per se; Wald-
man 1987). To perform phenotype matching, it is com-
monly assumed that the evaluator needs information only
about two objects: (1) its own phenotype, as instantiated
by the kin template, and (2) its partner’s phenotype. These
are insufficient, however, for reasons that will shortly be-
come clear.

Consider an evaluator x attempting to assess the sim-
ilarity of a partner y to itself on the basis of a continuous
phenotypic label. The evaluator knows only its own value
(inferred from its kin template) and that of y—say 0.35
and 0.45 units, respectively. As determined by a phenotype
matching mechanism, x’s relatedness to y should reflect
the similarity between their label values. But how similar
are they?

As figure 1 illustrates, this question cannot be answered
unless the label values are properly contextualized by the
phenotypic “space” of the population. If x and y lie on
the same side of the mean phenotype, as in the dashed
distribution of figure 1A, then they can be said to be
similar. However, if they lie on opposite sides of the mean,
as in the distribution represented by the solid line, they

are dissimilar. Likewise, the relative similarity of x and y
changes in concert with the variability of the phenotypic
space surrounding them, as can be seen by comparing the
dashed (more variable) and solid (less variable) distri-
butions of figure 1B: with increasing variance comes con-
comitant increases in both the phenotypic range and the
frequency of extreme phenotypes. Finally, the evaluator
must also have some means of connecting phenotypic sim-
ilarity to genetic similarity, or there is little point in relying
on phenotypic information. Hence, evaluators cannot de-
termine genetic relatedness solely on the basis of infor-
mation about their own and their partners’ phenotypes.

Population Estimation and Kin Recognition

To determine what is required of a recognition system that
conditions relatedness upon phenotypic similarity, we
work with a simple, additive genotype-phenotype model.
We take a large number N of loci, each with two alleles
that assume values 0 and 1. The individual phenotypic
label L is then taken to be the average of the N genic values
(and thus has a value between 0 and 1). We focus attention
on an evaluator with phenotype L0, in a population with
mean phenotype , who wishes to estimate its coefficientL
of consanguinity G with a partner with observed pheno-
type L. The evaluator would like to know , the prob-P(GFL)
ability distribution of G given L. While our phenotypic
model does not give us a direct expression for , weP(GFL)
show below that it does provide a simple formula for

, the probability distribution of L given G, and theseP(LFG)
two conditional probabilities are connected through
Bayes’s formula:

P(LFG)P(G)
P(GFL) p . (2)

P(L)

We now provide a model for . An individual withP(LFG)
a coefficient of consanguinity G with the evaluator will be
identical by descent to the evaluator at GN loci and will
select alleles at the remaining loci at random(1 � G)N
from the local population. The resulting phenotype will
have a value , where J is the phenotypic averageL p J � K
of GN loci sampled from the evaluator without replace-
ment with mean L0 and K is the phenotypic average of

loci sampled independently with mean . This(1 � G)N L
gives J a hypergeometric distribution with mean GL0 and
variance and gives K a binomialG(1 � G)L (1 � L )/N0 0

distribution with mean and variance(1 � G)L (1 �
. Since J and K are independent, the meanG)L(1 � L)/N

and variance of L will be the sum of the means and var-
iances of J and K. For large N the distribution of L will
be close to normal, and we make this assumption in our
calculations and figures below.



Figure 1: Hypothetical population distributions of a phenotypic label with different means (A) and different variances (B). Points x and
y represent the label values of the evaluator and its partner, respectively.
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Figure 2: A, Expected values of relatedness r given L for an evaluator with phenotype and mean phenotypes (from top to bottomL p 0.20

at left) , 0.5, 0.3, 0.2, and 0.1. B, Expected values of relatedness r given L for an evaluator with phenotype and meanL p 0.7 L p 0.20

phenotype with population phenotypic variance multiplied by (from top to bottom at left) 0.5, 1.0, 1.5, and 2.0.L p 0.5

The calculation of from equation (2) still requiresP(GFL)
knowledge of the distributions of G and L. The distribution
P(G) will depend upon the local mating and dispersal
structure of the population, but, most importantly, it will
also depend upon the evaluator’s phenotype. For example,
an evaluator with a phenotype close to will be moreL
closely related to others in the local population than will
an evaluator with an extreme phenotype, who might well
be a recent immigrant. Finally, the probability distribution
of L can be obtained by integrating the numerator of equa-
tion (2) over G.

Now suppose the evaluator meets a partner y. Assuming
that the evaluator has a sense of the probability distri-
bution of G given Ly (found in eq. [2]), what is it to take
as its estimate of Gy? We can imagine two possible can-
didates, the first being the value of G that maximizes

and the second being the expected value of G givenP(GFL )y

Ly:

1

E(GFL ) p GP(GFL )dG. (3)y � y

0

The second estimate would seem to us to be more robust
and less sensitive to the actual underlying distributions.
In fact, these two measures are very close in practice and,
as would be expected from the asymmetry of the condi-
tional distribution, which is truncated more severely at

than at , is in every case slightlyG p 0 G p 1 E(GFL )y

above the value of G that maximizes . For example,P(GFL )y

when and , , whereasL p 0.3 L p 0.5 E(GF0.5) p 0.210

attains its maximum at 0.19.P(GF0.5)
To compute relatedness, all that remains is to estimate

the average coefficient of consanguinity,

1

E(G) p GP(G)dG, (4)�
0

and to substitute the results of equations (3) and (4) for
G and in equation (1). Figure 2A presents the resultsG
of numerical calculations of the relatedness of an evaluator
with a phenotype to partners with phenotype LL p 0.20

as a function of the mean phenotype . As expected, re-L
latedness between the evaluator and its partner changes
in concert with their distance from the mean phenotype.
Note that no label value is associated with a particularly
high relatedness because in our simulations the evaluator’s
label value (L0) was never rare and so the label itself is
not terribly predictive of G. Moreover, the shape of

is roughly monotonic when L0 is farther from ,E(rFL) L
whereas it is roughly parabolic in form when L0 and areL
closer (see the graph corresponding to ). For theseL p 0.2
reasons, it is worth pointing out that phenotype matching
systems are likely to rely on labels that are highly diagnostic
of G and on the integration of multiple labels, such that
the probability of many close matches on a large number
of labels is very small. It should also be noted that label
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Figure 3: Expanded phenotype matching via population estimation.
Evaluators define a similarity scale (represented by the length of the
lower line) and locate the kin (K) and average (A) templates along
this scale. Partners whose phenotypes fall in between the kin and
average templates (solid arrow) are perceived as positively related,
whereas partners whose phenotypes fall farther from the kin template
than does the average template (dashed arrow) are perceived as neg-
atively related.

variation might have to be maintained by selection for
functions other than kin recognition, lest label values be
driven to fixation by the advantage that individuals bearing
common phenotypes enjoy in finding suitably similar co-
operative partners (Crozier 1986; Rousset and Roze 2007).

Figure 2B presents the relatedness of an evaluator with
a phenotype to partners with phenotype L in aL p 0.20

population with mean phenotype and a popu-L p 0.5
lation phenotypic variance ranging from half to twice that
of the model described above. As can be seen, the slope
of the relatedness function increases as the population
variance decreases, yielding stronger positive and negative
relatedness estimates for the evaluator and its partners at
every value of L save when . This is likely the con-L p L
sequence of two competing forces: (1) the phenotypic
range increases with variance, simultaneously increasing
the similarity of any two fixed points, and (2) the frequency
of extreme phenotypes increases with variance, simulta-
neously decreasing the similarity of these same two points
(with larger effects on phenotypes located toward the tails
of the distribution). In our model, the latter force appears
to outweigh the former.

An Expanded Concept of Phenotype Matching

A cognitive model can be built upon the results of our
analytical model, expanding the concept of phenotype
matching to include all the requisite pieces of information.
First, we have confirmed that evaluators need information
about their own phenotypes and the phenotypes of their
partners, so we continue to expect evaluators to acquire
kin templates and encode their partners’ phenotypes. Sec-
ond, the graphs depicted in figure 2A show that relatedness
changes sign approximately at the point at which a part-
ner’s phenotype becomes more or less similar to the ev-
aluator’s phenotype than is the average phenotype. (Again,
this result holds when L0 significantly differs from , asL
when evaluating highly predictive labels or when numer-
ous labels have been integrated.) Thus, evaluators may use
information about the average phenotype as a standard
against which to judge the relatedness of a given partner,
acquiring an “average” template analogous to the kin tem-
plate. Third, the graphs depicted in figure 2B show that
evaluators need to have information about the variability
of phenotypes in the population. This information, per-
haps in the form of the variance of the distribution, can
be used to provide a scale of phenotypic similarity,
bounded at 0 (completely different) and 1 (completely
identical).

To match phenotypes, the evaluator could locate its kin
template, the average template, and a representation of its
partner’s phenotype along the similarity scale, as depicted
in figure 3. Evaluators can then make de facto computa-

tions of the effective positions of the average template and
the partner’s phenotype relative to the kin template
(Krupp et al. 2011). To the degree that the partner’s phe-
notype more closely resembles the kin template than does
the average template, the evaluator would perceive its part-
ner as positively related. Conversely, to the degree that the
average template more closely resembles the kin template
than does the partner’s phenotype, the evaluator would
perceive its partner as negatively related. This heuristic
cognitive model describes the first general process by
which organisms can distinguish between positive and
negative relatives, allowing individuals to optimize their
behavior toward altruistic and spiteful ends by regulating
partner choice and the direction and magnitude of social
actions toward given partners.

Information regarding the evaluator’s phenotype, the
distribution of phenotypes, and the distribution of coef-
ficients of consanguinity may be genetically determined,
learned, or acquired by some combination of the two.
There is compelling evidence of genetic influence on tem-
plate design in species recognition and mate choice (e.g.,
Hoy et al. 1977; Bakker and Pomiankowski 1995; Shaw
2000; Kronforst et al. 2006), but the same cannot be said
of kin templates (Waldman 1987; Sherman et al. 1997).
This may be because a genetically determined kin template
would be unreliable when genes coding for the template
and for the label values are not tightly linked or when the
label values are partly or wholly environmentally deter-
mined (and therefore variable over time and space; Sher-
man et al. 1997). Linkage may pose fewer complications
for the average template and similarity scale, but environ-
mental determination remains problematic, as the average
phenotype and scale may shift with a changing environ-
ment. Nevertheless, given that genetically determined spe-
cies recognition templates exist, it is reasonable to hy-
pothesize that average templates and similarity scales are
likewise so determined. Indeed, species recognition and
average templates may overlap considerably, and the for-
mer may even serve as a substitute for the latter.
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In contrast to genetic determination, there is ample evi-
dence that learning determines elements of the kin tem-
plates of numerous species (reviewed in Waldman 1987;
Sherman et al. 1997; Hauber and Sherman 2001; Krupp
et al. 2011). The “referents” that serve as the sources of
phenotypic information feeding into the kin template may
comprise any number of individuals of a kin class, in-
cluding the evaluator itself (“self-referent phenotype
matching”) or its parents, siblings, and others assumed to
be genetic relatives (“other-referent phenotype matching”)
as a consequence of the workings of separate kin recog-
nition systems, such as spatiotemporal association mech-
anisms (Waldman 1987; Krupp et al. 2011). Likewise, sam-
pling the phenotypes of the local population might yield
information sufficient to encode the average template and
the similarity scale.

There are at least two advantages of learning the phe-
notypic distribution over inheriting it. First, evaluators will
tend to have their strongest effects on those partners that
they encounter directly, and secondarily on the partners
of their partners (and so forth). Hence, insofar as the local
population represents the evaluator’s interaction neigh-
borhood (Queller 1994), it appeals as a referent population
from which to learn the phenotypic distribution. Second,
evaluators who have dynamically updated their percep-
tions of the phenotypic distribution over the life span—
perhaps in a manner not unlike a Bayesian updating pro-
cess (Frank 1998)—will predict relatedness more accu-
rately than those who have not done so in populations
with changing phenotypic distributions (caused, for in-
stance, by migration or shifting environments). Of course,
it is also possible that organisms inherit “generic” tem-
plates and modify them according to their experience.

We have identified only a few studies that address our
cognitive model, but they are suggestive. First, great reed
warblers (Acrocephalus arundinaceus), hosts to the brood
parasitic cuckoo (Cuculus canorus), are less likely to reject
a nonmimetic artificial egg when the phenotypic variation
among their own eggs has been experimentally increased
(Moskát et al. 2008; see also Stokke et al. 1999). Second,
within-colony phenotypic variability in the Argentine ant
(Linepithema humile) is negatively associated with aggres-
sion toward conspecifics drawn from foreign, less related
colonies (Tsutsui et al. 2003). Third, exposure to such
foreign conspecifics, or cues thereof, alters levels of social
conflict toward other foreigners in L. humile (Thomas et
al. 2005; Van Wilgenburg et al. 2010) and in the Columbian
ground squirrel (Spermophilus columbianus; Hare 1994).
Fourth, among weaver ants (Oecophylla smaragdina), eval-
uator and colony identity appear to influence aggression
toward foreigners independently of one another (Newey
et al. 2010). Newey (2011) attributes this result to the
simultaneous use of two distinct recognition templates,

one representing the evaluator’s phenotype prior to the
effects of colony mixing and the other representing the
mean colony phenotype. Respectively, these putative tem-
plates bear a striking resemblance to the (self-referent) kin
and average templates proposed here. Finally, a recent ex-
periment suggests that humans can discriminate positive
from negative relatives, showing positive preferences for
digitally manufactured face images that are more self-
resembling than average (and are hence phenotypically
similar) and negative preferences for those that are less
self-resembling than average (and are hence phenotypically
dissimilar; Krupp et al. 2012). In keeping with these find-
ings, another study of humans has shown that repeated
exposure to face images of individuals belonging to the
same ethnic group causes ethnic categorization thresholds
to be adjusted (Webster et al. 2004)—a perceptual shift
that may rely on the same similarity assessment processes
as those that underlie phenotype matching.

Of course, there are numerous alternative interpreta-
tions of these results that do not involve sampling-based
adjustments to perceptions of genetic relatedness per se
but that might instead be associated with other constructs,
such as group or colony membership (e.g., Hare 1994;
Newey 2011). Thus, a more direct effort to test the cog-
nitive model proposed here is needed. In general, the
model generates hypotheses concerning continuous relat-
edness judgments (rather than binary or threshold ones;
see Reeve 1989), the assessment of both positive and neg-
ative relatedness, the use of estimates of the phenotypic
distribution to improve the accuracy of relatedness judg-
ments, and the effects of these judgments on social
behavior (fostering altruistic and mutually beneficial be-
havior when interacting with phenotypically similar con-
specifics and fomenting spiteful and selfish behavior when
interacting with phenotypically dissimilar conspecifics).
However, two key hypotheses from this model are readily
apparent: perceptions of relatedness will vary as a function
of manipulations of (1) the average phenotype and (2) the
variability among phenotypes. As the average phenotype
approaches the evaluator’s phenotype, a narrower spec-
trum of phenotypes will appear positively related and, by
corollary, a broader spectrum of phenotypes will appear
negatively related. Similarly, as the variability (e.g., vari-
ance) among phenotypes increases, the scale of similarity
changes and, by consequence, the relatedness of two part-
ners of fixed phenotype will also change. If these hypoth-
eses are correct, they may help to bridge some of the gaps
in our understanding of social evolution in general and
kin recognition systems in particular.

In summary, evaluators require information about their
own phenotypes, the phenotypes of their partners, and the
distributions of phenotypes and genotypes in the popu-
lation to properly perform phenotype matching. They may
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assume certain distributions as “priors” by genetic deter-
mination, or they may modify them through experience.
Having acquired this information, they may then construct
representations of their prototypical kin (the kin template),
the average phenotype (the average template), their part-
ner’s phenotype, and a scale with which to judge their
similarity. From this, evaluators can predict the relatedness
of a partner and use this prediction to guide their social
actions, helping phenotypically similar partners and harm-
ing dissimilar ones.
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