Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2020-11-1</td>
<td>Initial version</td>
</tr>
<tr>
<td>1.1</td>
<td>2020-12-1</td>
<td>● Added coarse calibration specification and calibration procedure details</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Documented REST API</td>
</tr>
</tbody>
</table>
Table Of Contents

1. Introduction
 1.1 Getting Started 4
 1.2 Connections 5
 1.3 Installation 7
 1.3.1 Orientation 7
 1.3.2 Measuring Lever Arms 8
 1.3.3 Device Calibration 8

2. Operating Atlas 10
 2.1 User Interface Overview
 2.1.1 Map View 10
 2.1.2 Device Status View 11
 2.1.3 Detailed Status View 12
 2.1.4 Settings View 13
 2.1.4.1 Orientation Settings 13
 2.1.4.2 Network Settings 13
 2.2 Starting/Stopping Navigation 14
 2.3 Resetting The Device 14

3. Data Interfaces 15
 3.1 Receiving Output Data
 3.1.1 Point One FusionEngine Client 15
 3.1.2 NMEA 0183 15
 3.2 Recording Data 15
 3.3 REST Control API 16
 3.3.1 Device Controls 16
 3.3.1.5 GET /api/v1/device/status 16
 3.3.1.6 POST /api/v1/device/factory_reset 16
 3.3.2 Navigation Engine Controls 17
 3.3.2.1 POST /api/v1/application/start 17
 3.3.2.2 POST /api/v1/application/stop 17
 3.3.2.3 POST /api/v1/application/clear_state 17
 3.3.2.4 POST /api/v1/application/reset_calibration 17
1. Introduction

This guide will familiarize you with the Point One Atlas inertial navigation system and provide step-by-step instructions for using it.

To use Atlas you will need:

- An Atlas device
- An Ethernet or Wi-Fi network with an internet connection
 - Ethernet required for initial setup
- A computer or tablet device
- A GNSS antenna
 - Triple-frequency (L1/L2/L5) recommended
- A connection to your vehicle's CAN bus, used for wheel speed measurements
 - Recommended for best performance, but not required

Note: CAN message formats vary by manufacturer and vehicle model/year. Please contact Point One to add support for your vehicle's CAN data.

1.1 Getting Started

Follow these steps to begin using your new Atlas device:

1. Rigidly mount the device and carefully measure the lever arms as described in Section 1.3.
2. Connect the device to a GNSS antenna and an Ethernet network as described in section 1.2.
 - Note: The Ethernet network must have DHCP and an available internet connection. For normal operation Atlas can use a Wi-Fi connection and/or static IP address, but it does not currently support Wi-Fi or static IP for initial setup.
3. Connect power to the device.
4. Scan the QR code on the top of the device with a computer or tablet on the same network as Atlas, then follow the listed URL. This will automatically detect the IP address assigned to your device and take you to the device's user interface webpage.
 - Note: If you are not on the same network as your Atlas device, the webpage referenced by the QR code will simply display Atlas's assigned local IP address, which you can enter into a browser manually.
 - It may take up to 30 seconds for Atlas to boot before the web page displays the IP address.
5. On the UI menu, select Settings, then enter the device orientation and lever arms you measured in step 1 and click Save.
 - By default, Atlas outputs the position of the body frame (center of the rear axle). You can configure the output lever arm to relocate the position to anywhere you would like on the vehicle.
6. Navigate to the Map View page.
7. Click the Start Navigating button.

1.2 Connections

Figure 1 shows the available connections on the back panel of your Atlas device. Atlas can be powered either via USB C or through the 4-pin CAN connector.

Note: Powering Atlas via USB C requires a 2A-capable power adapter. Atlas may not work reliably with some USB hubs. We recommend using the included power adapter.

The CAN bus connector is oriented as follows:

<table>
<thead>
<tr>
<th>CAN H</th>
<th>CAN L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table 1: CAN bus pinout.

The CAN H and CAN L connectors are not terminated with a 120 ohm resistor.

The Vin pin on the CAN connector may be used to power Atlas. It can accept DC voltage levels from +5.5V to +55V, and is typically connected to the vehicle’s +12V auxiliary power bus. The Vin pin can be omitted if Atlas is powered via USB C and visa versa.

© Copyright 2020 Point One Navigation
The camera triggers are +3.3V signals, oriented as follows

<table>
<thead>
<tr>
<th>Signal</th>
<th>GND</th>
</tr>
</thead>
</table>

Table 2: Camera trigger pinout.

The front panel of the device, shown in Figure 2, has two SMA RF connectors. The left connector is for an external Wi-Fi antenna (included). Note the Wi-Fi SMA connector is the “reverse polarity” variant.

The right connector is for the GNSS antenna. It is designed to be used with a powered antenna/LNA, and provides a DC supply voltage.

Warning: If your antenna is already powered by another source (another GNSS receiver, powered bias-T, etc.), you must attach a DC block between the power source and the Atlas antenna connection to avoid damage to the Atlas GNSS receiver.
1.3 Installation

1.3.1 Orientation

Both Atlas and the GNSS antenna must be mounted rigidly to your vehicle. Atlas should be mounted as closely aligned with the vehicle body axes as possible. The device calibration procedure will estimate any differences between the device mounting angles and the vehicle axes (see Section 1.3.3). For best performance, however, you should try to install it with as small mounting angle error as possible.

We recommend installing Atlas with the front panel (the panel with the SMA antenna connectors) facing forward toward the front of the vehicle, the Wi-Fi antenna toward the passenger side. When oriented this way, the QR code sticker on the top of the device should face up.

If you orient it differently, make sure to select the correct orientation when configuring the device settings (see Section 2.1.4). By default, the device will attempt to automatically detect its orientation. For best performance, however, we recommend specifying it manually.

Note: If either Atlas or the antenna is moved, the existing calibration will no longer be valid and the device will need to be recalibrated.
1.3.2 Measuring Lever Arms

Figure 4: Body frame and lever arm definition

Once installed, you must measure the lever arms from the vehicle body frame to both Atlas and the GNSS antenna. For best performance, it is important to measure the lever arms as accurately as possible.

The Atlas body frame is a right-handed coordinate system centered at the middle of the rear axle of the vehicle, and oriented as follows:

- +x - Toward the front of the vehicle
- +y - Toward the driver's side
- +z - Up

The lever arms are defined as the vector to the sensor from the vehicle body frame origin, resolved in the body frame. For instance, if the Atlas device is located behind and above the rear axle, toward the right-hand side of the vehicle (as in the diagram above), then the Atlas lever arm will have a negative x component, a negative y component, and positive z component. Ideally, these measurements will be accurate to better than 5 cm.

The lever arms should be measured at the nominal phase center of the antenna, and at the nominal center of the IMU within the Atlas device, which is approximately the center of the chassis. For an exact measurement, mark the top lid 12 cm inward from the USB C connector and 5 cm inward from the long edge of the case. You should measure to this point when configuring the device location.

1.3.3 Device Calibration

When you first use your Atlas device, it will need to be calibrated. The calibration procedure accurately measures the orientation of the device with respect to the vehicle axes by analyzing navigation performance over time. For best calibration results, it is important to measure the lever arms as accurately as possible (see Section 1.3.2).
To calibrate your device, simply turn it on and drive normally. Depending on your driving and the route you take, the calibration procedure may take some time to converge (typically 50 km or less). Note that turns and other manoeuvres can help the calibration converge faster.

When finished, the calibration indicator on the UI will light up green (see Section 2.1.1) to indicate that the calibration was successful and the system is ready for precision operation.
2. Operating Atlas
This section includes detailed information for using your Atlas device.

2.1 User Interface Overview

2.1.1 Map View

The map view is accessed by clicking the icon on the left toolbar.

![Map View Image]

Figure 5: UI map view page.

The map view displays your vehicle's position and status in real time as the system navigates.

![Start Button Image]

Figure 6: Map view start button.

Use the button in the upper left corner of the display to start and stop the navigation engine. Each time you start navigating, the system begins recording a new data log. See Section 3 for details.
The dash panel shown in Figure 7 provides a detailed view of the current solution in real time when the system is operating.

The **Solution Type** in the center indicates the current navigation mode: GNSS RTK fixed, standalone GNSS, dead reckoning, etc.

The panel on the left shows the current WGS-84 latitude and longitude, vehicle speed in MPH, vehicle altitude (above the WGS-84 ellipsoid), and the number of available GNSS satellites.

The three boxes on the bottom indicate the current calibration status, the status of the navigation engine (running or not), and the status of the connection to the Point One Polaris RTK network.

2.1.2 Device Status View

The device status view is accessed by clicking the **icon on the left toolbar.**

The device status page shows the current software version and status, along with the status of recorded log data (see Section 3.2).
Use the **Start Navigating** button to start and stop the navigation engine.

The **Reset Navigation Engine** button clears the system's knowledge of the position and attitude history by performing a *cold start* of the navigation state. It is typically not necessary to cold start the navigation engine, but this feature may be used when troubleshooting. Performing a cold start does *not* reset the device calibration.

Figure 9: Log action buttons.

By default, Atlas records a log of the incoming sensor data and navigation results as it operates. In the event that you need assistance, logs can be uploaded to Point One by pressing the **Upload** button.

Warning: Log data is not deleted automatically. If the disk fills up, Atlas will continue navigating but will no longer record data for post-processing or troubleshooting.

2.1.3 Detailed Status View

The detailed status view is accessed by clicking the ![icon](image.png) on the left toolbar.

REFERENCE STATUS

- **STATUS:**
 - PACKET AGE: 1604865574.822
 - NUMBER OF PACKETS: 50

POLARIS RTCM CORRECTIONS

- **BASE STATION:** 664
- **CORRECTIONS AGE:**
 - 0.553675899686721
- **GPS SATELLITES:** 10
- **GLONASS SATELLITES:** 10

```json
{
  "1004": 0.05,
  "1005": 2.9,
  "1074": 0.04,
  "1084": 0.04,
  "1094": 0.02,
  "1114": 0.02,
  "1124": 0.02
}
```

CALIBRATION STATUS

- **Current stage:** Performing Fine Alignment (2)
 - **Yaw:** 0.03 deg
 - **Pitch:** 1.29 deg
 - **Roll:** -0.43 deg
 - **Distance:** 0.0 m (min 7000 m)
 - **Yaw std:** 1.00 deg (max 0.3 deg)
 - **Pitch std:** 0.13 deg (max 0.08 deg)
 - **Roll std:** 0.25 deg [OK]
Figure 10: Example detailed status displays.

The detailed status page shows selected detailed information about the incoming sensor data and the state of the device as it navigates.

2.1.4 Settings View

The settings view is accessed by clicking the 🔄 icon on the left toolbar.

The settings page includes settings for specifying the device orientation, sensor lever arms, controlling desired output data, resetting the device calibration, and more.

2.1.4.1 Orientation Settings

Before using your Atlas device, you must specify its orientation and location within the vehicle. The available settings include:

- **GNSS Antenna Lever Arm** - The location of the GNSS antenna
- **Device Lever Arm** - The location of the IMU internal to the Atlas device (see Section 1.3.2)
- **Device Orientation** - The coarse (90 degree) rotation of the device with respect to the vehicle body axes (see Section 1.3)
- **Output Lever Arm** - The location where the generated vehicle position solution will be located

All lever arms are measured with respect to the center of the vehicle’s rear axle.

Note: If the orientation or antenna/device lever arms are changed, the vehicle will need to be recalibrated. Changing the output lever arm does not require recalibration.

2.1.4.2 Network Settings

The **Network Settings** panel provides controls for configuring the Atlas Ethernet and Wi-Fi interfaces. You may enable one or both interfaces, and can configure each for static IP or DHCP.
2.2 Starting/Stopping Navigation

![Start/stop buttons.]

To begin navigating, click the **Start Navigating** button in the top left corner of the UI **Map View** page, or on the **Device Status** page. When finished, click **Stop Navigating** to stop logging.

If you wish, you can configure the device to start logging automatically when it is powered on by selecting **Start navigating automatically on boot** on the **Settings** page.

2.3 Resetting The Device

Atlas devices support three types of reset:

- Use the **Reset Navigation Engine** button on the **Device Status** page to perform a *cold start*, clearing the previous position and attitude information.

- Use the **Reset Device Calibration** button on the **Settings** page to clear both the position/attitude history (cold start) and the device calibration data. This is typically only necessary if the device or GNSS antenna has moved with respect to the vehicle body.

- Perform a **Factory Reset** on the **Settings** page to clear the entire device state, including logged data.
3. Data Interfaces

3.1 Receiving Output Data

3.1.1 Point One FusionEngine Client

Atlas uses the Point One FusionEngine Client protocol to send and receive data and commands in real time. See https://github.com/PointOneNav/fusion-engine-client for message definitions and support source code.

The FusionEngine Client interface can be used by connecting to TCP port 30201, or by sending data to a specified UDP destination hostname/IP address and port. See the Settings -> Output Settings control panel. Once connected, you will automatically receive configured data messages as the system operates.

The Settings -> Output Settings panel includes options for configuring which output messages you would like to receive, and the output data rate.

3.1.2 NMEA 0183

Atlas also includes support for selected messages from the NMEA 0183 standard. To receive NMEA data, connect to TCP port 30200, or configure a UDP destination on the Settings -> Output Settings control panel.

Atlas currently supports the following NMEA messages:

- GPGGA
- GPRMC
- GPGSA
- GPGSV

3.2 Recording Data

Atlas creates a new log with an automatically generated ID each time you start navigating. By default, logs include all incoming sensor data and generated results in a proprietary Point One format. They can be used for post-processing data analysis and troubleshooting.

Logs can be downloaded to your local machine by clicking the Download button.

If you encounter an issue and require further assistance, you can click the Upload to Point One button to send the log to Point One for processing (the device must remain on and connected to the internet while uploading the log).
3.3 REST Control API

Atlas includes an HTTP REST API, which can be used to programmatically control the device. This is the same interface that is used by the UI to interact with the device. This section outlines the various supported commands and expected responses.

The HTTP interface is hosted on port 80. To use the REST API, send HTTP GET or POST requests to \texttt{http://DEVICE_IP/PATH}, where \texttt{DEVICE_IP} is the IP address of the Atlas device. For example, to start the navigation engine for a device with IP address 1.2.3.4, issue a POST request to:

\texttt{http://1.2.3.4/api/v1/application/start}

3.3.1 Device Controls

3.3.1.5 GET /api/v1/device/status

Get the current device status.

Responds with a 200 response and a JSON object as follows:

- \texttt{platform_type} - A platform type name (i.e., Atlas)
- \texttt{platform_version} - The platform version string
- \texttt{device_uuid} - The unique ID assigned to the device
- \texttt{device_name} - The human-friendly device name
- \texttt{sw_release_uuid} - The unique ID of the software release running on the device
- \texttt{performing_reset} - \texttt{true} if a factory reset is in progress (optional)
- \texttt{nav_engine} - Navigation engine (Nautilus) status
 - \texttt{version} - The version of the Nautilus software
 - \texttt{status} - The current status of the navigation engine: running, stopped, unknown
- \texttt{developer_mode_enabled} - \texttt{true} if developer mode is currently enabled
- \texttt{error} - Error status (optional)
 - \texttt{time} - The POSIX timestamp (in seconds) when the error occurred
 - \texttt{message} - The error message

3.3.1.6 POST /api/v1/device/factory_reset

Perform a factory reset.

Automatically stops the navigation engine if currently running.

When successful, responds with an empty 200 response.
3.3.2 Navigation Engine Controls

3.3.2.1 POST /api/v1/application/start
Start the navigation engine if not running.

When successful, responds with an empty 200 response.

3.3.2.2 POST /api/v1/application/stop
Stop the navigation engine if running.

When successful, responds with an empty 200 response.

3.3.2.3 POST /api/v1/application/clear_state
Reset the previous position/attitude state. Note that this only resets the device's knowledge of its previous position. It does not reset the device calibration.

 Automatically stops the navigation engine if currently running.

 When successful, responds with an empty 200 response.

3.3.2.4 POST /api/v1/application/reset_calibration
Reset the device calibration and previous position state.

 Automatically stops the navigation engine if currently running.

 When successful, responds with an empty 200 response.