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Why do the plants in a certain populations grow to a particular height (on average) and not to 
another?  What determines the relative numbers of male and female offspring in a population?  
How should an individual allocate resources between growth and fecundity, or between foraging 
and defence?  What proportion of an individual's offspring should disperse and attempt to breed 
far from home?  These are examples of the questions we consider here, and the answers we seek 
are evolutionary––that “deviant” individuals with alternative traits have lower fitness than 
"normal" individuals who exhibit the established trait.  For example, we might try to find 
evidence that a plant which was shorter than average would receive less sunlight or disperse less 
pollen, whereas a plant which was taller than average would consume too much energy in 
growth or would take too long to attain maturity and would have less reproductive success.  
 
But there's an extra complication that enters here.  It's possible that by growing a bit taller the 
individual would get more offspring, but overall the trait (of increased height) would be at a 
disadvantage.  The reason is that the neighbours of the taller individual would have slightly less 
fitness and, because of limited dispersal, they might be related to the taller individual and thus 
share the "tallness" genes. As a result, this would contribute a negative fitness force to such 
genes.  In short, if what's good for the individual is bad for the group, and if there is some 
within-group genetic similarity, the evolutionarily stable (ESS) level of the trait will be a 
compromise between the two.  We can look at it another way too––at the ESS a shorter 
individual could have has less personal fitness, if its relatives had more.  In this context, tallness 
would be called "selfish" and shortness would be called "altruistic" and the ESS represents a 
balance. 
 
The central problem in modelling the evolution of social characters, those whose behaviour 
affects the fitness of neighbours, is to find a good way to account for the effect of these 
interactions.  Here we will describe a remarkable approach to this problem known as the 
inclusive fitness method.  This method gives us an expression which can tell us whether or not a 
deviant behaviour will increase in frequency.  The analysis applies to a wide range of characters, 
but for concreteness we will work here with the example of plant height.   
 
As a simple illustration, suppose that the height deviation is caused by a mutation at a certain 
locus which alters its owner's height, and thereby changes the fitness of the owner and of exactly 
one neighbour by the amounts b0  and b respectively.  To calculate the resulting change in the 
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frequency of the mutant allele in the next generation we must weight these two fitness changes 
by the “effectiveness” of the owner and the neighbour in propagating the mutant allele, that is by 
its frequency in their gametes.  Suppose this is p0 and p respectively.  Then it would seem that 
the allele should increase in frequency exactly when  p0b0 + pb is positive.  This is the simple 
idea behind the inclusive fitness method, and with some elaboration, it works.   
 
If we take the above alteration to be a decrease in height, then the fitness change to the focal 
individual is actually a cost and could be written as b0 = –c.  Then the condition p0b0 + pb > 0 for 
the mutant allele to increase in frequency can be written  Rb > c where  R = p/p0 is called the 
relatedness between owner and neighbour.  This formula is known as Hamilton's Rule and it tell 
us that an altruistic act is selectively favoured if the benefit to others, weighted by relatedness, 
exceeds the cost .   
 
We now look more carefully at the above calculation.  Let’s take a simple population structure, 
and suppose that individuals occur in patches of 5, and that an individual's behaviour affects 
only those on the same patch.   Suppose that a single deviant individual changes its own fitness 
by b0 and changes the fitness of its ith patchmate by bi (1≤i≤4) where we use some suitable 
fitness measure such as contributions to the effective gamete pool of the next generation.  Let 
this gamete pool contain a total of T gametes, D of which are mutant.   
 
Now select a random copy of the mutant allele, which we will suppose causes its owner, the 
focal individual, to be deviant.  We calculate the change in frequency of the mutant allele due to 
this one deviant individual and to do this we need to know the frequency of the mutant allele in 
each of the 5 inhabitants of the patch.  Let these frequencies be pi (0≤i≤4) and let p  = D/T  be 
the average frequency of the mutant allele in the population as a whole.  Then the changes in D 
and T are: 
 
∆D  =  Σpi bi     .         (1) 
∆T  =   Σ bi  .          (2) 
 
where the sums are over all 5 inhabitants of the patch (0≤i≤4).  There is an assumption here of 
"fair meiosis" whereby the gametes produced by any individual contain its alleles in the same 
proportion as found in its genotype.   
 
Now we take the average E of (1) and (2) over all copies of the mutant allele. To get the final 
expression in (3) we employ a technical assumption that the bi and pi variables are uncorrelated. 
 
E(∆D)  =  E(Σpi bi)  =  Σ E( pi) E(bi)         (3) 
E(∆T) =  Σ E(bi)          (4) 
 
For the average in (3) and (4) to make sense, there must be a natural way of assigning, for each 
focal individual, an i=1 patchmate and an i=2 patchmate etc.  This is essentially an assumption 
of spatial homogeneity of the population, that each individual has the same geometric 
configuration of patchmates.  For example, the five individuals might be equally spaced around a 
circle, so that each individual has two “near” neighbours (i = 1, 2) and two “far” neighbours (i = 
3, 4).    
 
If the mutant allele happens to be rare (as is often assumed), an increase in numbers will 
correspond to an increase in frequency, and we can expect the sign of E(∆D) to predict 
frequency change, but otherwise the average change in frequency must be calculated as: 
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where K is a positive constant.  This motivates the definition of the inclusive fitness effect of the 
deviant behaviour: 
 
∆WIF   =  ΣRi E(bi)         (6) 
 
where  
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is the average relatedness of the focal individual to its ith neighbour.   Note that i=0 is one of the 
summands in (4) (as the focal individual is one of those affected by the deviant behaviour), and 
the relatedness R0  of the focal individual to itself is 1.   
 
According to (5), the inclusive fitness effect has the same sign as the average allele frequency 
change due to the deviant behaviour of a focal individual, where an individual is selected to be 
focal according to its mutant allele frequency p0.  For example, in a diploid population, an 
individual with 2 mutant alleles will have twice the probability of being selected as an individual 
with 1 mutant allele.   
 
Now recall that we have assumed that only one mutant copy acts at a time. But what happens if 
we allow them all to act together?  First of all we note that there's no reason to expect the 
inclusive fitness effect to necessarily represent the resulting change in allele frequency, because 
it contains no information about the fitness effect of simultaneous deviant behaviour from 
several individuals, and that can certainly make a difference to allele frequency change.  For 
example, for a trait such as a warning call, it might be that an expression by several individuals 
serves the group no better (and might even do worse!) than a single call.  On the other hand, a 
complex task requiring cooperation might have little effect if performed by one, but a large 
effect if performed by two.  Some assumption is required and the right one turns out to be 
additivity of effect.  For example, if a deviant height in one individual increases the fitness of the 
actor by 5% and decreases the fitness of the four others in the patch by 3% each, then a deviant 
height in two individuals should increase the fitness of each actor by 2% (2 = 5–3) and decrease 
the fitness of the three others in the patch by 6% each.   
 
The fundamental theorem of inclusive fitness.  With this assumption of additive fitness effects 
between actors, the fundamental theorem says that the mutant allele will increase in frequency 
when the inclusive fitness effect is positive, and will decrease when it is negative.   
 
This is a remarkable result.  It tells us that an "average” deviant individual can tell whether the 
deviant behaviour will increase or decrease in frequency by adding up the effects of its deviation 
on all affected individuals, each one weighted by its relatedness to the individual, and look at the 
sign of that expression.  Its applicability is much wider than our simple example might suggest.  
The genius behind this result is that of the British biologist W.D. Hamilton in a 1964 paper.  It is 
no exaggeration that the appearance of this result revolutionized the evolutionary modeling 
literature, and it is a measure of the depth of the result that this revolution has unfolded gradually 
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over the past 40 years, each insight into the power of the method giving rise in due course to 
others.  This “power” is two-fold––conceptual and computational.  First of all, expression (6) 
provides a heuristic which gives us a powerful way to analyze behaviour and make intuitive 
guesses.  Secondly it gives us a way to make calculations when a straightforward accounting of 
all the different possible local (neighbourhood) configurations in which an allele might find 
itself is completely infeasible. 
 
To implement the result we have to be able to calculate the fitness effects bi and the relatedness 
coefficients Ri and we look at these one at a time. 
 
The fitness effects.  Typically there are different kinds of interactions, some with a greater effect 
than others.  To model this situation, we often group interactions into categories and express 
fitness in terms of average behaviour over a category.  As a simple example, suppose the fitness 
W = W(x, y, z) of a plant depends upon its own height x, the average height y of its two near 
neighbours, and the average height z of its two far neighbours.  Here we have three categories, 
the focal individual and its near and far neighbours.  Note that we expect W to increase with x 
and decrease with y and z.   
 
Now W will not usually be linear in x, y and z, but we can always get the additive effects 
required by the inclusive fitness method (at least approximately) by assuming that the 
behavioural deviations are small enough that a differential approximation is valid.  Thus, we let 
the focal individual have height x* + dx where x* is the established height and the behavioural 
deviation dx is assumed small.  Then the first-order fitness effects are: 

effect on the focal individual:    b0 = dx
x

W
∂
∂      (8) 
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where the partial derivatives are evaluated at the normal height, x = y = z = x*.   In each of (9) 
and (10) we note that the focal individual’s effect on the average category height is dx/2.  The 
inclusive fitness effect is: 
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where Ry  and Rz  are the relatedness of the focal individual to near and far patchmates.  Note that 
equation (6) has 5 summands but (11) has only 3––as it is over categories of individuals grouped 
according to like effects.  
 
Interestingly enough, the expression in the square brackets reminds us of the expression we’d get 
for dW  if we treated y and z as functions of x: 
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This provides a useful heuristic for the inclusive fitness calculation––treat the average phenotype 
y of each category as a function of focal phenotype, take the total derivative of the fitness 
function with respect to focal phenotype, replace dy/dx and dz/dx by the category-specific 
relatedness, and we get an expression for inclusive fitness.   
 
Example: Parasite virulence.  Completely analogous to the plant height model is the question of 
the level of aggressiveness of a parasite within a host––too low and it can't compete against 
others, too high and the life of the host and the group as a whole is endangered.  A simple model 
capturing this tension between within-group competition and prudent use of resources is  
 

W(x,y)  =  ( )yG
y
x  

 
where x determines individual competitiveness, y is the average value of y within the group, and 
G(y) measures the resources available to the group, and is supposed to be a decreasing function 
of y.  Taking dx = 1, equation 11, when simplified, gives us: 
 

∆WIF  =  R
y
W

x
W

∂
∂

+
∂
∂   =  ( ) ( ) ( )R*xGR

*x
*xG ′+−1 .     (13) 

 
Here, R is the average relatedness to the group as a whole, and everything is evaluated at x = y = 
x*.   The first term of (13) treats the total resources G as fixed and measures the gain to the focal 
individual of its increased competitiveness, less the amount that must therefore be lost by a 
random group member, and the second term measures the reduction in total resources available 
(note that G' is negative).  A simple model for G is G(z) = 1–cz , where c is the rate at which 
average group competitiveness reduces available resources.  If we put this into (13), and set the 
expression to zero, we get the ESS to be x* = (1–R)/c.   
 
Relatedness.  The calculation of relatedness (7) requires that we find the E(pi), the average 
mutant frequency in the genotype of the ith neighbour of a random focal allele.  Note that since 
this average is taken over all mutant alleles and a focal individual is deviant in proportion to its 
number of mutant alleles, we can interpret E(pi) as the probability that the ith neighbour of an 
individual of deviant height is deviant.  
 
The calculation of the E(pi) might seem to require complete knowledge of the local distribution 
of the mutant allele.  It is remarkable that we can usually manage with a simple recursive 
argument based on the concept of identity by descent (IBD).  Two genes are said to be IBD if 
they have a common ancestor (with no intervening mutation) some number of generations back.  
It turns out that under mild technical assumptions, two genes chosen in a pair of interactants will 
be either IBD or probabilistically independent. 
 
Now choose a random mutant copy and choose a copy in the ith neighbour of its owner (0≤i≤4).  
Note that E(pi) is the average probability that the second copy is mutant.  Let gi be the 
probability that the two copies are IBD.  If they are not IBD they are independent so that  E(pi)  
=  gi + (1– gi) p .  If we put these into (7) we get  
 

Ri = 
0g

gi           (14) 
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A striking feature of this formula is that it displays relatedness as independent of allele 
frequency.  Recall that we selected the mutant allele at random among those segregating at the 
height locus, and we would certainly expect that its fitness might well depend on its frequency.  
But (14) tells us that under appropriate assumptions this is not the case, and the inclusive fitness 
effect is (allele-)frequency independent. For example, (14) tells us that the relatedness between 
sibs in an outcrossed diploid population is R = (1/4)/(1/2)  =  1/2. 
 
To calculate the gi in our plant population, we must specify the amount of gene flow between 
patches.  As a simple example, assume that the population is effectively infinite and all pollen 
disperses widely but fertilized seeds always remain on their native patch.  The force of the word 
"widely" is that uniting gametes are never IBD.  We assume also that the four patchmates of a 
focal individual are indistinguishable, so that the E(pi) have a common value for 1≤i≤4. 
 
We calculate the gi  recursively.  First of all g0 is clearly 1/2 as uniting gametes are never IBD.  
For 1≤i≤4, gi = g is the probability random genes in two different individuals are IBD.  This can 
be the case only if they both came from previous generation ovules, and that has probability 1/4.  
In this case they were random alleles in "two" plants in the parental patch which might have 
been the same plant (with probability 1/5).  If they were the same plant, they are IBD with 
probability 1/2, and if they were different plants, they are IBD with probability g.  This gives us 
the recursion: 
 

g  =  ⎥⎦
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⎡ + g
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which solves to give g = 1/32.  Hence, R = 1/16.   
 
This possibility of calculating R with a simple recursive argument transforms inclusive fitness 
from being just an interesting concept to being an important analytic tool for the study of 
evolutionary stability. 
 
Reproductive value. 
There is one final aspect of inclusive fitness we have not touched upon and this arises when the 
population consists of individuals of different classes, for example, age classes (adults and 
juveniles), sex classes (male and female) role classes (resident and satellite males, breeder and 
helper females), etc.  In this case we have the problem of how fitness effects on individuals in 
different classes are to be compared, and that’s what reproductive value is designed to 
accomplish. 
 
For example, in our plant population, we might have different age classes (for a perennial 
species) or sexes (for a dioecious species).  In this case a mutant allele might have a different 
effect in different classes, and a deviant individual of a certain class might affect the fitness of 
neighbours of different classes differently, so that the analysis can become complex.  We handle 
this by first calculating the inclusive fitness effect ∆Wj of the mutant allele in a class j individual 
and then ∆WIF is the average of these weighted by the class reproductive values, the relative 
contribution of each class to the future gene pool of the population.  Secondly for each class j, 
we generalize (6) as: 
 
∆Wj = Σvi Ri E(bi)         (15) 
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where vi is the individual reproductive value of neighbour i, defined as its relative contribution 
to the future gene pool of the population.  Here, to obtain a common fitness yardstick, the bi are 
typically measured as percentage increases.  Examples of these calculations are found in the 
literature.   
 
Comments and notes. 
 
Evolutionary stability. Inclusive fitness plays an important role in the analysis of evolutionary 
stability (ESS ref) where we typically must determine whether alleles for a certain trait will 
increase in frequency.  In our patch example, for the established height to be evolutionarily 
stable it must be the case that alternative heights have reduced fitness, and for small deviations, 
that implies a negative inclusive fitness effect.  From (11),  
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for small dx both positive and negative.  This can be the case only when we have the equilibrium 
condition: 
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In practice we would begin the analysis of the model with this equation evaluated at x = y = x*  
and solve it to obtain the ESS value of x*. 
 
Direct fitness. Our approach here was to calculate the fitness effect of a random mutant allele on 
all neighbouring copies and then add these all up over all copies of the allele.  This is the 
standard inclusive fitness approach, but it can be contrasted with an equivalent "direct fitness" 
approach which calculates the fitness effect on a random mutant allele by all neighbouring 
copies and adds these all up.  Sometimes one approach works better than the other, but the 
difference is really in how the accounting is done.   
 
Approximations.  The calculations of inclusive fitness are approximate for several reasons.  First 
of all, the assumptions of additive genetic effects on fitness are crucial to the argument.  These 
are of two kinds: within and between individuals.  Within individuals we have assumed a “semi-
dominance,” that a mutant homozygote is twice as likely to be deviant as a mutant heterozygote.  
And between individuals, we have assumed that the effects several deviant individuals acting 
together can be added.  These are of course unlikely to hold in practice, but they might hold to a 
good approximation for small effects.  Secondly, the action of the deviant allele will usually 
disturb the distribution of the allele but relatedness is calculated in the “neutral” distribution in 
which the deviant allele is not permitted to act.  Again, this approximation can be expected to be 
good when the effects of the deviant behaviour are small. 
 
Haplodiploidy.  Many of the early applications of inclusive fitness concern the phenomenon of 
haplodiploidy (refs) which induces very unusual patterns of relatedness whereby, for example, a 
female is more closely related to her sister than to her own daughter.  This is one explanation for 
the evolution of eusociality, a phenomenon in which some individuals help to raise their siblings 
rather than having any reproductive output of their own. The roots of this hypothesis lie in 
Hamilton's rule which, as mentioned earlier, implies that we expect greater altruism to be 
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directed towards more closely related individuals, in this case towards sisters rather than 
daughters." 
 
The covariance form of relatedness.  The power of the inclusive fitness approach lies in its 
ability to reduce a complex allelic distribution to simple relatedness coefficients R which can be 
calculated by a recursive argument.  In our expression (7) for R, the expectations are over the set 
of mutant alleles.  An alternative formulation of relatedness is obtained by taking the expectation 
over all individuals.  We obtain this form from (7) if we weight each interaction by the genotype 
of the focal individual.  What we get is the covariance form: 
 

Ri = 
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Connections with group selection.  When the population is divided into patches or groups, a 
fruitful point of view is to juxtapose individual fitness with the fitness of the group as a whole.  
It's often the case that what's good for one is bad for the other and evolution seeks a right 
balance.  For example, in our height model, tall individuals do better than their neighbours, but 
groups of tall individuals do worse than groups of short individuals because more energy into 
growth means less energy into reproduction.  Inclusive fitness tells us that high within-group 
relatedness should shift the balance towards the needs of the group.   
 
An intuitive interpretation of high within-group relatedness is that individual similarity within a 
group should be much greater than individual similarity between groups.  If we let p be the 
average allele frequency within each group, then Var(p) is called the between-group variance 
and it is not hard to show that if we take the average of (18) over all members of the group, we 
get  
 

E(Ri)  = ( )
( )0Var

Var
p
p .         (19) 

 
which is the ratio of within-group variance to total variance: 
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