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Abstract

We analyze firms’ product line decisions in the presence of entry regulation. We find that
pharmaceutical firms prioritize smaller disease markets for a drug’s initial regulatory approval
and larger markets for its subsequent approvals. These patterns are consistent with a model of
strategic entry in which firms—facing high costs of regulation—exploit regulatory loopholes to
expand into novel product markets. Drug regulation, in particular, features a loophole where
firms can rely on off-label drug use—the practice of using an approved drug for unapproved
uses—as a non-regulatory pathway for reaching new markets. These findings raise important
considerations for firm managers, highlighting opportunities for utilizing non-regulatory entry
pathways to expand into costly product markets, and for regulators, who must balance the
trade-off between expedient access to innovative products and the need for sufficient information
about their quality.
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1 Introduction

In industries with entry regulation, firms must make a series of critical decisions involving which
product markets to enter and when. In the pharmaceutical industry where a single drug may have
multiple therapeutic uses, manufacturers must decide in which disease markets to seek regulatory
approval—a long, costly, and risky process (Adams and Brantner, 2006; Mullard, 2016; Wouters
et al., 2020). Consider, for example, the case of Janssen’s monoclonal antibody Remicade. In 1998,
Janssen sought initial U.S. regulatory approval for Remicade as a treatment for Crohn’s disease,
despite a successful initial proof-of-concept study in rheumatoid arthritis. This decision was made
due to the potential for a quicker path to approval as a treatment for the subset of patients with
severe Crohn’s who had not responded to conventional therapies (Melsheimer et al., 2019). The
example of Remicade reflects a growing trend by pharmaceutical firms transitioning from a strategy
of prioritizing large, “blockbuster” disease markets to a “niche buster” one, where they obtain initial
regulatory approval for a drug in a small market (Dolgin, 2010; Marselis and Hordijk, 2020).

While such patterns could be due to differences in scientific opportunities (Krieger, 2021), market
conditions (Acemoglu and Linn, 2004), or intellectual property protection (Budish et al., 2015),
this paper considers an alternative explanation: the role of regulatory loopholes (Anderson and
Sallee, 2011). Firms may exploit regulatory loopholes and initially seek approval in small disease
markets—because such niche disease markets may require less risky and costly investments—and
then rely on non-regulatory pathways to expand into larger disease markets. With this motivation,
we investigate the extent to which firms relax regulatory constraints by utilizating non-regulatory
pathways to expand into novel product markets. We document evidence that such strategic entry
decisions are quantitatively meaningful in the pharmaceutical industry—an important, highly
regulated setting—and discuss managerial and policy implications.1,2

The decision to circumvent regulatory approval is particularly significant in health care, where entry
regulation by the U.S. Food and Drug Administration (FDA) creates a unique set of incentives
and disincentives for manufacturers to seek regulatory approval for new uses of approved products
(Friedman, 1996). Because firms can only legally market new uses of existing drugs after regulatory
approval for each new use, firms have incentives to undergo these so-called supplemental approvals.
However, such incentives may be dampened by the high costs of conducting rigorous clinical trials

1The pharmaceutical industry is projected to exceed $1.1 trillion by 2024, making it a noteworthy sector for
analysis (IQVIA Institute, 2020).

2Anecdotal evidence of pharmaceutical firms’ strategic entry decisions has sparked concerns by policy makers and
regulators, prompting a reevaluation of existing regulatory policies. See, e.g., Tribble and Lupkin (2017).
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to support FDA re-approval. Further, existing FDA drug regulation allows for the use of approved
drugs in non-FDA approved (“off-label”) uses (Eisenberg, 2005). While firms are not permitted
to directly promote off-label drug uses, the potential for off-label drug use presents an alternative,
non-regulatory pathway to introduce drugs into new markets.

Underlying our analyses are leading theories suggesting an inverse relationship between the order in
which indications (or diseases) are targeted and the size of the corresponding market (Acemoglu and
Linn, 2004). In theory, firms would prioritize initial entry into a drug’s largest possible market and
subsequently focus on expanding into smaller markets through product line extensions. However,
when opportunities for circumventing regulation are present—for example, where off-label drug use
has the greatest potential—firms may strategically focus on smaller markets (rather than targeting
large markets initially). The rationale behind this strategy is that obtaining regulatory approval for
niche markets is comparatively easier, primarily due to the ability to conduct smaller clinical trials
with the subset of patients who are more likely to respond positively to treatment (Chandra et al.,
2019). Under this strategy, firms can rely on off-label markets to effectively expand demand for
their drugs instead of investing in the high-quality scientific evidence necessary to pursue formal
regulatory approval.

Despite the importance of this issue, there has been relatively little quantitative evidence on
regulatory loopholes due to empirical challenges. Our conjecture is that in settings with greater
opportunities for off-label drug use, firms are more likely to prioritize smaller markets for regulatory
approval. Yet, in practice, we cannot directly measure the potential for off-label drug use. Three
features of the market for cancer medicines—the largest pharmaceutical market in terms of spending—
allow us to make progress on this issue (IQVIA Institute, 2018). First, the choice between seeking
supplemental approval or relying on off-label drug use is highly relevant among cancer drug
manufacturers: Among oncology drugs, multiple uses are common and estimates of off-label use
range from 50 to 75 percent (Pfister, 2012).3 Second, cancer treatment, which is organized around
the site (e.g., breast) and stage (e.g., metastatic), has provided a tractable way for researchers to
measure R&D activity (Budish et al., 2015). Third, for each disease, we are able to utilize genetic
information to predict likely off-label disease markets and to determine the size of the opportunity
for off-label drug use.

3This is due to favorable off-label reimbursement policies in cancer treatment, as well as other factors (e.g., high
disease severity and fewer treatments for rare cancers) encouraging physicians to experiment beyond formally approved
uses.
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Figure 1: Mean Market Size by Indication Order
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Panel A. Mean trial market size
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Panel B. Mean approval market size

Notes: This figure shows the mean market size by indication order for both research investments (clinical trials in
Panel A) and commercialization investments (FDA approvals in Panel B) for cancer drugs approved from 1990-2016.
Market size is measured by new diagnoses for an indication in the Surveillance, Epidemiology, and End Results (SEER)
data. Trial indications are given by cancer sites and approval indications are given by cancer site-stages.

To explore the factors influencing the choice and timing of firms’ product line decisions in the
presence of entry regulation, we construct a dataset of all cancer drug approvals between 1990 and
2016, matched to comprehensive clinical trial information. Our measure of market size comes from
measuring disease prevalence using cancer registry data. We isolate the potential for firms’ strategic
behavior by noting that product line decisions occur at both the research and commercialization
stages. Each stage involves its own set of incentives, with entry regulation more likely to shape
decisions at the commercialization stage. Our dataset allows us to distinguish between investments
in these two stages, with product line investments measured via either clinical trials (research
investments) or formal regulatory approvals from the FDA (commercialization investments).

Motivating our subsequent analyses, Figure 1 plots mean market size by indication order for both
research and commercialization investments, where indication order specifies the indications in
which a given drug is tested (or approved) first, second, third, and so forth. Panel A shows that,
on average, firms initially test their drugs in the largest possible market and then in successively
smaller markets. In contrast, consistent with our expectation that off-label drug use provides a
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non-regulatory pathway for entry into new diseases, Panel B shows that firms prioritize the smallest
market for initial approval and then seek subsequent approvals in larger markets.

After controlling for detailed disease and time fixed effects, the difference between research and
commercialization investments in their relationships with indication order persist: Research invest-
ments have a strictly negative indication order-market size relationship, while commercialization
investments have a non-negative one. Further, accounting for competition, regulatory incentives,
and intellectual property protection does little to minimize this difference. For example, Budish
et al. (2015) note that firms have reduced incentives to pursue treatments for early-stage cancers due
to longer development times and shorter subsequent patent terms for such treatments post-launch.
If early-stage cancers have larger market sizes, the relationship between indication order and market
size may be due to firms’ concerns regarding monopoly exclusivity periods. We control for measures
of intellectual property protection and find they have minimal impact in explaining the discrepancy
between research and commercialization investments.

Instead, we address this gap by presenting evidence from two empirical tests that indicate firms
strategically utilize off-label markets as a means to circumvent regulation. First, we examine the
indication order-market size relationship after accounting for the size of potential off-label disease
markets. To do this, we construct a novel index of disease similarity between cancer sites, based on
genomic sequencing data. Using this index, we can approximate an indication’s total market size,
including off-label drug use. After accounting for the size of expected off-label markets, we recover
a strictly negative and significant relationship between approval indication order and market size.
As such, our results are consistent with a model of strategic entry: Pharmaceutical firms prioritize
smaller therapeutic indications for regulatory approval, knowing that they can rely on off-label drug
use as a non-regulatory pathway to expand demand.4

Second, we expand our analyses to diseases outside oncology and exploit variation across diseases
in their propensity for off-label use. Using findings from the medical literature to identify disease
categories with high and low levels of off-label drug use, we find that the approval indication
order-market size correlation is significantly less negative among drugs first approved for high
off-label diseases and very strongly negative for those approved in low off-label diseases.5 This

4Appendix A formalizes a model of strategic entry explaining why firms may prioritize smaller indications in their
commercialization investments.

5Therapeutic areas with low off-label propensity include antidiabetics, antihypertensives, and antihyperlipidemics,
and therapeutic areas with high off-label propensity include oncology, anticonvulsants, psychiatry, and antiasthmatics.
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provides further support of the hypothesis that firms strategically circumvent regulatory approval
in therapeutic areas where expected off-label drug use is high.

Finally, we consider the managerial and policy implications of our findings. First, we note that our
findings shed light on opportunities for non-regulatory entry strategies for firms. This approach can
be particularly beneficial for firms facing substantial financial constraints or operating in regulatory
environments characterized by uncertainty. In a back-of-the-envelope calculation, we find that
pharmaceutical firms can enter the market 9.3 months quicker by seeking a drug’s initial regulatory
approval in a small market relative to a large one, translating to $117.2 million dollars in value from
clinical trial savings and revenues over this time. Second, for regulators, this raises questions on
whether and when firms are actively avoiding regulatory processes and the corresponding impacts to
consumers.6 Regulators must strike a balance between expediting consumer access to new products
and ensuring their quality via rigorous and potentially lengthy testing and examination. This is
of particular importance in the pharmaceutical sector, where numerous drugs are recommended
and used off-label for important health conditions—for example, the use of aspirin prophylaxis for
coronary disease in certain high-risk patient populations—yet off-label drug use without sufficient
evidence is also associated with higher rates of adverse events (Eguale et al., 2016; Richardson,
2016; Wittich et al., 2012). We find that substantial R&D investment currently goes towards
off-label markets; policies restricting off-label use would need to weigh the benefit of firms potentially
pursuing regulatory approval for some of these markets against the cost of firms discontinuing that
R&D investment and consumers being unable to use the drug in other markets.

This research contributes to four strands of literature. First, a vast body of prior work across
marketing, strategy, and economics has studied firm decisions regarding product line extensions
and brand proliferation in a range of industries, including automobiles, cell phones, food products,
personal computers, and retail (e.g., Barroso and Giarratana, 2013; Bayus and Putsis Jr, 1999;
Ellison and Ellison, 2011; Fan and Yang, 2020; Fowler, 2019; Kadiyali et al., 1999; Kekre and
Srinivasan, 1990; Morgan and Rego, 2009; Ren et al., 2019; Schmalensee, 1978).7 These papers—

6A New England Journal of Medicine perspective piece highlights potential concerns associated with regulatory
loopholes in pharmaceuticals: “When newer, more expensive drugs are used off-label, it increases health care costs. It
undermines the incentives for manufacturers to perform rigorous studies—and instead subtly encourages them to
game the system by seeking approval for secondary indications for which clinical trials are less complicated and less
expensive. And off-label use may discourage evidence-based practice” (Stafford, 2008).

7In pharmaceuticals, Ellison and Ellison (2011) find increased product line extensions (changes in a drug’s dosage,
formulation, or administration route) in larger markets and Fowler (2019) demonstrates a strategic delay in the timing
of these extensions, with firms introducing them as expected generic entry nears. Our study of product line decisions
focuses on a drug’s introduction into different therapeutic markets.
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studying the determinants of brand proliferation and corresponding impacts to both firm performance
and industry structure—focus on product line decisions as indicated by those products actually
introduced to the market. Our data allow us to extend this literature by looking at firm decisions
at two different stages of the innovation process—research and commercialization—and thereby
explore the factors driving changes in product line decisions over this entire process.

Second, this paper relates to existing research on first-mover advantages (Lieberman and Montgomery,
1988, 1998; Robinson et al., 1994) and niche markes (Adner and Levinthal, 2002; King and Tucci,
2002; Pepall, 1992). We add to this literature by quantifying the extent to which pharmaceutical
manufacturers can shorten drug development and approval times via niche market entry—allowing
for potential first-mover advantages—and provide an estimate of the dollar benefit to firms of such a
strategy. While existing work on niche market strategy focuses on its potential for such advantages
as differentiation from competitors, increased sales, and the opportunity for market learning and
technology development, we highlight an additional rationale for pursuing a smaller, selective market:
to circumvent regulatory processes.

Third, we contribute to a growing set of papers on the measurement (Radley et al., 2006; Stafford,
2008), drivers (Dubois et al., 2023; Larkin et al., 2014; McKibbin, 2023; Shapiro, 2018) and
consequences of off-label drug use (Bradford et al., 2018; Tuncel, forthcoming). Most closely related
to this work, Dubois et al. (2023) show how policy changes on off-label promotion and prescribing
influence firms’ decisions to submit drug uses for formal approval. We build on these papers by
developing an ex-ante measure of off-label markets that does not rely on access to health care claims
data. We also provide, to our knowledge, the first empirical evidence using early and late-stage drug
development data to clarify how pharmaceutical firms incorporate off-label use in their strategic
research and commercialization decisions.

Finally, we add to the broader literature on how entry regulation influences firms’ incentives for
innovation in health care markets (Acemoglu and Linn, 2004; Berger et al., 2021; Blume-Kohout
and Sood, 2013; Danzon and Keuffel, 2014; Dubois et al., 2015; Grennan and Town, 2020; Maini
and Pammolli, 2023; Stern, 2017). Our work makes two key contributions relative to this body of
literature. First, we offer the first comprehensive empirical analysis of the impact of FDA regulation
on firms’ within-drug market entry strategies. Second, while much of the literature has highlighted
that firms facing high regulatory costs may lower their investment in R&D, we offer a more nuanced
picture: We demonstrate that firms may turn to regulatory loopholes to enter new product markets.
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Across a variety of industries, the belief that firms may seek to exploit regulatory loopholes to
circumvent costly entry regulation has fueled considerable policy attention. For example, in the
transportation industry, ride-sharing apps such as Uber and Lyft have been able to bypass city
taxicab regulations by arguing they are technology platforms and not transportation providers
(Posen, 2015). Similarly, in the financial industry, financial technology (“fintech”) companies like
PayPal refrain from certain activities, such as holding customer funds or making loans, to avoid
being regulated as banks (Douglas, 2016; Vives, 2019). While such strategic entry decisions have
been widely discussed, there is relatively little empirical evidence that documents this activity (see
Maini and Pammolli (2023) for a recent contribution). This article aims to address this gap.

The paper proceeds as follows. Section 2 describes the institutional background behind pharma-
ceutical entry regulation and off-label drug use in the United States. Section 3 outlines the data,
including construction of our disease similarity index, and provides summary statistics. Section 4
gives the empirical results, and Section 5 discusses managerial and policy implications. Section 6
concludes.

2 Institutional background

2.1 Pharmaceutical entry regulation in the United States

Current drug regulation is rooted in the Federal Food, Drug, and Cosmetic Act of 1938 (FD&C Act),
which requires that manufacturers generate evidence of safety and efficacy as a pre-condition for
marketing their products. Drug development typically begins with extensive preclinical laboratory
research that involves testing a new drug candidate on animals and human cells. Once complete,
the manufacturer completes an Investigational New Drug Application (IND) that outlines its plan
of action with respect to human testing in clinical trials. After the IND is approved by regulators,
the manufacturer begins the most expensive aspect of drug development: human testing of drugs in
a series of clinical trials in which costs increase with each subsequent phase. Drugs that successfully
demonstrate safety in Phase I trials proceed to Phase II trials in which their efficacy is tested in
a few hundred patients. If successful, the drugs move to Phase III trials in which their efficacy
is tested in several thousand patients. Upon successfully completing Phase III trials, the sponsor
will submit a New Drug Application (NDA) to the FDA for final approval. The entire process is
long (often taking between 8 and 12 years), costly (typically costing a manufacturer between $300
million and $2.6 billion), and risky (only 9 percent of drugs that receive an IND ultimately receive
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regulatory approval) (Adams and Brantner, 2006; CSDD, 2014; Danzon and Keuffel, 2014; DiMasi,
2001; DiMasi et al., 2003; Wouters et al., 2020).

Importantly, the development and review process is indication-specific—i.e., a drug receives regulatory
approval for a specific use. As a result, manufacturers aiming to shift out the potential applicability
of drugs at the time of first approval must decide whether to: (a) conduct additional trials for the
purpose of seeking subsequent FDA approvals for further indications or (b) support exploratory
studies that expand off-label use.

Under the FD&C Act, the FDA considers an approved drug with an unapproved use to be “an
unapproved new drug with respect to that use” (FDA, 2014). Consequently, to expand a drug’s
label to include a new use, the manufacturer must submit a new IND, undertake additional efficacy
clinical trials, and submit a supplemental New Drug Application (sNDA). The amount of resources
involved depends on the similarity between the original and new use (FDA, 1998a). If the original
and new use are closely related, for instance, manufacturers seeking approval for new uses may skip
Phase I trials and rely on fewer Phase II trials. Examples include a new stage of the same disease or
the same disease in a new population. With less evidence for the FDA to review, average approval
times are shorter for sNDAs for new indications and new patient populations relative to NDAs
(DiMasi, 2013; DiMasi et al., 1996; DiMasi and Lasagna, 1991). Despite this, the sNDA process is
still considered expensive and time-consuming (Wittich et al., 2012). Further, evidentiary standards
of safety and efficacy for original and supplemental indications are similar, setting a high bar for
subsequent trials. Indeed, an analysis of efficacy trials for sNDA approvals found that rates of use
of active comparators and clinical outcome endpoints were comparable to those of trials supporting
NDAs (Wang and Kesselheim, 2015). Additionally, firms typically must still run at least one Phase
III trial for which costs can run between $11.5 million and $52.9 million (Sertkaya et al., 2016).

The costs and risks of drug development also vary across indications. To the best of our knowledge,
there are no publicly available data estimates of drug development costs and risks by indication size.
However, some quantitative evidence suggests that smaller indications may be less costly and risky
than larger indications: On average, drugs treating orphan diseases (defined as those affecting less
than 200,000 people in the U.S.) experience a shorter regulatory review period than non-orphan
diseases (Seoane-Vazquez et al., 2008). Firms conducting clinical trials for orphan diseases often
rely on biomarkers to target the patient subgroups that are most responsive to treatment (Chandra
et al., 2019; Michaeli et al., 2023). Given that patient recruitment and enrollment costs constitute a
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major portion of clinical trial costs (Sertkaya et al., 2016), the enrollment of a smaller, yet more
responsive set of patients could lead to reduced costs and risks for smaller indications.

2.2 Off-label drug use

The practice of using health care technologies and treatments for unapproved uses is legal and
common, with estimates ranging from 20 to 39 percent across all diseases (Conti et al., 2013; Molitor
and Agha, 2012; Stafford, 2008).8 Such off-label use is particularly common among treatments for
cancer, cardiovascular diseases, and psychiatric diseases. There are several reasons for off-label use
(Wittich et al., 2012). First, FDA-approved therapies might not exist for the treated population.
Second, physicians might substitute within a class of medications if one medication is approved
for a particular use and others are not. Finally, the features of two conditions might be similar
and physicians may use one approved drug for both. For example, off-label psychiatric drug use
is common in children because mental illnesses are difficult to diagnose and children are rarely
included in clinical trials for drug approval (Lee et al., 2012). Many mental illnesses share the
same symptoms, motivating physicians to use one drug approved for a particular condition to treat
another.9

While the FDA recognizes that off-label use can be clinically appropriate under some circumstances,
the agency is concerned that research outside of the FDA’s control is less rigorous and that the
information disseminated from such trials may pose a public health risk (FDA, 2014). As a result,
the FDA aims to dissuade firms from circumventing the supplemental regulatory approval process
by banning the direct promotion of drugs for off-label uses, arguing that doing so would violate the
FD&C Act provisions which prohibits the introduction of “misbranded” drugs.

Despite this, evidence suggests that manufacturers may use certain types of clinical evidence as a
means to promote off-label uses.10 Further, the agency’s policy towards off-label advertising has
gradually loosened and been challenged over time, lowering the costs of off-label promotion (FDA,
2014). Manufacturers are currently permitted to respond to unsolicited questions about off-label

8For example, expandable metal mesh stents approved for biliary stenting in cancer are also used for renal artery
stenosis.

9The prevalence of off-label use depends on a physician’s propensity to prescribe a drug with limited evidence
of safety and efficacy. In practice, physicians who engage in off-label use are rarely accused of medical malpractice.
The process of informed consent does not require physicians to disclose that a drug is being used off-label. Further,
off-label use is not necessarily negligent if the off-label use is included in the current standard of practice.

10The U.S. Department of Justice has charged and fined several major major companies with illegal off-label
promotion, including Eli Lilly ($1.4 billion in 2009); Pfizer ($2.3 billion in 2009); GlaxoSmithKline ($3 billion in 2012);
and Abbott ($1.6 billion in 2012).
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uses from health care professionals and to disseminate information describing off-label uses from
peer-reviewed journal articles, textbook chapters, and clinical practice guidelines (Avorn et al.,
2015). Most recently, Amarin, a manufacturer of a prescription fish-oil pill, was alleged to have
provided doctors with clinical evidence of off-label uses. After a federal court ruling that attempts
to prohibit such marketing violated the First Amendment, the manufacturer reached a settlement
with the FDA allowing it a pathway for continued off-label promotion.11

3 Data and summary statistics

To understand pharmaceutical firms’ strategic entry decisions, we evaluate product line investments
associated with drugs initially approved for oncology. Focusing on cancer conditions allows us to
categorize diseases into cancer sites (e.g., breast) and stages (e.g., metastatic). This enables us to
roughly measure the similarity between the approved use and the new use under investigation (i.e.,
whether the original and new use are in different cancer sites and stages).

Our sample is the set of cancer drugs first approved by the FDA between 1990 and 2016. For these
129 drugs, we obtain detailed product line investment data on clinical trials and supplemental drug
approvals. With these data, we can thus distinguish between product line decisions occurring at
two distinct stages: the research stage (measured via clinical trials) and the commercialization
stage (measured via FDA approvals). We then investigate the relationship between market size
and indication order for both research and commercialization investments. Further, we examine
the role of competition, regulatory incentives, and intellectual property protection in influencing
this relationship. Finally, we repeat our analyses incorporating off-label market size, using an index
of disease similarity based on gene sequencing efforts to measure potential off-label drug use for a
given indication. We summarize the data supporting these analyses below.

3.1 Product line investments

3.1.1 Clinical trials (research investments)

To proxy for research investments, we collect information on each drug’s clinical trials. In particular,
we focus on supplemental clinical trials from the Clarivate Analytics Cortellis Clinical Trials
Intelligence Global database. We include as supplemental trials all trials starting after the first
pivotal trial start date for the initial approval; pivotal trials are those used to support regulatory

11http://www.raps.org/Regulatory-Focus/News/2016/03/08/24501/FDA-Amarin-Propose-to-Settle-
Landmark-Off-Label-Marketing-Case/
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approval in an NDA. Data limitations prevent us from categorizing clinical trial conditions to the
stage level. As a result, our trial analysis is conducted at the drug-site level.12

3.1.2 Drug approvals (commercialization investments)

Our measure of commercialization investments comes from identifying for each drug its set of
supplemental drug approvals from the Clarivate Analytics Cortellis Competitive Intelligence Global
(“Cortellis”) database and the FDA’s Drugs@FDA database. It should be noted that FDA-approved
indications are typically more granular than the cancer site-stage; a drug can receive multiple
approvals for the same cancer site-stage. For instance, Letrozole was originally approved for
“advanced breast cancer in postmenopausal women with disease progression following anti-estrogen
therapy.” It was later approved for “first-line treatment of postmenopausal women with hormone
receptor positive or hormone receptor unknown locally advanced or metastatic breast cancer.” In
both cases, the approval was for the cancer site “breast” and the cancer stage “metastatic.”

3.2 Market size

As a proxy for market size, we collect data on the number of new diagnoses associated with each
cancer’s site and stage (Budish et al., 2015). Data comes from the Surveillance, Epidemiology, and
End Results (SEER) database, available from the National Cancer Institute (NCI). We focus on
5-year lagged averages of market size, where we caclulate these lags relative to either the trial start
year or the indication approval year.

3.3 Regulatory incentives

To capture regulatory incentives associated with subsequent product line investments, we compile
data on whether the drug ever received an orphan drug designation. This designation aims to lower
the cost of development by providing tax credits for clinical trials and offers additional intellectual
property exclusivity for drugs that receive approval for rare diseases.13

12For consistency, we also conduct our drug approvals analysis at the drug-site level and find similar results.
13For more details, see https://www.fda.gov/industry/medical-products-rare-diseases-and-conditions/d

esignating-orphan-product-drugs-and-biological-products.
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3.4 Intellectual property protection

We also incorporate information on intellectual property (IP) protection using data from the FDA’s
Orange Book and the United States Patent and Trademark Office (USPTO).14 We create two
controls for IP protection: primary and potential IP protection. Primary IP protection measures
the months from each trial start (or approval) date to when the drug’s primary IP expires. The
primary IP on a drug is generally considered the strongest form of IP protection, with almost certain
enforcement.15 Potential IP protection measures from each trial start (or approval) to when the
final IP on the drug expires.16

3.5 Off-label drug use

The next step in our analysis is to construct an ex-ante measure of potential off-label drug use for each
indication. To do so, we rely on cancer genome sequencing, an advance in medical technology which
systematically catalogues the genetic aberrations underlying different types of cancer. By comparing
the DNA sequences of cancer cells to those of normal tissue, genomic sequencing researchers are able
to characterize the genetic mutations likely driving the progression and growth of specific cancers
and determine similarities across different cancer types (Weinstein et al., 2013). We use genetic
sequencing data to characterize the similarity between different diseases and to define a drug’s
expected off-label cancer sites. For example, cancer mapping efforts have revealed the occurrence
of same genetic mutations underlying both ovarian and breast cancer (TCGA Research Network,
2011). This suggests that ovarian cancer may be an off-label cancer site for a drug approved for
breast cancer (Pleasance et al., 2022). This approach is similar in spirit to research conducted by
the bioinformatics community using genetic sequencing data to aid drug repurposing efforts (Cheng
et al., 2019; Tanoli et al., 2021).

We obtain information on gene-cancer pairings that result from large-scale cancer mapping efforts
from the publicly accessible COSMIC Cancer Gene Census (CGC) database (Sondka et al., 2018;
Tate et al., 2018).17 The COSMIC team curates cancer genome data from hundreds of genetic

14Drugs are protected by two types of IP rights: patents granted by the USPTO and regulatory exclusivities
granted by the FDA.

15We consider the primary IP expiration to be the latter of either the molecule patent or the new chemical entity
exclusivity expiration. For those trials taking place before a drug’s initial launch, we assume the firms have an ex-ante
expectation of what this primary IP expiration will be. For trials taking place after the primary IP has expired, we
consider this measure to be zero.

16For trials occurring before a drug’s initial launch, we consider the patents and exclusivities in effect at launch to
calculate this measure. For all trials after launch, we consider the patents and exclusivities in effect at the trial start
date.

17For more details, see https://cancer.sanger.ac.uk/census.
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sequencing studies and literature to catalogue the set of genes containing mutations that are causally
associated with cancer. In the CGC, each gene (e.g., BRCA2) is presented with the set of cancers
(e.g., breast cancer, ovarian cancer) where mutations in that gene are likely contributors to the
disease’s development.

3.5.1 Similarities between cancer sites

Using the CGC data, we then estimate the similarity between cancer sites using the extent of
overlap between the sets of genetic mutations associated with each cancer type. In the spirit of
Krieger et al. (2022), we quantify the similarity between two different cancer sites by calculating
the Tanimoto distance (Jaccard coefficient). This measure calculates the distance between each
set of genetic mutations associated with each of the cancer sites. For example, the similarity index
s between cancer sites A and B is the intersection of A and B’s genetic mutations divided by the
union of these mutations:

sA,B ≡
|A ∩B|
|A ∪B|

= |A ∩B|
|A|+ |B| − |A ∩B| (1)

A similarity index of 0 implies that a pair of cancer sites are not closely related and have no common
mutations, while a measure of 1 implies that they are closely related and have exactly the same
set of mutations. Figure 2 shows a heat map of our similarity index across all 79 cancer sites in
our sample. Among different cancer sites, the mean index is 0.04 with a standard deviation of
0.13. As an example, Appendix B provides the mutations for breast and ovarian cancer, including
their overlapping mutations, and shows the calculation of their similarity index. Breast and ovarian
cancer have a similarity index of 0.09.

We use the similarity index to determine the expected off-label market size for each indication.
This calculation is based on the market size for cancer sites related to indication i, weighed by the
similarity index:

Off-Label Market Sizei,t =
∑
j 6=i

si,jMarket Sizej,t (2)

Here, indication i has an off-label market size at time t that is defined as the weighted sum of the
market sizes of all other cancer sites j (j 6= i) at time t, where the weight is the similarity index
between cancer sites i and j. To see this, consider a simple example between three cancer sites, A,
B, and C. Assume that cancer site B has a similarity with cancer site A (sA,B = 0.09) and similarity
with cancer site C (sB,C = 0.01). Suppose that at time t, the market size for cancer site A is 100
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Figure 2: Similarity Index Heat Map
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Notes: This figure shows a heat map of our similarity index across all 79 cancer sites in our sample.

and the market size for cancer site C is 20. At time t, the off-label market size for a drug initially
approved in cancer site B is (0.09× 100) + (0.01× 20) = 9.2.

Before continuing, we note that there are limitations to this approach. One key limitation is the
potential underestimation of off-label drug markets. This may be due to the fact that off-label drug
use may be driven by factors unrelated to genetic similarities across cancer sites, such as costs and
the quality of existing evidence (Stafford, 2008). In addition, the evidence from the CGC may not
fully capture the true level of overlap across cancer sites: The creators of the CGC describe it as
being a “conservative but high-confidence list” of genes associated with cancer, raising questions
about the possibility of false negatives when deciding which gene-cancer associations to include in
the database.18

18The CGC’s cancer experts apply a strict criteria when determining the set of gene-cancer associations to include
in the database. For more information, see https://www.sanger.ac.uk/data/cancer-gene-census/.
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Nevertheless, we confirm the robustness of our approach by showing that our results remain largely
unchanged when using alternative similarity measures. These alternative measures are generated
by directly using cancer genome sequencing data from 168 large-scale mapping studies. Following
the bioinfomatics literature, we focus on genetic mutations that occur at a high frequency within
each mapping study, where we consider a genetic mutation as “high frequency” within a cancer if it
occurs in the top 10 percent, top 20 percent, or top 30 percent of the most frequently occurring
mutations (see Section 4.2).

3.6 Summary statistics

Table 1 presents some basic summary statistics of our sample of 129 oncology drugs approved
between 1990 and 2016. The average drug is tested in 46 different trial indications (cancer sites)
and receives FDA approval in 4 unique approval indications (cancer site-stages). Across the sample,
64 percent of drugs have received an orphan drug designation. Across all drug-indications, mean
primary IP protection remaining at the time of approval is 124 months (10.3 years) and mean
potential IP protection is 174 months (14.5 years). The maximum primary IP protection remaining
is 277 months (23.1 years) and the maximum potential IP protection is 346 months (28.8 years).
Mean off-label market size (7,534 diagnoses) is more than 4.5 times the mean market size of trial
indications (1,640 diagnoses) and 7.5 times that of approval indications (985 diagnoses).

Table 1: Summary Statistics

Mean SD Min Max N

Drug level
Number of Unique Trial Indications 46 23 2 78 111
Number of Unique Approval Indications 4 6 1 35 129
Share with Orphan Disease Drug Designation 0.64 0.48 0 1 113

Drug-trial indication level
Market Size of Trial Indications (Diagnoses) 1,640 3,251 5 17,915 5,100

Drug-approval indication level
Primary IP Protection (Months) 124 55 0 277 513
Potential IP Protection (Months) 174 51 44 346 513
Market Size of Approval Indications (Diagnoses) 985 1,749 2 9,104 428
Potential Off-Label Market (Diagnoses) 7,534 9,690 0 32,122 518

Notes: This table shows summary statistics for our dataset of cancer drugs approved from 1990-2016.
The level of observation is the drug for number of trial indications, number of approval indications,
and share with orphan drug designation; the level of observation is the drug-trial indication for
market size of trial indications; and the level of observation for all other summary statistics is the
drug-approval indication.
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4 Empirical results

4.1 Product line investments and market size

Figure 3 plots the relationship between product line investments and market size for our oncology
sample; Panels A and B illustrate key differences between the timing of research and commercializa-
tion investments. Panel A documents that trial indication order is strongly negatively correlated
with market size. This fact is consistent with previous literature suggesting that firms prioritize
research in conditions with larger market sizes. Contrasting this, Panel B documents that approval
indication order has a non-negative relationship with market size. That is, firms do not prioritize
approvals in larger markets. This fact is consistent with the hypothesis that due to the potential
for off-label markets and the relative ease of obtaining approval for conditions with smaller market
sizes (e.g., firms may seek to obtain orphan drug status), firms strategically seek first approval for
indications with smaller markets.

Figure 3: Product Line Investments and Market Size
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Notes: This figure shows the relationship between product line investments and market size for cancer drugs approved
from 1990-2016. The level of observation is the drug-indication order. Panel A shows the relationship between trial
indication order and market size; number of observations is 1,656. Panel B shows the relationship between approval
indication order and market size; number of observations is 187. Market size is measured by new diagnoses for an
indication in the SEER data; we consider the log of the 5-year average market size relative to either the trial start
year (Panel A) or approval year (Panel B). Each marker represents binned averages for a given indication order. For
ease of interpretation, we display up to the 10th indication.
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Table 2 formalizes this relationship between indication order and market size. For drug d and
indication order i, we estimate the following:

MarketSized,i = α+ β1IndicationOrderd,i + γXd,i + εd,i (3)

Our outcome variable MarketSize is the natural log of the lagged 5-year average market size
associated with indication order i for drug d. The coefficient on IndicationOrder is our main
estimate of interest. We investigate this relationship by conditioning on a series of controls X,
including: initial approval year for the drug; its indication group; competition, meaning the number
of drug approvals in the same indication in the past five years; regulatory incentives, meaning
whether the drug has ever received an orphan drug designation; and the measures of intellectual
property protection described in Section 3. Each of these controls may influence the relationship
between indication order and market size. For example, Budish et al. (2015) highlight that firms
have reduced incentives to pursue research for early-stage cancers relative to late-stage ones, due to
longer development times and shorter resulting patent terms post-launch for early-stage cancers.
This has implications for our findings: If early-stage cancers have larger market sizes, the relationship
between indication order and market size may be driven, in part, by patent-related factors. To
account for this, we include detailed controls for each drug’s primary and potential intellectual
property protection. All estimates are from ordinary least squares (OLS) models.

Column (1) of Table 2 reports the raw correlation between trial indication order and market size.
The estimated coefficient implies that a 1-unit increase in trial indication order is associated with
a 9-percent decrease in market size. Column (2) shows that this negative relationship between
trial indication order and market size persists once all controls are included, and the relationship
remains significant at the 1-percent level. Columns (3) and (4) repeat these same regressions for
approvals instead of trials. Column (3) confirms that approval indication order has a non-negative
and insignificant relationship with market size. Once all controls are included in Column (4), the
relationship becomes negative, but remains quantitatively small and insignificant. That is, the
inclusion of these controls does not meaningfully shift the relationship between approval indication
order and market size. We interpret this to mean that such factors as initial approval year, indication
group, competition, regulatory incentives, and intellectual property protection do not explain the
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Table 2: Product Line Investments and Market Size

Research Commercialization
investments investments

(1) (2) (3) (4)

Indication order -0.0860*** -0.0846*** 0.00448 -0.0442
(0.00415) (0.00614) (0.0995) (0.141)

Mean of dep. var. 6.842 6.820 6.513 6.522
Observations 1,656 1,570 187 182
Controls:
Initial approval year no yes no yes
Indication group no yes no yes
Competition no yes no yes
Regulatory incentives no yes no yes
Intellectual property no yes no yes

Notes: This table shows the relationship between indication order and market
size for cancer drugs approved from 1990-2016. The level of observation is the
drug-indication order. The first two columns look at research investments (clinical
trials), and the second two columns look at commercialization investments (FDA
approvals). Market size is measured by new diagnoses for an indication in the
SEER data. The outcome variable is the log of the 5-year average market size
associated with indication order. Robust standard errors in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

gap between the timing of research versus commercialization investments and their relationship to
market size.19

4.2 Incorporating Off-Label Drug Use

To understand how the possibility of strategic market expansion via off-label drug use may influence
indication order, we carry out the first of two empirical tests. Using the disease similarity index
based on overlapping gene mutations described in Section 3.5, we consider in Table 3 total market
size, including potential off-label markets, as our outcome of interest. For reference, Columns (1) and
(3) repeat the specifications from Table 2, with focal indication market size as the outcome variable
and including all controls, for trials and approvals, respectively. Column (2) then regresses total
market size on indication order plus all controls for our trial sample. We see that the relationship
between indication order and market size becomes more negative, with an increase in indication

19Appendix Table D1 demonstrates the robustness of these results under an alternative specification where we use
an indicator for the first indication as our main explanatory variable instead of indication order.
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Table 3: Product Line Investments and Market Size, Incorporating Off-Label Potential

Research Commercialization
investments investments

Focal Total Focal Total
market size market size market size market size

(1) (2) (3) (4)

Indication order -0.0846*** -0.102*** -0.0442 -0.189*
(0.00614) (0.00670) (0.141) (0.107)

Mean of dep. var. 6.820 7.738 6.522 8.649
Observations 1,570 1,570 182 182
Initial approval year yes yes yes yes
Indication group yes yes yes yes
Competition yes yes yes yes
Regulatory incentives yes yes yes yes
Intellectual property yes yes yes yes

Notes: This table shows the relationship between indication order and market size for
cancer drugs approved from 1990-2016. The level of observation is the drug-indication
order. The first two columns look at research investments (clinical trials), and the second
two columns look at commercialization investments (FDA approvals). The outcome
variable in Columns (1) and (3) is focal market size while the outcome variable in
Columns (2) and (4) is total market size, including potential off-label markets; for both
variables, we consider the log of the 5-year average market size associated with indication
order. Focal market size is measured by new diagnoses for an indication in the SEER
data, while total market size is measured by new diagnoses for the focal indication plus a
proportion of new diagnoses for any potential off-label indications, with the proportions
given by our disease similarity index. Robust standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1.

order associated with a 10-percent decrease in total market size. Column (4) repeats this exercise
for our approval sample. In contrast to Column (3), where there is a small negative and insignificant
relationship between indication order and focal market size, once we account for off-label markets
the relationship becomes highly negative and statistically significant. A 1-unit increase in indication
order is associated with a 19-percent decline in total market size.20 We confirm that these results are
robust to using different measures of total market size that are generated with alternative similarity
measures (see Appendix Table D3). These results suggest that pharmaceutical firms do prioritize
larger indications once we factor in potential off-label markets. That is, they strategically invest in
formal regulatory approval for smaller (focal) indications, anticipating a non-regulatory approach

20Appendix Table D2 shows the robustness of these results using the alternative specification where an indicator
for first indication is the main explanatory variable.
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(off-label drug use) that allows them to expand demand for their products to other indications
without formal approval.

4.3 Off-label heterogeneity across therapeutic areas

As a second empirical test of strategic expansion via off-label drug use, we extend our analyses to
additional therapeutic areas outside oncology. While a focused examination of cancer markets allows
us to analyze indications in detail, by extending our analysis to a more broad array of diseases, we
are able to identify settings (at the disease level) where off-label use is more or less prevalent.

For this analysis, we categorize diseases using ICD-9 (International Classification of Disease) codes.
We then use diagnosis data from the Medical Expenditure Panel Survey (MEPS) from 1996 to 1997
to generate ICD-9 level measures of market size. Drug approval data for all drugs first approved
between 1998 and 2021 come from Cortellis.

From Radley et al. (2006) and Stafford (2008), we identify disease categories associated with high
and low levels of off-label drug use. Diseases categories associated with high levels of off-label drug
use include oncology, anticonvulsants, psychiatry, and antiasthmatics. Diseases categories associated
with low levels of off-label drug use include antidiabetics, antihypertensives, and antihyperlipidemics.
Figure 4 shows that the indication order-market size correlation is less negative among drugs first
approved for diseases with a high off-label propensity relative to drugs first approved for low off-label
diseases. That is, for drugs in therapeutic areas with low off-label propensity, firms do not have the
option of expanding into other markets via off-label use, leading them to prioritize larger markets in
their formal regulatory approvals. In contrast, for drugs in therapeutic areas with high off-label
propensity, firms can rely on off-label drug use to expand into additional markets and hence, we
observe a less negative relationship. This provides additional support for the conjectured role of
off-label drug use in shifting firms’ market entry strategies.
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Figure 4: Commercialization Investments and Market Size Across Diseases,
by Propensity for Off-Label Drug Use

10

12

14

16

lo
g(

Ap
pr

ov
al

 in
di

ca
tio

n 
m

ar
ke

t s
iz

e,
 a

v. 
19

96
-1

99
7)

0 2 4 6 8 10
Approval indication order

High off-label propensity Low off-label propensity

Notes: This figure shows the relationship between commercialization investments (FDA approvals) and market size
for approved drugs across several disease categories from 1998-2021, by propensity for off-label drug use. The level of
observation is the drug-indication order, where an indication corresponds to an ICD-9 code. Number of observations
is 1,108 (877 under high off-label propensity and 231 under low off-label propensity). Market size is measured by
indication (ICD-9) prevalence in the MEPS data; we consider the log of the average market size between 1996 and
1997. Each marker represents binned averages for a given indication order. For ease of interpretation, we display up
to the 10th indication.

4.4 Mechanisms: Conducting trials for regulatory versus off-label purposes

The above analyses provide evidence of firms’ strategic investment in smaller disease markets for
initial regulatory approval, knowing they can expand demand into larger disease markets via off-label
drug use. A possible concern with this interpretation would be if the gap between research and
commercialization investments were due to scientific rationales rather than strategic ones. To
address this concern, we explore the characteristics of trials likely conducted for off-label versus
regulatory purposes. We consider a drug’s “off-label indications” to be those tested in clinical trials
but for which the firm does not seek regulatory approval; “regulatory indications” are ones receiving
FDA approval. Note that it is possible our designation of “off-label indications” captures indications
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Figure 5: Comparison of Trial Quality Between Off-Label and Regulatory Indications
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Notes: This figure shows differences in trial quality for off-label versus regulatory indications for cancer drugs
approved from 1990-2016. Trial quality is measured as the share of trials that are randomized and controlled. Bars
give means, while capped ranges provide 95-percent confidence intervals.

discontinued due to scientific reasons—for example, a drug is found to be ineffective in treating
a particular indication. However, if the gap between research and commercialization investments
were purely due to scientific rationales rather than economic ones, then we would expect to see no
difference in trial quality between indications with regulatory approval and those without.

Figure 5 depicts mean trial quality for regulatory and off-label indications, with quality measured as
the share of trials that are randomized and controlled. We see that trials conducted for regulatory
indications are of significantly higher quality on average. Looking at all trials, we see that those
conducted for regulatory indications have a higher rate of being randomized and controlled (50
percent), relative to trials for off-label indications (39 percent). The difference between these
means is statistically significant at the 1-percent level. These differences persist when restricting to
early-stage trials: Thirty-six percent of early-stage trials conducted for regulatory indications are
of high quality, compared to 31 percent of those for off-label indications. This difference is again
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statistically significant at the 1-percent level. Consistent with the idea that firms are less likely to
conduct lengthy and costly late-stage clinical trials if not intending to pursue regulatory approval,
we find no difference in trial quality among late-stage trials.

4.5 Ruling out additional alternative explanations

We consider other possible explanations for the patterns we find. One is that firms may use expected
trial length as a factor in their ordering of clinical trial indications. That is, if firms prioritize
indications with longer anticipated clinical trials, that could be driving the negative indication
order-market size relationship we observe for trials and lack of relationship for approvals. As a
robustness check, we consider trial indication order with respect to the trial end dates rather than
start dates. In Appendix Figure D1, we see the strong negative relationship between trial indication
order and market size persists, reducing concerns that the gap between clinical trials and approvals
is due to trial length.

Second, another explanation could be that the non-negative indication order-market size relationship
for approvals reflects differences in FDA review timings rather than strategic decision making by
firms. If firms submit applications for larger indications first but the FDA requires longer review
times for such applications, this would weaken our hypothesis that firms strategically circumvent
FDA regulation via initial approvals in small markets. To address this concern, we manually collect
application submission dates for each approval from FDA review letters. In Appendix Figure D2, we
thus use a robustness check where approval indication order is determined by submission date rather
than approval date. We continue to see a non-negative relationship between approval indication
order and market size, indicating that FDA review processes are not driving our results.

Finally, the FDA releases information only on successful approvals, and one may be concerned that
the non-negative relationship we observe reflects FDA decisions on which indications to approve
rather than firms’ strategic investments. This is likely not the case as regulators do not time
indication approvals according to market size; rather the FDA’s objective is to evaluate the safety
and efficacy of a drug. Further, pharmaceutical firms will not devote resources towards submitting
an NDA if it is unlikely to be approved.
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5 Discussion: Managerial and policy implications of regulatory loopholes

The paper’s results indicate that pharmaceutical firms circumvent FDA regulation by seeking a
drug’s initial approval in smaller markets and relying on a non-regulatory pathway, namely off-label
use, to expand demand. In this section, we explore the implications of such regulatory loopholes for
firm managers, on the speed of entry into new markets and their R&D investment decisions. We also
discuss the policy implications for regulators, who must balance the trade-off between expediting
consumer access to new products and ensuring sufficient information about their quality.

5.1 Impact on speed of entry into new markets

By prioritizing initial regulatory approval in smaller indications, firms can potentially reach the
market quicker due to the ability to conduct smaller clinical trials with the segment of patients more
likely to respond to treatment (Chandra et al., 2019). To understand the benefit to firm managers
of this strategy, we carry out a back-of-the envelope calculation quantifying its dollar value.

We begin by comparing the speed with which drugs are able to enter the market when pursuing
initial approval in small versus large indications. Using our oncology sample, we restrict to each
drug’s first approval and consider “small” indications to be those within the first quartile of market
size and “large” indications to be the rest. Measuring from pivotal trial start date to approval date,
drugs with small initial indications reach the market in 43.8 months while those with large initial
indications reach the market in 53.1 months, for a difference of 9.3 months. To translate this time
savings into dollar savings, we make use of a recent study of clinical trial costs, which finds that each
additional month in late-stage clinical trials equals a median of $671,000 spent (Martin et al., 2017).
Multiplying this figure by 9.3 months suggests that pharmaceutical firms can save more than $6.2
million alone in clinical trial costs by prioritizing a smaller market for initial regulatory approval.

In addition to costs saved from clinical trials, firms also benefit from earlier revenues obtained. To
determine per-drug revenues over this time, we turn to Schuhmacher et al. (2022), who examine new
drugs launched and their total sales from 2011–2020. Given we are considering drugs launched in
small indications, we take the conservative approach to exclude blockbusters (with mean annual sales
of >$1 billion) and high-selling ($0.5–0.999 billion) drugs from our revenue calculations. Looking
only at low-selling (<$0.1 billion) and medium-selling ($0.1–0.499 billion) drugs, we determine these
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drugs have an average annual revenue of $143.2 million, equating to $111 million over 9.3 months.21

We think of this as an underestimate of total revenues because drugs initially launched in small
indications may still generate large, or even blockbuster-level sales, due to both the potential for
off-label use and competitive factors allowing monopoly pricing to be high. Summing the costs saved
from clinical trials and the revenues obtained via earlier market entry, we obtain a total value to
firms of $6.2 million + $111 million = $117.2 million per drug from exploiting regulatory loopholes
and prioritizing small markets for initial approval.

5.2 Impact on R&D investments

Next, we consider how these regulatory loopholes influence managerial decisions on R&D investments.
For each drug in our oncology sample, we look at all indications tested in clinical trials and consider
the level of R&D, as measured by number of indications, resulting from regulatory loopholes. We
distinguish between those indications receiving regulatory approval versus those that do not. In
contrast to the analysis of Section 4.4, which considered all non-regulatory indications as “off-label”
and examined corresponding differences in trial quality, here we make some additional assumptions
based on trial quality and terminations to explicitly separate non-regulatory indications into two
distinct categories: off-label indications and “dropped” indications, i.e., those that are discontinued
due to scientific rationales.

To do this, we first incorporate data on trial terminations and classify drug-indication pairs without
regulatory approval and with an above-median share of early terminations as dropped indications.
That is, if firms terminate trials early for certain indications, it means they do not plan to publicize
trial results for off-label purposes, and we assume that the lack of regulatory approval must be
due to scientific reasons. For indications that are not terminated early, we categorize them by also
exploiting data on trial quality. We assume that those with an above-median share of high-quality
(randomized and controlled) trials but not receiving approval must also be dropped due to scientific
rationales. This assumption is based on the idea that if pharmaceutical firms conduct high-quality
trials for these indications but then do not pursue regulatory approval, it is likely that the trial
results suggested a lack of efficacy. In contrast, we classify non-regulatory indications with trials not
terminated early but of lower quality as off-label indications. In this case, pharmaceutical firms do
not seek regulatory approval for the indications but conduct and complete lower-quality trials, the

21We calculate annual revenues from Figure 1 of Schuhmacher et al. (2022) as follows: $82.1 billion total revenues
for medium-selling drugs + $4.7 billion for low-selling drugs)/(51 medium-selling drugs + 50 low-selling drugs)/6
years average commercialization period over 2011–2020 = $143.2 million annual per-drug revenues.
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Figure 6: R&D for Regulatory and Off-Label Indications
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Notes: This figure plots the number of trial indications against the number of regulatory (approved)
and off-label indications for cancer drugs approved from 1990-2016. Circles depict regulatory
indications and triangles depict total regulatory plus off-label indications for each drug. Number of
drugs is 111.

results of which can be shared with doctors who may prescribe the drug off-label. To summarize, by
matching a drug’s trials and approvals and incorporating data on trial quality and terminations, we
can classify each of a drug’s indications into one of three types: regulatory, off-label, and dropped.

Figure 6 depicts for each drug, its number of trial indications against its number of regulatory and
off-label indications. The 45-degree line in this figure would correspond to the scenario where all of
a drug’s indications tested in clinical trials either receive regulatory approval or are used off-label.
We first plot for each drug its trial and corresponding regulatory indications in blue circles, with a
blue (thinner) line depicting the linear fit. This line thus gives for each number of trial indications
per drug, the expected number of approved indications. On average, the drugs in our sample are
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tested in 35.7 different trial indications, and of these, 3.2 receive regulatory approval.22 We next
plot each drug’s trial indications against its regulatory and off-label indications in pink triangles,
with a pink (thicker) line depicting the linear fit. We see this pink line is shifted to the right of the
blue one, and for any given number of trial indications, we can consider the distance between these
two lines as the number of trial indications pursued for off-label purposes. On average, an additional
7 indications are pursued for off-label purposes. That is, with the potential for strategic expansion
via off-label drug use, firms devote R&D investments to both regulatory and off-label uses, with the
number of off-label indications more than double the number of regulatory indications.

5.3 Impact for off-label policy

Opinions on the regulation of off-label use differ across stakeholders, including pharmaceutical
firms, payers, physicians, and consumers. Many off-label uses are not supported by high-quality
scientific evidence; yet at the same time, off-label use represents an important source of medical
innovation, offering earlier access to potential treatments for patients who may not respond to
on-label indications (Radley et al., 2006; Stafford, 2008). Although FDA guidance on off-label
promotion has gradually loosened over time (FDA, 2014), policy makers and regulators have recently
proposed legal provisions that would ban certain off-label uses (Zinberg, 2023).

While we leave a full welfare analysis of the costs and benefits to banning off-label use to future
research, we consider its implications from a conceptual standpoint. Our calculations above on
the impact of regulatory loopholes on firms’ R&D investments suggest a sizeable portion of R&D
goes towards indications used off-label. If off-label use were banned, we might expect firms to
pursue regulatory approval for a portion of these indications, provided the benefits from approval in
terms of market expansion exceed the costs of obtaining sufficient scientific evidence necessary for
regulatory processes. For the remaining indications, for which the benefts do not exceed the costs,
these drug-indication pairs would become “missing” in the sense that firms would no longer pursue
them and consumers would not have access to them. Thus, any gains in information quality for
indications that would have been used off-label but now go through regulatory approval processes
must be balanced against the loss in potential therapeutic options due to missing indications.

22Our main analyses consider trial indications at the site level and approval indications, for which we have more
granular data, at the site-stage level. For this analysis of R&D investment impacts, because we explicitly match trial
to approval indications, all indications are at the site level. As such, we have a mean of 3.2 approval indications per
drug at the site level versus, as indicated in Table 1, 4 approval indications per drug at the site-stage level.
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6 Conclusion

Understanding the factors that shape firms’ market entry decisions has been of long-standing interest
to researchers, managers, and policymakers. However, there has been little work on understanding
the role of regulatory loopholes in shaping these decisions. The possibility that firms can exploit
a regulatory loophole may shift the predicted relationship between entry order and market size.
Using detailed data on cancer markets, our paper confirms that while pharmaceutical firms undergo
research investments in a drug’s largest potential markets first, they seek initial approval in smaller
markets. These results are consistent with the view that pharmaceutical firms circumvent regulation
by relying on off-label drug use as a non-regulatory pathway to market entry.

For firms in regulated markets, there is a trade-off inherent in obtaining regulatory approval.
Although seeking formal regulatory approval for a product is time-intensive and costly, it offers the
advantage of obtaining quality certification and ultimately increasing demand (Berger et al., 2021).
Our results suggest that pharmaceutical firms can financially benefit by seeking smaller indications
first rather than initially seeking potentially longer and costlier regulatory approvals in larger market
sizes. From a managerial perspective, such strategic investments might be particularly important
for firms facing financial constraints or in markets where the first-mover advantage is large. This
may be the case, for example, with targeted therapies for specific genes. In these situations, firms
may benefit by getting a drug into the hands of physicians and patients as quickly as possible via
one indication approval and then relying on off-label use or later regulatory approvals for broader
indications.

From a policy perspective, our results raise important considerations for regulators such as the FDA,
which must consider the trade-off between expedient access to drugs versus the need for sufficient
quality information on potential therapies. At one extreme, regulatory processes may slow entry of
valuable products that would benefit consumers if available earlier. At the other, firms may choose
to avoid regulatory approval entirely, leading to a dearth of valuable new products and/or limited
information about the quality of products on the market that may have bypassed formal regulatory
approval. While we cannot speak to overall welfare effects, our findings suggest the need to think
more deeply about the costs of regulatory approval and policies like the Orphan Drug Act meant to
expedite drug development, both of which may encourage the use of non-regulatory entry pathways.
Further, proposed reforms to ban off-label use may have unintended consequences, such as reducing
R&D investment levels and consumer access to important drug innovations.
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Appendices

A A model of strategic entry

In this section, we develop a simple model to show why firms may prioritize smaller indications in

their commercialization investments. Our model points to the potential for off-label drug use as

a profitable non-regulatory strategy to expand markets. Given our empirical setting, the model

naturally focuses on the pharmaceutical industry; however, such product line decisions are applicable

across industries to any firm bringing new products to market.

A.1 Model framework

The model is a single-agent, two-period model where a representative firm must choose in each

period which product line version, if any, to bring to market. In our setting, this corresponds to a

pharmaceutical firm deciding whether or not to seek FDA regulatory approval for a given drug, and

if so, for which indication. We outline the model framework and parameters below:

Model timing. The model consists of two periods. In the first period, the pharmaceutical firm

chooses whether to enter the market with its drug. This means deciding whether to seek FDA

regulatory approval for its drug and the drug’s initial indication for approval. In the second period,

the firm decides whether to obtain regulatory approval for a supplemental indication, and if so, the

choice of indication. For simplicity, the model runs for two periods, although it could be extended

to additional periods (in which additional supplemental indications may be chosen). The drug has

an on-patent life of two periods, although this could also be extended to additional periods. We

assume no discounting between periods.

Indication choice set. We assume that the choice set of potential indications for approval is known

and fixed prior to the time of the drug’s initial approval; i.e., we abstract away from the situation

where learning about additional indications may occur after the drug’s initial approval. This is

consistent with the growth of large-scale screening methods to identify new indications early in a drug

candidate’s life, such as in silico screens (Cha et al., 2018). We can consider the choice set for a given

drug as the finite set of indications I in which the firm tested the drug in early-stage clinical trials.

If an indication i is chosen for initial approval, it is no longer available as a choice for supplemental

i



approval. For simplicity, we assume the choice set contains two indications: i ∈ I = {A,B}, where

indication A has a large potential market and B has a small one.

Cost of regulatory approval. If the firm seeks regulatory approval for an indication, it incurs

associated costs, for example, the costs of high-quality, later-stage clinical trials necessary for FDA

approval. For simplicity, we consider this a fixed cost Ki incurred at the time of the indication’s

regulatory approval. Consistent with existing evidence on the costs of clinical trials, we consider the

costs of regulatory approval to be greater for indications of larger market size, i.e., KA > KB.

Probability of regulatory approval. Each indication has a probability pi of receiving regulatory

approval. We can consider this as the likelihood clinical trials for that indication are successful

in demonstrating safety and efficacy. We assume that the probability of approval is greater for

smaller indications, i.e., pA < pB. This is plausible due to selective patient enrollment for smaller

indications.

Off-label markets. Each indication has a corresponding set of potential off-label indications, denoted

by Oi. If a drug receives regulatory approval for indication i, then Oi is the set of all indications

for which doctors may choose to prescribe the drug off-label (i.e., indications in Oi exceed some

threshold of known relatedness to indication i). We assume that OA = {B,C} and OB = {A,C},

where C is a separate indication that was never tested in early-stage trials. That is, if a drug is

approved for A, doctors may prescribe it off-label for B and C. Similarly, if a drug is approved for

B, doctors may prescribe it off-label for A and C.

Off-label diffusion rate. A drug’s rate of off-label diffusion is d ∈ [0, 1]. The firm has an ex-ante

prior of this rate, which gives the proportion of potential off-label markets that will actually use the

drug off-label following regulatory approval. For example, a diffusion rate of 0 would imply that,

following initial regulatory approval, the drug is not used at all off-label, and a diffusion rate of

1 would imply that it is used by the entire expected off-label market associated with the initial

indication.

Market size. Each indication has a corresponding focal market size Mi. Total market size Ti for

a given indication is the sum of its focal market size plus its potential off-label market size Oi

multiplied by the drug’s off-label diffusion rate, i.e., Ti = Mi + dOi. Given the assumptions above
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on the relative sizes of A and B and each indication’s off-label markets, we have that MA > MB

and that OA = MB + MC < MA + MC = OB. Whether TA is greater than TB or vice versa will

depend on the rate of off-label diffusion. We hold market sizes as fixed over the model periods.

Per-period profits. Holding price fixed across indications and normalizing it to equal 1, per-period

expected profits π for each indication are simply the probability of approval multiplied by total

market size, including off-label markets.1 That is, πi = piTi = pi(Mi + dOi).

The profit-maximizing pharmaceutical firm will seek to enter the market with its drug in period

1 if and only if the expected return from the initial indication exceeds its fixed cost of regulatory

approval. Similarly, the firm will seek a supplemental regulatory approval if and only if the expected

return from the supplemental indication exceeds its fixed cost. Conditional on entry, the firm chooses

an order of indications for its drug that maximizes the expected stream of total profits over the

model’s two periods (i.e., the drug’s on-patent life). The firm’s decision tree is given in Figure A1.

Figure A1: Two-Period Model of Strategic Entry

t=1 t=2

No entry

Enter with B

Enter with A No entry

Enter with B

No entry

Enter with A

Notes: This figure shows the firm’s decision tree. The firm chooses in each
period whether to seek regulatory approval (enter) or not and if so, for which
indication i ∈ I = {A, B}, where indication A has a large potential market
and B, a small one.

1We set per-period variable costs to be zero.
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A.2 Firm incentives to seek regulatory approval

This model produces five potential strategies for the firm: (1) enter with A in period 1, enter with

B in period 2; (2) enter with A, no entry; (3) enter with B, enter with A; (4) enter with B, no

entry; and (5) no entry at all. We consider the expected value from each strategy in turn.

The expected value of seeking regulatory approval for indication A in period 1 and for indication B

in period 2 is:

EVA,B = 2pA[MA + d(MB +MC)] + pB[(1− d)(MB + dMC)]−KA −KB (4)

Note that with regulatory approval for A in period 1, the firm penetrates a portion d of the markets

for B and C via off-label use. This leaves (1− d) of the markets for B and C that can be gained

via regulatory approval for B in period 2. Note also that while OB = {A,C} initially, since the

drug receives regulatory approval for A in period 1, it is no longer included among B’s potential

off-label markets at period 2; i.e., in period 2, OB = {C}.

The expected value of seeking regulatory approval for indication A in the first period and not

entering in the second is:

EVA,no entry = 2pA[MA + d(MB +MC)]−KA (5)

Similarly, the expected value of seeking regulatory approval first for B and second for A is:

EVB,A = 2pB[MB + d(MA +MC)] + pA[(1− d)(MA + dMC)]−KB −KA (6)

And the expected value of seeking regulatory approval for B in the first period and not entering in

the second is:

EVB,no entry = 2pB[MB + d(MA +MC)]−KB (7)

Seeking no regulatory approval at all yields a reservation value V̄ = 0.

The firm chooses the strategy (whether to seek regulatory approval and choice of indications in each

period) that maximizes its expected value. If the expected values in equations (4)–(7) are less than

iv



reservation value V̄ , the firm does not obtain regulatory approval and does not enter the market

with its drug.

A.3 Model prediction

We aim to understand how market size relates to regulatory approval decisions in settings where

off-label use is more or less common. First, we consider the scenario where d = 0 and no off-label use

occurs. In that case, the expected value in equation (4) simplifies to 2pAMA + pBMB −KA −KB

and the expected value in equation (5) simplifies to 2pAMA −KA. Equations (6) and (7) simplify

similarly. Conditional on 2pMA −KA > 0 and pMB −KB > 0, and given our initial assumption on

market size MA > MB, the firm will select indication A for regulatory approval in period 1 and

indication B for approval in period 2 if and only if:

2pAMA + pBMB −KA −KB > 2pBMB + pAMA −KB −KA, or (8)

MA >
pB

pA
MB (9)

Equation (9) shows that if pA is sufficiently large, then the firm prioritizes larger indications for its

regulatory approvals in settings where off-label use is uncommon.

Second, we consider the scenario where d = 1 and regulatory approval for an indication leads to

complete off-label diffusion, i.e., the total off-label population for that indication also uses the drug.

Here, the expected value in equation (4) simplifies to 2pA[MA +MB +MC ]−KA −KB and the

expected value in equation (5) simplifies to 2pA[MA +MB +MC ]−KA. That is, under complete

diffusion, the firm has no incentive to seek regulatory approval in the second period because it is

already reaching all potential markets, including off-label ones, with regulatory approval in the first

period. Again, equations (6) and (7) simplify similarly. Conditional on 2pB [MA+MB+MC ]−KB > 0

and given our initial assumptions on the probability of regulatory approval pA < pB and fixed costs

of approval KA > KB, the firm will select indication B for regulatory approval in period 1 and seek

no approval in period 2.

Thus we can summarize the main prediction of our model as follows:
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In settings where off-label use is less likely to occur, we would expect firms to prioritize

larger indications for their regulatory approvals. Conversely, in settings where off-label

use is more likely, firms may prioritize smaller indications for approval.
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B Similarity index example: Breast and ovarian cancers

Table B1 provides the genetic mutations associated with breast and ovarian cancers from the CGC

database. We calculate their similarity index as follows: sBreast,Ovarian = |B ∩ O|
|B ∪ O| = 7/75 = 0.093.

Table B1: Genetic Mutations for Breast and Ovarian Cancers

Breast Ovarian Breast & ovarian
gene mutations gene mutations gene mutations

ALK AKT2 AKT1
ASPM ATR ARID1A
BAP1 BRAF ARID1B
BARD1 BRCA1 BRCA2
CASP8 CASP3 ERBB2
CCND1 CCNE1 GOLPH3
CDH1 CDK12 PPM1D
CDKN1B COL3A1
CTCF CREB1
DCTN1 CSMD3
EP300 CTNNB1
ESR1 EIF1AX
ETV6 EWSR1
FADD FES
FBLN2 FOXL2
FLNA GOPC
FOXA1 LRP1B
GATA3 MAPK1
HGF MLH1
IKZF3 MSH2
IRS4 PIK3R1
KEAP1 PLAG1
MAP2K4 PPP2R1A
MAP3K1 PRDM2
MAP3K13 PTK6
MED12 RNF43
NCOR1 ROS1
NOTCH1
NTRK3
PBRM1
PIK3CA
PPFIBP1
RAD50
RANBP2
RB1
SALL4
SMARCD1
TBX3
TP53
VHL
ZMYM3

Notes: This table lists gene mutations for breast and ovarian
cancers from the CGC database.
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C Variation in approval and trial indications

Figure C1: Per-Drug Distribution of Product Line Investments
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Notes: This figure shows the distribution of product line investments for cancer drugs approved from 1990-2016.
Panel A gives the per-drug distribution of trial indications; number of drugs is 111. Panel B gives the per-drug
distribution of approval indications; number of drugs is 129.
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Figure C2: Distribution of Original Trial Indications Across Cancer Sites
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Notes: This figure shows the distribution of the original trial indications across cancer sites for cancer drugs approved
from 1990-2016.
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Figure C3: Distribution of Supplemental Trial Indications Across Cancer Sites
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Notes: This figure shows the distribution of the supplemental trial indications across cancer sites for cancer drugs
approved from 1990-2016.
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Figure C4: Distribution of Approval Indications Across Cancer Sites
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Notes: This figure shows the distribution of original and supplemental approval indications across cancer sites for
cancer drugs approved from 1990-2016.
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Figure C5: Distribution of Approval Indications Across Cancer Stages
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Notes: This figure shows the distribution of approval indications across cancer stages for cancer drugs approved from
1990-2016.
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D Robustness checks

D.1 Difference between first and subsequent indications

Table D1: Product Line Investments and Market Size

Research Commercialization
investments investments
(1) (2) (3) (4)

1First indication 1.152*** 0.626*** -0.386* -0.591**
(0.125) (0.147) (0.220) (0.272)

Mean of dep. var. 6.842 6.820 6.513 6.522
Observations 1,656 1,570 187 182
Initial approval year no yes no yes
Indication group no yes no yes
Competition no yes no yes
Regulatory incentives no yes no yes
Intellectual property no yes no yes

Notes: This table shows the difference in market size between the first and
subsequent indications for cancer drugs approved from 1990-2016. The level
of observation is the drug-indication order. The first two columns look at
research investments (clinical trials), and the second two columns look at
commercialization investments (FDA approvals). Market size is measured by
new diagnoses for an indication in the SEER data. The outcome variable is the
log of the 5-year average market size associated with indication order. Robust
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table D2: Product Line Investments and Market Size, Incorporating Off-Label Potential

Research Commercialization
investments investments

Focal Total Focal Total
market size market size market size market size

(1) (2) (3) (4)

1First indication 0.626*** 0.634*** -0.591** -0.0462
(0.147) (0.164) (0.272) (0.238)

Mean of dep. var. 6.820 7.738 6.522 8.649
Observations 1,570 1,570 182 182
Initial approval year yes yes yes yes
Indication group yes yes yes yes
Competition yes yes yes yes
Regulatory incentives yes yes yes yes
Intellectual property yes yes yes yes

Notes: This table shows the difference in market size between the first and subsequent
indications for cancer drugs approved from 1990-2016. The level of observation is the
drug-indication order. The first two columns look at research investments (clinical trials),
and the second two columns look at commercialization investments (FDA approvals).
The outcome variable in Columns (1) and (3) is focal market size while the outcome
variable in Columns (2) and (4) is total market size, including potential off-label markets;
for both variables, we consider the log of the 5-year average market size associated with
indication order. Focal market size is measured by new diagnoses for an indication
in the SEER data, while total market size is measured by new diagnoses for the focal
indication plus a proportion of new diagnoses for any potential off-label indications,
with the proportions given by our disease similarity index. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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D.2 Alternative similarity measures

Table D3: Commercialization Investments and Total Market Size, Using Alternative Simi-
larity Measures

All genes Cancer Gene Census
Top 10% Top 20% Top 30% Top 10% Top 20% Top 30%

(1) (2) (3) (4) (5) (6)

Indication order -0.193* -0.209* -0.227* -0.199* -0.217* -0.243*
(0.111) (0.115) (0.120) (0.117) (0.120) (0.125)

Mean of dep. var. 9.432 9.636 9.788 9.586 9.880 10.06
Observations 182 182 182 182 182 182
Initial approval year yes yes yes yes yes yes
Indication group yes yes yes yes yes yes
Competition yes yes yes yes yes yes
Regulatory incentives yes yes yes yes yes yes
Intellectual property yes yes yes yes yes yes

Notes: This table shows the relationship between indication order for commercialization investments
(FDA approvals) and total market size for cancer drugs approved from 1990-2016, using alternative
similarity measures. Alternative measures are generated by directly using cancer genome sequencing
data from 168 large-scale mapping studies. Genetic mutations are restricted to those that occur at a
high frequency within each mapping study, where a genetic mutation as “high frequency” within a
cancer if it occurs in the top 10 percent (Columns 1 and 4), top 20 percent (Columns 2 and 5), or top
30 percent (Columns 3 and 6) of most frequency occurring mutations. Columns 1 to 3 focus on genetic
mutations occurring among all genes. Columns 4 to 6 focus on the set of genetic mutations occurring
among genes found in the Cancer Gene Census. The level of observation is the drug-indication order.
The outcome variable is total market size, including potential off-label markets, where we consider the
log of the 5-year average market size associated with indication order. Total market size is measured
by new diagnoses for the focal indication plus a proportion of new diagnoses for any potential off-label
indications, with the proportions given by our disease similarity index. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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D.3 Trial end dates

Figure D1: Research investments and Market Size,
with Indication Order Determined by Trial End Dates
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Notes: This figure shows the relationship between research investments (clinical trials) and market
size for cancer drugs approved from 1990-2016, with indication order determined by trial end dates.
The level of observation is the drug-indication order. Market size is measured by new diagnoses for
an indication in the SEER data; we consider the log of the 5-year average market size. Each marker
represents binned averages for a given indication order.
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D.4 Submission dates

Figure D2: Commercialization Investments and Market Size,
with Indication Order Determined by Submission Dates
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Notes: This figure shows the relationship between commercialization investments (FDA approvals)
and market size for cancer drugs approved from 1990-2016, with indication order determined by FDA
submission dates. The level of observation is the drug-indication order. Market size is measured by
new diagnoses for an indication in the SEER data; we consider the log of the 5-year average market
size. Each marker represents binned averages for a given indication order.
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