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The theoretical hypothesis that the sex-ratio should be biased towards the sex
with the wider and/or more even dispersal pattern is tested and confirmed with an
inclusive fitness model in a one-dimensional diploid stepping-stone population in
which offspring can remain on their home site or disperse one site to the right or
left. Two models are examined, dispersal of both sexes before mating and male
dispersal before mating followed by dispersal of mated females. €1 1994 Academic

Press, Inc.

INTRODUCTION

Consider a diploid geographically structured sexual population with sex-
specific dispersal of offspring from their native site before mating. If this
dispersal is only partial, or is spatially limited, then, in the formation of the
next generation, we expect a certain amount of competition between same-
sex relatives for reproductive resources (referred to as LRC, local resource
competition). In this situation, a parent should act to minimize the amount
of LRC experienced by her offspring, and in case she has control over her
progeny sex-ratio she should bias this ratio toward the sex that experiences
the least amount of intrasex LRC. In a homogeneous environment, in
which the offspring disperse and then simply compete with their
neighbours, if the male and female dispersal patterns differ, we expect
different levels of LRC among males and females. This should create a
selective force on the sex-ratio and it is this force that I study here. I use
an inclusive fitness argument in a population with a stepping-stone pattern
of dispersal.

I study here two different dispersal scenarios: one in which both sexes
disperse before mating (DDM) and the other in which males disperse
before mating and females disperse after mating (DMD). These scenarios
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differ mathematically: in the second, male gametes disperse twice, first with
the male and second as part of the mated female. In both cases we ask how
the sex-specific dispersal patterns affect the allocation of resources to male
and female production.

As a preliminary test of your intuition, [ pose at this point the following
question. If the male and female dispersal patterns are identical, then in
the DDM model, symmetry will dictate that the sex-ratio should be
unbiased: but what is the case for the DMD model? Should the sex-ratio
still be unbiased, or should it be male-biased of female-biased? (The
answer is obtained by looking along the diagonal « = f line in Fig. 3.)

THE MODEL

The Inclusive Fitness Argument

There are two types of populations one might consider here: dioecious
populations of male and female individuals who produce male and female
offspring and monoecious populations of hermaphrodites who produce
male and female gametes. In an inclusive fitness analysis there is a formal
mathematical equivalence between these two cases, and the results
obtained below apply to both types of population. 1 use dioecious
language, but if “offspring” is replaced by “gamete” and “mated female”
by “seed” or “individual,” the results can be interpreted for a monoecious
population. Both dispersal scenarios are appropriate for a dioecious animal
population, whereas in plant populations, ovules rarely disperse before
fertilization, and the DMD scenario is more appropriate. There is one
mathematical difference between population types, which has to do with
the mechanism of sex-ratio control. In dioecy, this is usually determined by
the genotype of only one parent (often the mother), whereas in monoecy,
it is typically determined jointly by the two contributing gametes. Here,
I in fact make only the latter assumption and suppose sex-ratio control is
determined additively by both parental genotypes. This assumption is
mathematically convenient in that it provides for the simplest calculation of
the relatedness coefficients and gives us a simple formula [Eq. (5)] in the
DDM case. As a check on the sensitivity of my results to this assumption,
I have compared my DDM results (with biparental control--Fig. 2) with
those obtained with the assumption of maternal control and have found
them indistinguishable. That is, the source of sex-ratio control seems to
have negligible effect on the ESS sex-ratio.

The equation for sex-ratio equilibrium is obtained with an inclusive fit-
ness argument (Hamilton, 1964). According to this approach, the selective
effect of an action is calculated as the sum of the fitness on all individuals
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in the population who are affected by the action, each such effect weighted
by the relatedness of the actor to the individual. The sex-ratio equation is
obtained as the condition that, at equilibrium, the inclusive fitness of the
parents through male and female offspring must be equal:

W, =W, (1)

The relatedness of an actor x to a recipient y (Hamilton, 1972; Michod
and Hamilton, 1980) is defined as

where f,, is the coefficient of consanguinity between x and p defined as the
probability that random alleles at a neutral locus in x and y are identical
by descent (Crow and Kimura, 1970). 1 define the following relatedness
coefficients.

mated pair to its own sex i offspring (=1)

mated pair to a random competitor of its own sex / offspring
r2 . mated pair to a random mate of its own daughter

R . mated pair to a random competitor of its daughter’s mate.

Then, for both models, the effect on inclusive fitness through a male
offspring is

DDM and DMD: W, =(n,—Rn)—, (2)

where s is the sex-ratio (proportion of males) and the last term represents
the number of matings that each male can expect. The effect on inclusive
fitness through a female offspring is

DDM:  W,=r—R, (3)
DMD: W, =(r,—R))+ (r] — R.). (4)

The difference between (3) and (4) is explained as follows. In both cases,
an extra daughter provides an extra mating for a related male, and this
(ro) must be added to the inclusive fitness, but the relatedness of the
parents to the competitors of that male (R ) must be subtracted. In the
DDM model, r, =R, and this term drops out.

In a spatially structured population with only local dispersal, there is a
technical problem with this argument—even when the population is
infinite, the equilibrium value of all relatedness coefficients is 1, and W,
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and W, both equal zero. This problem is typically resolved with the intro-
duction of long-range migration with the assumption that long-range
migrants are unrelated to those they encounter. Alternatively, a mutation
rate has the same effect (Crow and Kimura, 1970, p. 470). My approach
here is to assume a small long-range migration rate for males or females or
both. Thus, in these models, there are two types of offspring movement,
dispersal, which is local, and migration, which is long-range. The sex-ratio
results I report below are obtained by taking the limit as the migration rate
approaches zero.

Population Structure: The Stepping-Stone Model

Bulmer and Taylor (1980) analyzed the DDM model for a one-
dimensional population arranged in a circle; they used a one-locus
gene-frequency argument and found that the sex-ratio should be biased
towards the sex with the wider and/or more even dispersal pattern. Here I
propose to use also a one-dimensional configuration, but with an infinite
population arranged along a straight line, the so-called stepping-stone
model. 1 verify the qualitative conclusion of Bulmer and Taylor (1980) and
compare the results for the DDM and the DMD models.

In the stepping-stone model there is a site at every lattice point in space
{1-, 2-, or 3-dimensional) and a single mated female at each site. The female
produces a large number of offspring, who may disperse to neighbouring
sites, or may migrate to a distant site. After the mating and dispersal phases
(following the DDM or the DMD pattern) the mated females on each site

1 -20-p

Male Dispersal

1-2B-v
Female Dispersal

FiG. 1. Male and female dispersal probabilities for both models.
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compete for next-generation occupancy. I assume there are always enough
females to occupy every site.

[ analyze the 1-dimensional model, with sex-specific dispersal to adjacent
sites. Specifically I assume that male offspring disperse one site to the right
or left each with probability o, migrate to a distant site with probability g,
and remain on their natal site with probability 1| —2«—u. The corre-
sponding probabilities for female offspring are f,v, and 1 —28—y,
respectively (Fig.1). In the DDM model, these female offspring are
unmated, and in the DMD model, they are mated.

RESULTS

For both models the calculation of the relatedness coefficients is
discussed in the Appendix. In the limit, as the long-range migration rates
u and v approach zero, Eq. (1) yields the following results.

Dispersal of Both Sexes before Mating (DDM)

The sex-ratio s (proportion of males) is given by the formula

s _a(ﬁ—a+2a\/l—ﬂ—a)
1—s pla—fp+28/1-f—«

and level s-curves for this equation are plotted in Fig. 2. One immediate
and expected feature of this equation is the symmetry in o« and f. If a=f,
we get a sex ratio of s=3.

If 2> f (wider male dispersal), we might expect (5) to give a male bias,
but this is not always the case. The condition for a male bias is

o(f—a+2a /1 —a=F)y>pfla—pF+28/1—a—p),

which reduces to

(5)

(> — B2 ST—a—p—1)>0. (6)

The inequality holds if both factors have the same sign. The factor on the
right is positive if a+ f<3. Thus, we have the following conditions,
illustrated in Fig. 2:

a+pf<2:  malebias when a > f§
a+f>3: female bias when o > 8
x+f=32  sex-ratio s=0.5for all x and .

653:45.2.7
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FiG. 2. Level curves for the equilibrium sex-ratio s for the DDM model: dispersal of both
sexes before mating.

Thus, supposing that males have the wider local dispersal (x> ), as long

as x+ f 1s less than %, the sex ratio is male biased, as expected, but for

x+ B greater than 2, we get a female bias. To explain this, T recall the
results of Bulmer and Taylor (1980) that there are two factors that
promote a bias in favour of a particular sex: the width and the evenness of
the dispersal. It is not so clear how to define evenness in general, but for
our purposes, an even dispersal would be one that fell off monotonely with
dispersal distance (e.g., a normal curve), whereas any non-monotone
behavior (e.g., a U-shaped curve) would contribute to the unevenness of
the dispersal. In this case, when « is large (say, greater than }) any increase
in a increases both the width and the uneveness of male dispersal, and
these affect the male bias in opposite ways. It is clear from the slopes of the
level curves in Fig.2 that for a greater than approximately 32, further
increase in a (for fixed f) moves the sex-ratio towards increased female
production, and thus the effect of greater uneveness overbalances the effect
of increased width of dispersal.
If the one-step dispersal probabilities « and f are smali, then

p 1—s

~

o4 N

(8)
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and this is interpreted in Fig. 2 as the slope of the level s-curve at the
origin. For example, if there is little local dispersal, but those few offspring
who do move to an adjacent patch are 10 times more likely to be male
than female, then the male:female ratio should be 10:1. This relationship
is also found in the numerical results of Bulmer (1986, Table 2) for a patch-
structured population. As « and f increase, with a constant ratio, the sex
ratio bias predicted by (5) becomes much less extreme.

Male Dispersal before Mating followed by Dispersal of Mated Females
(DMD)

The mathematics for this case is more complicated, and a formula for s
is not available. Level s-curves are plotted in Fig. 3. We no longer have,
nor do we expect, the symmetry in o and f§ that we obtained in the DDM
model.

If we do the analysis to first order in « and f (Appendix) we get the
formula

(9)

04
Mated
Female
Dispersal
B 0.3

0.2

0.1

L !

0.1 0.2 03 0.4 05

Male Dispersal o

Fi1G. 3. Level curves for the equilibrium sex-ratio s for the DMD model: male dispersal
before mating followed by dispersal of mated females.
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which should be a good approximation when the one-step dispersal
probabilities 2 and 8 are small. Solving (9) for f/z, the level s-curves at the
origin should approximate straight lines of slope

1_ .
§:3s—51 (10)

and this can be verified from Fig. 3. If only males disperse (=0}, Eq. (10)
gives us a complete male bias (s=1); if only mated females disperse
(2 =0), we get a modest female bias (s = 1); and if dispersal rates are equal
(x=p), we get an unbiased ratio (s=0.5).

[t is interesting to look more carefully at the case o = f§, which is found
along the diagonal line in Fig. 3. For small o and f, s is near 0.5, as
remarked above. As x and § increase, s becomes slightly female biased; but
further increase in « and f brings the sex-ratio back to 0.5 (at a=f=1),
and for a=pf>1, the sex-ratio becomes male biased. How are we to
understand these opposite effects? An examination of Eqgs. (2) and (4)
shows that the double male dispersal can promote a sex-ratio bias in two
opposite ways. First of all, the wider male dispersal tends to make my sons’
competitors less closely related to me than those of my daughter (R, < Ry),
which means r,— R, >r.— R, and this increases W, over W, and
promotes a male bias. On the other hand, the tendency of my daughter to
disperse after mating, makes her mate more closely related to me than his
competitors, making r, — R positive, and this increases W, over W and
promotes a female bias. For « and f near zero, the sex ratio is unbiased,
and these two factors must cancel one another out. As « and f increase,
the second factor must predominate, giving a female bias; but for large «
and f3, the first factor must predominate, giving a male bias.

DiIscUSsSION

The idea that parents should bias their sex ratio towards the sex that
competes less intensely goes back to Hamilton (1967) and has since been
widely discussed (for example, Maynard Smith, 1978; Bulmer and
Taylor, 1980; Taylor, 1981; Charnov, 1982; Silk, 1983, 1984; Frank, 1986;
Bulmer, 1986; Kirkpatrick and Bull, 1987; Taylor, 1988). An important
force generating differential LRC is sex-specific dispersal, but there are very
few field studies which focus on the relationship between dispersal patterns
and the sex ratio (Clutton-Brock and Iason, 1986). An exception to this is
perhaps found in studies of primate populations. In a now classic study by
Clark (1978) an observed male bias in populations of African galagos was
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credited to a wider dispersal pattern by young males than by females. More
recently Johnson (1988) examined 15 genera of primates and found that the
birth sex ratio was more male biased in genera in wich philopatry was
female biased. And Chapman et al. (1989b) examined data from five groups
of primates and showed that in those groups in which females dispersed
(spider monkeys and chimpanzees) the sex ratio was female biased, and in
those groups with male dispersal (baboons, vervets, and langurs) the sex
ratio was male biased only in the langurs. They point out that the negative
results for the other two groups can easily be explained by the possibility
that intrasex interactions may be positive ( predator warning, grooming) as
well as competitive and this violates the basic assumption of the LRC
model (Taylor, 1981).

I have assumed that the environment is inelastic (Hamilton, 1971;
Taylor, 1992} in the sense that it does not “expand” in response to changes
in offspring density. For example, in terms of the stepping-stone model
considered here, an increased production of offspring does not create new
breeding sites or mating opportunities. Were this to be the case, we expect
a reduction in LRC, which should particularly affect the sex with the
higher level of competition and consequently reduce the bias in the sex
ratio. Chapman et al. (1989a), in a study of a species of spider monkey
with female dispersal, report a less female-biased sex ratio in areas of high
productivity.

The models examined here confirm the results of Bulmer and Taylor
(1980) and Bulmer (1986) that the sex ratio should be biased in favour of
the sex which disperses more widely and/or more evenly. This is
illustrated in both Figs. 2 and 3, if one of « or § is held constant and the
other is increased; geometrically, this corresponds to tracking along
horizontal or vertical lines. For small dispersal rates a and f§ (say less
than 0.3), as each rate increases, so does the ‘width” of dispersal, and so
does the allocation towards that sex. But for large dispersal rates (say
greater than 0.4) this is not usually the case, and in fact there is a dif-
ference between the two models. In the DDM model (Fig. 2) as the rate
increases past 0.4 the allocation towards that sex decreases, and this can
be explained as the effect of a less even dispersal pattern. In the DMD
model (Fig. 3) we get this same effect for increases in the dispersal rate
B of mated females (for o <0.4), but not for increases in the rate « of
males: as « increases, the allocation towards males always increases. This
is explained by noting that the overall male dispersal pattern is much
more even than the female pattern, because of the double dispersal of
males. In fact, the effect of this greater overall evenness of male dispersal
can be seen in Fig. 3 by simply noting that the region of male bias (to
the right of and below the s=0.5 curve) is somewhat larger than the
region of female bias.
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The DMD model has formal application to sex allocation in
hermaphroditic plants, with « and § denoting the dispersal rates of pollen
and (fertilized ) seeds, respectively. However, it is important to note that the
basic assumption of the stepping-stone model, of a tradeoff between the
pollen dispersed to other sides and that used for self-fertilization, is not
usually considered to apply to plant populations (Charlesworth and
Charlesworth, 1981), rather it is often supposed that neglible polien is
required for selfing. Another point to note is the standard assumption in
the modelling of plant populations that selfed offspring are on average less
fit than outcrossed offspring. In both models analyzed here, there is a
positive probability of sibmating, but 1 have assumed no fitness penalty for
such matings. I note that there are also practical problems in applying sex
allocation models to hermaphroditic plant populations such as the problem
of deciding how to measure sex allocation in the field (Lovett Doust and
Lovett Doust, 1987).

Possibly of as much interest as the sex ratio results themselves are the
technical considerations which arise in the analysis of the model. Foremost
among these are the techniques of inclusive fitness (Hamilton, 1964); the
analysis here illustrates the power of this approach, which is known, under
fairly general conditions (e.g., weak selection and additivity of gene action),
to give the same equilibrium results as a one-locus genetic model
(Taylor, 1989). In the stepping-stone model, each site is ultimately
“connected” to every other site, requiring us to work with an infinite
collection of relatedness coefficients x,. However, there is an elegant
eigenvector approach to the analysis, outlined in the Appendix for the
DDM model. [ propose that stepping-stone models deserve more
prominence in the study of spatially structured social behaviour.
Generalizations of this model to higher dimensions or to more general
local dispersal patterns are mathematically more complex.

The sex ratio results obtained here are stable from an inclusive fitness
point of view. That is, if the population sex ratio s deviates from the equi-
librium value given, for example, by Eq. (5), then the inclusive fitness of a
female through sons and daughters will no longer be equal, and by making
the sex with the higher inclusive fitness, she will be helping to restore the
population sex ratio to the equilibrium value. This can be seen from (2): an
increase in the population sex ratio s causes a decrease in W, which
favors female production and promotes a decrease in 5. 1 have shown
(Taylor, 1989) that this implies that, in a one-locus genetic model, the equi-
librium will be “m-stable,” that is, stable to fluctuations in the population
sex ratio.

Another interesting technical device is the introduction of a small long-
range migration rate to prevent the relatedness coefficients from all being
unity. What I mean here by *“small” is that the sex ratio results are
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obtained by taking the limit as the migration rate approaches zero. This
limiting technique is important, and I illustrate it with a mathematically
simpler example of an infinite population organized into discrete patches of
N mated females. After breeding, male offspring migrate with probability u
to a random patch, and female offspring remain at home. Mating then
takes place at random on each patch, and the mated females compete for
the N breeding spots. A standard inclusive fitness argument provides the
equilibrium sex ratio { proportion of males)

_14(N+1)—p(N+3)
T2 4N—u(N+1)

(11)
The limit of this as u approaches zero is
§==— (12)

and is male biased. Note that if we set g =0 in the original model, each
patch is a closed finite population, and the equilibrium sex ratio, by
Fisher’s (1930) standard argument, should be %; that is, the limiting sex
ratio (12) is not the same as the sex ratio, 3, of the population with no
longe-range migration. This behaviour is typical of this type of limiting
process; for a similar example of dispersal of mated females in a
haplodiploid population see Taylor (1988, p. 162). For our purposes, this is
a nice property; it gives us a candidate for the sex ratio which does not
require us to specify the long-range migration rate and which applies as
long as this rate is small and non-zero.

APPENDIX

I use the integers to index the sites and let o denote the probability that
a male will disperse from site j to site j+ k, with b} the corresponding
probability for a (mated) female. Thus, for both models, af =a*,=2,
a¥=1—2a—u, b¥=»b*,=f,and bF=1—-2f—v. Now I let a, or b, be
the probability that a male or (mated) female native to site j will arrive at
site j + k after all dispersal has occurred. Then, for the two models:

DDM: a,=a} by=b¥ (13)
DMD:  a,=Z%,af_,b*  by=bf. (14)

I define the following relatedness coefficients.
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X, mated pair on any site j to the mated female on site j+ &
¥, mated pair on any site j to the next-generation male on site j+ k
z, mated pair on any site j to the next-generation female on site
Jt+k.
Then
Ye=2x, 4,

Zk=2,.xk,,vb,-

and the x, are determined as solutions to the one-generation recursion
equations

xXo=1
o (15)

xp=g (qay+ab,+ba,+bb,)x ., (k #0).

Ik

In terms of these geographical coefficients, the parent—offspring
coefficients defined in the text are obtained as follows:

r,—=.\‘0
R,=2a,y, (16)
Ri=2b;z;.

And for the DMD model
r;=2afkx,
F ) } (17)
R =Zjbk,-y,‘

Dispersal of Both Sexes before Mating (DDM)

I follow the approach of Kimura and Weiss (1964) and I restrict atten-
tion to the index set k= 0. The recursion (15) for the x, has the form

Xpe=A(x, 2+ X, 0)+ Blxp 1+ Xk 1)+ Cxy (k=1) (18)

with the convention that x ,=x,, where 44=(x+f)% B=(x+ f)
(1—ax—pB—pu—v), and 2C=(a+ B +2(1 —a— f—pu—v)>. I now show
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that, with the condition x,=1, Eq. (18) has a unique bounded solution.
I first write Eq. (18) in the matrix form

Xk 42 -B (1-C) —-B -4 Xi g1

X4 =J_ A 0 0 0 Xy (19)
X Al O A 0 0 Xp oy

Xp oy 0 0 A 0 Xp_o

The solutions of (19) are linear combinations of the eigenvectors of the
matrix. Because of the structure of the matrix (the subdiagonal I's)
the eigenvectors are of the form x, = A%, where A is the corresponding
eigenvalue. To get a bounded solution of (18) we must have |4 < 1. The
characteristic polynomial of the matrix is

pAy=Ai*+ Bi*+(C—1)i’+ Bi+ A (20)

When p=v=0, 4=11s a root of p(4), as expected (x, =1 is a solution),
and in fact it is a double root—at y=v =0, p factors as

pA)=(A—=1) q(2), (21)
where

g(A)=AL+ (B+2A)A+ A.

The roots of ¢(/) are both negative (use the quadratic formula), and one
of them, which I denote by ¢, is between —1 and 0. Now what happens to
these four roots as u+ v increases from 0? It is not hard to show, from
(20), that when p+v>0, p(1)<0; it follows that the double root A=1
resolves into two roots, one just above 1 and the other, which I denote by
0, just below 1. Of course, ¢ will also change, but since the p-graph has
nonzero slope at ¢, the change in ¢ will be first order in u+ v. Thus, for
u+ v close to zero, there will be two roots of (20) for which 4] < 1, and

these are
O=1—-0(/u+v)
and
¢=&—_lrﬁ(2,/l—a——ﬂ—2+a+[f)+0(,u+v). (22)

A standard technical argument is used to show that 8 differs from 1 by a
quantity that is first order, not in g+ v, but in its square root. This reflects
the parabolic nature of the p-graph in a neighbourhood of A =1, displayed
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in the quadratic dependence of p on 4 —1 in (21). Since x, can only use
eigenvalues which are absolutely less than 1, it must have the form

X, = c0 + dg*. (23)
The boundary conditions x,=1 and x_, =x, allow us to find ¢ and d. We
get
o =0—¢)  (1-0)1-9)
- 1+06 1+ ¢
and (24)
(1-0%)(1—¢%)
X;=1——7r"———x1-2(1 - 0)(1 —4),
== 21-0)(1-9)

where the approximations are first order in 1 — §. Put these into (23), and
then calculate the relatedness coefficients (16). When these are put into (2)
and (3), the equilibrium equation (1) yields the sex-ratio formula (5).

Male Dispersal before Mating followed by Dispersal of Mated Females
(DMD)

In this case the recursion equations (15) were solved numerically for
each value of « and 8. Of course, the solution {x,} is a vector of infinite
length, and the computer could only work with a truncated version. My
calculations were performed with an 11-vector; that is, I set x, =0 except
in the range —6<k<6. To check my results, I repeated a number of
calculations with 21-vectors and 41-vectors. The x-values obtained in each
case were of course quite different, but the resulting sex-ratio equilibria, for
each o and S, differed from the ll-vector calculation by no more than
0.001. The finding that the results are robust to variations in the effective
dimension of x was happy (and unexpected).

Now I do the analysis to first order in the dispersal probabilities « and
p. 1 assume p=v=0. Then from (14)

ag=1-2(ax+f) a=a_=a+f
bo=1-28 b,=b_=§
Yo=Xo—2(a+ )1 ~x,) yi=y_1=x,—(@+B)2x, —xq—x,)

Zo=xo—2p(1 —x,) zy=z_=x,—B(2x, — x5 x;).
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When these are put into (16) and (17), we get
Ro=1—-4(x+ )1 —x,)
Ri=1—-48(1 —x,)
ro=1-2a(l—-x,)
RL=1-(2a+4p)(1—x,).

When these are put into Egs. (3) and (4), the equilibrium equation (1)
gives us (9).
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