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Behavioural evolution

Cooperate with thy neighbour?
Peter D. Taylor and Troy Day

What gives cooperation an evolutionary edge? Two features of a
population — spatial structure and finite size — are factors in the
success of any strategy, although more subtly than we thought

In thinking about the evolution of cooper-
ative behaviour1, there is one main stum-
bling block: that cooperative individuals

can be exploited by ‘defectors’, who benefit
from cooperation while avoiding the costs
that it entails. Solutions to this problem typ-
ically find ways for cooperative individuals
to interact with one another more often than
they would purely by chance. There are two
basic ways in which this can happen. One
involves the population having a spatial
structure with local reproduction and dis-
persal, so that neighbours of a cooperative
individual are themselves more likely to be
cooperative2,3. The other relies on some form
of information transfer whereby players can
assess the behaviour of a prospective partner
and decide accordingly how, or even
whether, to play. The assessment might be
made on the basis of traits that are reliable
indicators of likely behaviour4,5 or through a
phase of negotiation6,7.

Two papers in this issue8,9 add further
insight. Hauert and Doebeli8 (page 643) pro-
pose that, under certain conditions, spatial
structure might actually hinder cooperative
behaviour. It has long been understood that
population structure can be a mixed blessing
for cooperation,because the gains that it pro-
vides through positive assortment are coun-
tered by competition between like individu-

als2,10,11. Hauert and Doebeli have uncovered
yet another limitation of population struc-
ture,one that also gives a fascinating geomet-
ric distinction between games such as
Hawk–Dove — in this case, in the guise of the
snowdrift game — and the Prisoner’s Dilem-
ma,or blizzard game (Box 1).

For a spatially structured population of
players,with their choice of strategy displayed
as a particular colour on a grid, Hauert and
Doebeli see a shift in the geometry of clusters
of cooperators at the point where the cost and
benefit of the encounter are equal. In the Pris-
oner’s Dilemma,when the cost is greater than
the benefit, globular clusters form (Fig. 1a),
which give cooperators enough protection to
persist at a small frequency.But in playing the
snowdrift game, when benefit outweighs
cost, the clusters become more finger-like, or
dendritic (Fig. 1b). Here the cooperators are
vulnerable to exploitation and they die out.
The transition is perplexing,but it is clear that
spatial structure in a population might not
always work in favour of cooperation.

In the second article, Nowak et al.9 (page
646) suggest that finite population size is also
crucial in the evolution of cooperation.
These authors focus on the Prisoner’s Dilem-
ma to highlight dramatically the difference
between evolutionary stability in a finite and
an infinite population, and at the same time



suggest a new factor that bears on the evolu-
tion of cooperation.

In the Prisoner’s Dilemma, defectors
always outcompete cooperative individuals
when encounters are random. Axelrod and
Hamilton demonstrated12, however, that
cooperative strategies can be enhanced if
multiple encounters with the same partner
are allowed and if current behaviour is based
on past experience. Of all such conditional
strategies, ‘tit-for-tat’ seems to be one of the
best: a player cooperates initially but contin-
ues to cooperate only if its partner cooperat-
ed in the previous encounter. It turns out that
if the number of encounters with the same
partner is large enough, tit-for-tat can out-
perform a uniform all-defect strategy once its
frequency is high enough. This means that
there is an unstable mixed equilibrium at
some particular frequency: above it, tit-for-
tat dominates; below it, all-defect takes over.
At least, this is true of an infinite population
(in which changes in frequency are determin-
istic in evolutionary time).For example,with
a benefit of 3, a cost of 4, and 10 encounters
per partner, this unstable equilibrium is at a
frequency of 1/8 tit-for-tat.

But what if the population is finite, say of
size 80? Treated as an infinite population,
we’d expect to need ten individuals playing
tit-for-tat before this strategy could become
more fit than all-defect; and by the standard
definition, all-defect is evolutionarily stable
(no rare mutant tit-for-tat-er can invade). In
contrast,as a finite population,the stochastic
nature of random sampling leads us to
expect that, after many generations, all indi-
viduals will be descended from exactly one of
the original members. With neutral strate-
gies, each individual would have the same
probability of being the founder, which sug-
gests an alternative way of comparing the fit-

ness of tit-for-tat versus all-defect — calcu-
late the probability that an individual of each
kind will be the founder13.

It turns out that, for the example of one
lone tit-for-tat-er in a population of 79 all-
defect players, the probability that the tit-for-
tat individual is the founder is almost twice
that of an all-defect individual (M. Nowak,
personal communication). Should we still
regard all-defect, then, as an evolutionarily
stable strategy? In fact Nowak et al.9 use this
example to propose an extension of the stan-
dard definition of evolutionary stability for
finite populations. The mutant strategy must
be less fit in two ways: no rare mutant can
invade (the traditional sense) and a rare
mutant individual must have a lower than
normal chance of being the founder of the
ultimate population. In this case, faced with
mutation and drift, in what sense will an evo-
lutionarily stable strategy be what we expect
to observe? Is finite-population evolutionary
stability perhaps a contradiction in terms? �
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Imagine two car drivers caught in a
snowdrift. The total cost of
shovelling out of the drift is c and
the benefit to each of getting home
is b. The drivers might follow either
of two strategies — cooperate with
the other, or defect. If both drivers
cooperate, they split the cost of
shovelling and both get home. One
cooperator and one defector will
both get home, but the cooperator
will bear the whole cost. Two
defectors bear no cost but get no
benefit.

It is reasonable to assume that
b�c/2 — that getting home is
worth more than the cost of half the
shovelling (or the game is pointless).
That leaves two interesting cases:
b�c and b�c. The first case is

known as the snowdrift game and
(in the spirit of comparison) we call
the second the blizzard game. In the
latter, the shovelling is so hard that a
driver who does it all suffers a net
loss. The snowdrift game is a
version of Hawk–Dove, and the

blizzard game is a version of the
Prisoner’s Dilemma, both of which
are much studied in behavioural
evolution.

In a biological population in
which the payoff contributes to
fitness, we are interested in

comparing the average fitness of a
cooperator and a defector. Fitness is
illustrated here, as a function of
frequency of cooperative
encounters. There is a stable
equilibrium where the lines
intersect. For random encounters
between drivers/players, the
snowdrift game supports a stable
mixture of cooperators and defectors
(roughly half-and-half). The blizzard
game does not: the only point of
stable equilibrium is an all-defector
population. But if there were some
mechanism that increased the
frequency of cooperative
encounters, the lower portion of the
cooperation line would rise, creating
a point of stable equilibrium for the
blizzard game as well.
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Figure 1 Cooperators versus defectors. With the
spatial structure of a population represented by
a grid, Hauert and Doebeli8 find different
equilibrium configurations for two slightly
different games that test the evolution of
cooperation. Cooperators are shown in black,
defectors in white. a, In the Prisoner’s Dilemma
game, clusters of cooperators develop and can
offer protection to those in the interior of each
cluster, increasing the fitness of cooperators. b,
In the snowdrift game, however, the cooperative
clusters develop into dendritic fingers that poke
out into defector territory, exposing their
members to exploitation. Cooperators might
actually be worse off than if they had formed
partnerships at random.
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