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Summary

Many causal questions involve interactions between units, also known as interference, for example
between individuals in households, students in schools, or firms in markets. In this paper we formalize the
concept of a conditioning mechanism, which provides a framework for constructing valid and powerful
randomization tests under general forms of interference. We describe our framework in the context of two-
stage randomized designs and apply our approach to a randomized evaluation of an intervention targeting
student absenteeism in the school district of Philadelphia. We show improvements over existing methods
in terms of computational and statistical power.

Some key words: Causal inference; Conditional randomization test; Exact test; Interference.

1. Introduction

Classical approaches to causal inference assume that units do not interact with each other, known as the
no-interference assumption (Cox, 1958). Many causal questions, however, are inherently about interference
between units (Sobel, 2006; Hudgens & Halloran, 2008), and standard approaches often break down. For
example, randomization tests on sharp null hypotheses of no effect (Fisher, 1935) are more challenging
in the presence of interference because these hypotheses are usually not sharp when there are interactions
between units.

Aronow (2012) and Athey et al. (2018) addressed this issue by proposing conditional randomization
tests restricted to a subset of units, often called focal units, and a subset of assignments for which the
specified null hypothesis is sharp for every focal unit. While the randomization-based approaches in these
papers have advantages over model-based approaches (Bowers et al., 2013; Toulis & Kao, 2013), they either
explicitly forbid any conditioning that depends on the observed treatment assignment (Athey et al., 2018)
or only give limited guidance on how to carry out such conditioning (Aronow, 2012). This constraint
may affect testing power because, under interference, realized interactions between units depend on the
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treatment assignment. The constraint also makes implementing the procedure as a permutation test more
difficult, which is an often-neglected practical problem.

In this paper we develop a framework for constructing valid and powerful randomization tests under
interference. To do so, we formalize the concept of a conditioning mechanism. The proposed framework
enables flexible conditional randomization tests that can condition on the observed treatment assignment.
Current methods for randomization tests in the presence of interference are special cases of our framework
and correspond to mechanisms that generally fail to leverage the problem structure effectively. For example,
current methods often include units whose outcomes provide no information for the null hypothesis of
interest, leading to unnecessary loss of power. In our framework, it is straightforward to exclude such
units from the test via additional conditioning. Furthermore, more flexible conditioning can typically yield
permutation tests that are straightforward to implement, resulting in computational gains.

We apply this approach to two-stage randomized designs, which are often used for assessing causal
effects related to interference (Hudgens & Halloran, 2008). First, we show how to apply our framework in
this setting by suggesting concrete conditioning mechanisms for various hypotheses. Second, we analyse
data from a two-stage randomized evaluation of an intervention targeting student absenteeism in the school
district of Philadelphia. Our test is more powerful than alternative methods when applied to the absenteeism
study, with a roughly one-third increase in statistical power. Furthermore, our method yields a permutation
test on the exposures of interest; alternative methods cannot be implemented as permutation tests.

2. General results for randomization testing

2.1. Classical randomization tests

Consider N units indexed by i = 1, . . . , N , and a binary treatment assignment vector Z ∈ {0, 1}N ,
where the ith component, Zi, is the treatment assignment of unit i. The assignment vector is sampled with
probability pr(Z). Denote by Yi(Z) the scalar potential outcome of unit i under assignment vector Z . Under
the stable unit treatment value assumption (Rubin, 1980), the potential outcome of unit i depends only on
its own assignment. Each unit therefore has two potential outcomes, typically denoted as Yi(1) and Yi(0),
which correspond to outcomes when unit i receives treatment or control, respectively. A classic goal is to
test the sharp null hypothesis of zero treatment effect for all units,

H0 : Yi(1) = Yi(0) (i = 1, . . . , N ). (1)

We can assess H0 by randomization (Fisher, 1935). Let T (Z | Y ) denote the test statistic; for example,
T (Z | Y ) = Ave(Yi | Zi = 1) − Ave(Yi | Zi = 0) is the usual difference in means between treated
and control units, where Ave denotes sample average. Let T obs = T (Zobs | Y obs) denote the observed
value of the test statistic, where Zobs ∼ pr(Zobs) is the observed assignment vector in the experiment, and
Y obs = Y (Zobs) is the corresponding observed outcome vector. Finally, calculate the p-value

pval(Zobs) = EZ [I{T (Z | Y obs) � T obs}], (2)

where I(·) is the indicator function, and EZ is the expectation with respect to the distribution of Z . This test
is valid at any level α; that is, pr{pval(Zobs) � α} � α, for all α ∈ [0, 1] when the null hypothesis is true.
The key property that ensures validity of (2) is that, under H0, the value of T (Z | Y ) can be imputed for
every possible counterfactual assignment vector Z ′, using only outcomes Y obs observed under Zobs. This
property allows us to construct the correct sampling distribution of the test statistic. We state the property
formally in the following definition, as it will be useful for extending the classical randomization test to
settings with interference.

Definition 1. A test statistic T (Z | Y ) is imputable with respect to a null hypothesis H0 if for all Z , Z ′,
for which pr(Z) > 0 and pr(Z ′) > 0,

T {Z ′ | Y (Z ′)} = T {Z ′ | Y (Z)}. (3)
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The key property of an imputable test statistic is that we can simulate its sampling distribution under the
null hypothesis H0, even though we only observe one vector of outcomes, namely Y (Zobs). In the classical
setting with no interference, (3) follows from the stable unit treatment value assumption and the sharp null
hypothesis in (1), which together imply that Y (Z ′) = Y (Z), for any possible Z , Z ′. Thus, in the classical
setting all potential outcomes are imputable, and, by extension, any test statistic is imputable.

2.2. Randomization tests via conditioning mechanisms

We now demonstrate that we can obtain valid tests without requiring the stable unit treatment value
assumption or a sharp null hypothesis. To do so, we introduce the concept of a conditioning event, C,
which is a random variable that is realized in the experiment; we leave this concept abstract for now and
give concrete examples below. The key idea is to choose an event space and some conditional distribution
m(C | Z) on that space, such that, conditional on C, a test statistic T (Z | Y , C) is imputable with respect to
the null hypothesis. We refer to m(C | Z) as the conditioning mechanism; m(C | Z) and the design pr(Z)

together induce a joint distribution, pr(Z , C; m) = m(C | Z)pr(Z). With these concepts, we can now state
our first main result.

Theorem 1. Let H0 be a null hypothesis and T (Z | Y , C) a test statistic, such that T is imputable with
respect to H0 under some conditioning mechanism m(C | Z); that is, under H0,

T {Z ′ | Y (Z ′), C} = T {Z ′ | Y (Z), C}, (4)

for all Z , Z ′, C for which pr(Z , C; m) > 0 and pr(Z ′, C; m) > 0. Consider the procedure where we first draw
C ∼ m(C | Zobs), and then compute the conditional p-value,

pval(Zobs; C) = EZ [I{T (Z | Y obs, C) > T obs} | C], (5)

where T obs = T (Zobs | Y obs, C), and the expectation is with respect to pr(Z | C) = pr(Z , C; m)/pr(C). This
procedure is valid at any level, that is, pr{pval(Zobs; C) � α | C} � α, for any α ∈ [0, 1], under H0.

Equation (4) is the critical property that the test statistic is imputable, and directly generalizes (3). As
before, the key implication of (4) is that we can simulate from the null distribution of T {Z | Y (Z), C},
given any possible conditioning event C. Theorem 1 allows us to extend conditional randomization testing
to more complicated settings, including testing under interference. Before turning to these settings, we
briefly demonstrate that classical examples of randomization testing are special cases of Theorem 1.

Example 1. Let the conditioning event space be such that T (Z | Y , C) ≡ T (Z | Y ) and C ⊥⊥ Z . Then
the procedure in Theorem 1 reduces to the classical Fisher randomization test described in § 2.1.

Example 2. Hennessy et al. (2016) propose a conditional test that adjusts for covariate imbalance,
quantified via a function B(Z , X ), where X denotes a covariate vector. For instance, B may be the vector
of covariate means in each treatment arm, B(Z , X ) = {Ave(Xi|Zi = 1), Ave(Xi|Zi = 0)}. Let pr(Z) =
Unif {(0, 1)N } be a Bernoulli randomization design, and consider the conditioning mechanism defined as
pr(Z , C) = I{B(Z , X ) = C}pr(Z). Let T (Z | Y , C) ≡ T (Z | Y ) be independent of C, and let H0 be as in (1).
Then, the procedure of Theorem 1 corresponds exactly to that of Hennessy et al. (2016).

3. Randomization tests for general exposure contrasts

3.1. General exposure contrasts

We now turn to constructing valid randomization tests in the presence of interference. Following Manski
(2013) and Aronow & Samii (2017), we consider an exposure mapping hi(Z) : {0, 1}N → H, where H is
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an arbitrary set of possible treatment exposures equipped with an equality relationship. Given an exposure
mapping, a natural assumption that generalizes the classical stable unit treatment value assumption is

Yi(Z) = Yi(Z
′) (i = 1, . . . , N ) for all Z , Z ′ for which hi(Z) = hi(Z

′). (6)

This assumption states that potential outcomes are functions only of the exposure, rather than of the entire
assignment vector. In the most restrictive case of no interference, the exposure mapping is hi(Z) = Zi; in the
most general case without any restrictions on interference, the exposure mapping is hi(Z) = Z . An example
of an intermediate case is if hi(Z) = ∑

j∈Ni
Zj, where Ni is the set of unit i’s neighbours in some network

between units, and the exposure mapping of i is therefore the number of is treated neighbours (Toulis &
Kao, 2013). In these examples, we implicitly defined H = {0, 1}, H = {0, 1}N , and H = N, respectively.

We can now formulate hypothesis tests on contrasts between treatment exposures. Let {a, b} ⊆ H be
two exposures of interest. The null hypothesis on the contrast between exposures a and b is

H0 : Yi(Z) = Yi(Z
′) (i = 1, . . . , N ) for all Z , Z ′ for which hi(Z), hi(Z

′) ∈ {a, b}. (7)

The classical sharp null hypothesis in (1) is a special case of (7), with H = {a, b} = {0, 1}. Under the no
interference setting of (1), we can permute the vector of unit exposures {a, b} by permuting the treatment
assignment vector because the null hypothesis contains all possible exposures. In most interference settings,
however, the null hypothesis in (7) is not sharp because it only considers a subset of possible exposures.
As a result, observing Y (Zobs) gives only limited information about counterfactual outcomes Y (Z ′), with
Z ′ |= Zobs. Since hi may have arbitrary form, we cannot permute unit exposures by naively permuting the
treatment assignment vector.

3.2. Constructing valid tests for general exposure contrasts

Testing a contrast hypothesis as in (7) is challenging because only a subset of units is exposed to
exposures a or b, and only for a subset of assignment vectors. We therefore construct conditioning events
in terms of both units and treatment assignment vectors. Specifically, let C = {(U , Z) : U ⊆ U, Z ⊆ Z}
be the space of conditioning events, where U denotes the power set of units, and Z denotes the power set
of assignment vectors. For some conditioning event C = (U , Z) ∈ C, the conditioning mechanism can be
decomposed, without loss of generality, as

m(C | Z) = f (U | Z)g(Z | U , Z), (8)

where f and g are distributions over U and Z, respectively. Given conditioning event C = (U , Z), we
consider test statistics, T (Z | Y , C), that depend only on outcomes of units in U ; following terminology
in Athey et al. (2018), we call U the set of focal units. For example, we can set T (Z | Y , C) to be the
difference in means between focal units exposed to a and units exposed to b:

T (Z | Y , C) = Ave{Yi | i ∈ U , hi(Z) = a} − Ave{Yi | i ∈ U , hi(Z) = b}. (9)

Theorem 2. Let H0 be a null hypothesis as in (7), let m(C | Z) be a conditioning mechanism as in (8),
let C = (U , Z), and let T be a test statistic defined only on focal units, as in (9). Then, T is imputable under
H0 if m(C | Z) > 0 implies that Z ∈ Z , and for every i ∈ U and Z ′ ∈ Z , that

hi(Z
′) ∈ {a, b}, hi(Z) ∈ {a, b}, (10)

or

hi(Z
′) = hi(Z), hi(Z) /∈ {a, b}. (11)

If T is imputable the randomization test for H0 described in Theorem 1 is valid at any level α.
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Building on Theorem 2, we can construct a family of valid conditional randomization tests by enumer-
ating the assignment vectors for which conditions (10) and (11) hold. As an example, for any choice of
f (U | Z) we could define g(Z | U , Z) as follows:

g(Z | U , Z) = 1, only if Z = {Z ′ ∈ Z : Equations (10) and (11) are satisfied for Z ′}. (12)

With this definition, g is degenerate, and so the conditioning mechanism m(C | Z) is indexed solely by the
conditional distribution, f , of focal units; we denote these conditioning mechanisms m[f ]. Our methodology
provides many possible conditioning mechanisms that yield valid conditional randomization tests. We can
select conditioning mechanisms with desired characteristics, such as high power. For example, we can
choose f to maximize the expected number of focal units whose outcomes are informative about H0. We
refer to this set of units as the set of effective focal units, eff (U), where eff (U) = {i ∈ U : hi(Zobs) = a or b}.
Similarly, we could ensure that the number of possible randomizations is also large, and maximize the
quantity |eff (U)||Z|. The choices should be tailored to the specific application.

4. Application: interference in two-stage randomized trials

4.1. Two-stage randomized trials

We now turn to the use of conditional randomization tests in two-stage randomized trials, which are
used to assess spillovers between units (Hudgens & Halloran, 2008). Specifically, we consider the setting
of Basse & Feller (2018), in which N units reside in K households indexed by k = 1, . . . , K . In the first
stage of the two-stage randomized trial, K1 households are assigned to treatment, completely at random. In
the second stage, one individual in each treated household is assigned to treatment, completely at random.
As before, Zi ∈ {0, 1} is the assignment of unit i, and Z = (Z1, . . . , ZN ) is the entire assignment vector.
There is a residence index Rij, such that Rij = 1 if unit i resides in household j, and is 0 otherwise. Let
[i] = ∑

j jRij denote the household wherein unit i resides. Finally, let W = (W1, . . . , WK) denote the
assignment vector on the household level, so that Wj = ∑

i ZiRij.
The stable unit treatment assumption is not realistic in this context, so we make two assumptions on the

interference structure that will imply a specific exposure mapping. First, we make the partial interference
assumption (Sobel, 2006): units can interact within, but not between, households. Second, we make the
stratified interference assumption (Hudgens & Halloran, 2008): unit i’s potential outcomes only depend
on the number of units treated in the household, here 0 or 1, rather than the precise identity of the treated
unit. Manski (2013) calls this the anonymous interactions assumption. See Hudgens & Halloran (2008)
for additional discussion.

These two assumptions can be expressed by the exposure mapping hi(Z) = (Zi, W[i]). Since the potential
outcome of unit i depends only on hi(Z) by the assumption in equation (6), for brevity we will use Yi(Zi, W[i])
to denote the value of Yi(Z). Thus, unit i’s potential outcome can take only three values:

Yi(Z) ∈ {Yi(0, 0), Yi(0, 1), Yi(1, 1)},
that is, Yi(0, 0) if unit i is a control unit in a control household; Yi(0, 1) if unit i is a control unit in a treated
household; and Yi(1, 1) if unit i is a treated unit in a treated household. The fourth combination, Yi(0, 1),
is not possible because when unit i is treated, household [i] is also treated. Thus, the space of exposures is
H = {a, b, c}, with a = (0, 0), b = (0, 1), c = (1, 1).

4.2. A valid test for spillovers in two-stage designs

We now focus on testing the null hypothesis of no spillover effect:

H s
0 : Yi(0, 0) = Yi(0, 1) (i = 1, . . . , N ). (13)

The Supplementary Material contains analysis and results for the null hypothesis of no primary effect,
H p

0 : Yi(0, 0) = Yi(1, 1), for every unit i. Equation (13) is a special case of the exposure contrast as defined
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in (7), with a = (0, 0) and b = (0, 1). As in § 3.2, we set the test statistic to be the difference in means
between the two exposures. The challenge is to find a conditioning mechanism that guarantees validity
while preserving power.

We impose two constraints on our choice of focal units. First, units that are exposed to c = (1, 1)

are excluded from being selected as focal units because these units do not contribute to the test statistic.
Equivalently, we want to exclude units assigned to Zi = 1 from being focal. This is an example of
conditioning using observed assignment Z . Second, we choose a single nontreated unit at random from
each household as the focal unit. In the Supplementary Material, we show that choosing one focal unit per
household leads to a randomization test that is equivalent to a permutation test on the exposures of interest,
a = (0, 0) and b = (0, 1), which simplifies computation.

Proposition 1. Consider the following testing procedure.

Step 1. In control households (Wj = 0), choose one unit at random. In treated households (Wj = 1),
choose one unit at random among the nontreated units (Zi = 0).

Step 2. Compute the distribution of the test statistic in equation (9) induced by all permutations of
exposures on the chosen units, using a = (0, 0) and b = (0, 1) as the contrasted exposures.

Step 3. Compute the p-value.

Steps 1–3 outline a procedure that is valid for testing the null hypothesis of no spillover effect, H s
0 .

We show in the Supplementary Material that the procedure in Proposition 1 is an application ofTheorem 2
with a conditioning mechanism defined by

f (U | Z) = Un

{
U ⊆ U : ZiI(i ∈ U) = 0,

∑
i′

I(i′ ∈ U)Ri′j = 1, for every i, j

}
. (14)

As discussed earlier, the first constraint in (14) ensures that we only select focal units, i ∈ U , that are not
assigned to treatment; the second constraint restricts the focal set to one unit per household.

4.3. Comparison with existing methods

Our approach builds on several existing methods. Aronow (2012), who outlines some ideas that we
discuss here, develops a test for the null hypothesis of no spillover effect. Although that paper does not
exclude conditioning on Z , it gives limited guidance on how such conditioning would work. Athey et al.
(2018) extend the method of Aronow (2012) to a broader class of hypotheses, but explicitly forbid the
selection of focal units to depend on the realized assignment Z . In the Supplementary Material, we show that
their approaches are equivalent to choosing a set of focal units independent of Z ; that is, f (U | Z) ≡ f (U).
In fact, in the two-stage design we consider, the methods of Aronow (2012) and Athey et al. (2018) are
identical; see the Supplementary Material.

Athey et al. (2018) recognize that choosing focal units completely at random often yields tests with low
power. They therefore propose more sophisticated approaches for selecting focal units using additional
information. For instance, Athey et al. (2018) advocate selecting focal units via ε-nets: first select a
focal unit, possibly at random, then choose subsequent focal units beyond a graph distance ε from that
focal unit. In our applied example, this approach suggests choosing one focal unit at random from each
household:

f (U | Z) ≡ f (U) = Un

{
U ⊆ U :

∑
i

I(i ∈ U)Rij = 1, for every j

}
. (15)

Our proposed design in (14) has two main advantages over the design in (15). First, we can implement
our design via a simple permutation test, as described in Proposition 1. This is not always possible for the
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design in (15). In fact, the Supplementary Material shows that a conditioning mechanism based on (15) is
a permutation test only when households have equal size, which does not hold in our application. In the
absence of a permutation test, an analyst working with the conditioning mechanism defined by (15) has to
calculate the support of g in (12) fully and exactly, and take uniform draws over that set to sample from
the correct randomization distribution. This calculation is exponentially hard, and there are no theoretical
guarantees for when the test of Athey et al. (2018) can generally be implemented as a simple permutation
test.

Second, unlike in our proposed design, the design in (15) may include treated units as focal units.
Since treated units are not part of the effective focal set for testing the null hypothesis of no spillover
effect, including them will reduce power. In particular, our design will always have at least as many
effective focal units as the design in (15), and at least as many assignment vectors in the randomization
test. To quantify this, suppose that all households have n units. We show in the Supplementary Material
that for the choice of f (U | Z) = f (U) in (15), the number of effective focal units has distribution
|eff(U)| ∼ K −K1 +Bi(K1, 1/n), where K is the number of all households, and K1 is the number of treated
households, so E {|eff(U)|} = K − K1(1 − 1/n). By contrast, the choice of f (U | Z) in (14) leads to a
number of effective focal units that is always equal to K , the number of all households. In the experiment
we describe next, there are 3169 households with n = 2 units. Restricting to this subset, the design in (15)
has an average of 2123 effective focal units, a reduction of one-third from our proposed design.

Finally, Rigdon & Hudgens (2015) propose a method for calculating exact confidence intervals in two-
stage randomized designs with binary outcomes. However, it is not applicable to our setting with continuous
outcome, nor is the proposed approximation well-suited for tests of a given null hypothesis.

4.4. Application to a school attendance experiment

We illustrate our approach using a randomized trial of an intervention designed to increase student
attendance in the school district of Philadelphia (Rogers & Feller, 2018). Following the set-up in Basse
& Feller (2018), we focus on a subset of this experiment with N = 8654 students in K = 3876 multi-
student households, of which K1 = 2568 were treated. For this subset, the district sent targeted attendance
information to the parents about only one randomly chosen student in that household. The outcome of
interest is the number of days absent during the remainder of the school year. Following Rosenbaum
(2002), we focus on regression-adjusted outcomes, adjusting for a vector of pre-treatment covariates,
including demographics and prior year attendance. Additional details on the analysis are included in the
Supplementary Material, including results for the primary effect.

To assess spillovers, we sample 100 sets U (l) (l = 1, . . . , 100) for both ours and Athey et al. (2018)’s
choice of function f (U | Z). For each set, we compute p-values for the null hypothesis of no spillover
effect H s

0 in (13) and report whether it rejects with p < 0.05. Overall, the test using Athey et al. (2018)’s
method rejects the null hypothesis of no effect for 66% of focal sets; the test using our method rejects the
null hypothesis of no effect for 92% of focal sets.

We also obtain confidence intervals and Hodges–Lehmann point estimates by inverting a sequence of
randomization tests under an additive treatment effect model, Yi(1, 0) = Yi(0, 0) + τ s (i = 1, . . . , N ). For
each focal set, obtaining these quantities is straightforward given U via standard methods (Rosenbaum,
2002). Aggregating information across focal sets, however, remains an open problem; we discuss this
briefly in § 5. For simplicity, we summarize the results by presenting medians across focal sets. For our
proposed approach, the median value of the Hodges–Lehmann point estimates is τ̂ (cond) ≈ −1 day, with
associated 95% confidence interval [−1.70, −0.34]. For the method of Athey et al. (2018), the median
point estimate is τ̂ (rand) ≈ −1.1 days, with associated 95% confidence interval [−1.84, −0.28]. Across
focal sets, the average width of the confidence intervals obtained via Athey et al. (2018)’s method is 1.60,
compared to 1.42 with our approach, a reduction of 11%.

Results from both approaches are in line with those obtained by Basse & Feller (2018) via unbiased
estimators. These confirm the presence of substantial within-household spillover effect that is nearly as
large as the primary effect, suggesting that intra-household dynamics play a critical role in reducing student
absenteeism and should be an important consideration in designing future interventions.
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5. Discussion

Constructing appropriate conditioning mechanisms can be challenging in settings more complex than
two-stage designs. Doing so requires understanding the interference structure and finding powerful
conditioning mechanisms subject to that structure. Furthermore, conditioning mechanisms produce a distri-
bution of p-values across random choices for the conditioning event. While this does not affect the validity
of the test, it raises problems such as interpretation and sensitivity of the test results (Geyer & Meeden,
2005). At the same time, the distribution itself may contain information useful to improve the power of the
test. In ongoing research, we are working to use multiple testing methods to address this problem.
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