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A B S T R A C T

Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular
effects when co-solubilised with α–tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro
studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo
studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with
either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which
retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with
Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective
effect compared to control with DARC (p < 0.05) and Brn3 (p < 0.01). Topical CoQ10 appears an effective
therapy preventing RGC apoptosis and loss in glaucoma-related models.

1. Introduction

Glaucoma is a progressive neurodegenerative eye disorder esti-
mated to affect 60 million people worldwide (Cook and Foster, 2012;
Tham et al., 2014). Glaucoma involves the progressive loss of retinal
ganglion cells (RGCs) and their axons, which results in visual field
abnormalities and ultimately blindness if left untreated (Garcia-
Valenzuela et al., 1995; Quigley et al., 1995). Elevated intraocular
pressure (IOP) is presently the only modifiable disease risk factor
(Weinreb and Khaw, 2004; Lee et al., 2014a). However, recognition of a
subset of glaucoma patients who continue to exhibit visual decline
despite therapeutically well-controlled IOP has led to the realisation
that novel therapeutic paradigms for this condition are urgently
required (Resnikoff et al., 2004).

RGC loss in glaucoma is predominantly thought to occur via
elevated apoptosis (a type of programmed cell death) (Quigley et al.,
1995; Cordeiro et al., 2010) which is mainly mitochondrial dysfunction
mediated (Lee et al., 2014a; Ju et al., 2008; Park et al., 2011). While the
primary site of injury is thought to occur at the site of the RGC axon in
the optic nerve, (Quigley et al., 1977; Minckler et al., 1977; Quigley
et al., 1981; Knox et al., 2007) the resulting loss of RGCs (primary
degeneration) can also lead to the secretion of pro-apoptotic factors

resulting in secondary neurodegeneration and the death of neighbour-
ing RGCs (Davis et al., 2016a). Although the exact mechanism of
glaucoma progression remains to be elucidated, elevated oxidative
stress has been suggested to contribute to glaucoma pathogenesis (Tezel
et al., 2005; Yuki et al., 2010). Mitochondria are a source and target of
oxidative stress and therefore are key in the development of neuropro-
tective strategies for RGC preservation in glaucoma (Chrysostomou
et al., 2013).

Coenzyme Q10 (CoQ10) is a mitochondrial targeted antioxidant
that plays an essential role in the normal function of the electron
transport chain. CoQ10 has been reported to exhibit neuroprotective
activity in a range of disorders including; cerebral ischemia, (Ahmed
et al., 2015) Parkinson's disease and Huntington's disease
(Klongpanichapak et al., 2006). In addition to its role as an antioxidant,
CoQ10 is also reported to protect against glutamate excitotoxicity in
vivo through the inhibition of mitochondrial depolarization (Papucci
et al., 2003; Lee et al., 2014b).

Concentrations of CoQ10 in the human retina are reported to
decline by up to 40% with age (Qu et al., 2009). The poor aqueous
solubility (Fato et al., 2010) and low bioavailability of CoQ10, due in
part to its interactions with the multi-drug efflux pump P-glycoprotein
(P-gp), have limited the development of topically active formulations of
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this drug (Hirano and Iseki, 2008). The interaction of CoQ10 with P-gp,
expressed in both corneal epithelial cells (Vellonen et al., 2010) and
RGCs (Duncan et al., n.d.) suggests that co-administration of CoQ10
with a P-gp inhibitor would likely enhance the topical delivery and
pharmacological effects of this drug (Hirano and Iseki, 2008). α-
Tocopherol is a form of vitamin E best known for its role as a lipid
soluble antioxidant but is well-documented to inhibit P-glycoprotein (P-
gp) activity (Wu et al., 2007; Davis et al., 2015). The mechanism of α-
Tocopherol mediated P-gp inhibition is poorly understood but has
recently been suggested to occur as a result of indirect modulation of
the membrane dipole potential (Davis et al., 2015).

Formulation of CoQ10 into micelles using the vitamin E derivative
D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) has pre-
viously been reported to deliver micromolar concentrations of CoQ10
to the vitreous in patients 1 h after administration (Fato et al., 2010).
The present study sought to investigate the mechanism of α-Tocopherol
mediated P-gp inhibition and assess the neuroprotective effects of
CoQ10 and TPGS using immortalised and primary mixed retinal
cultures (Galvao et al., 2014; McCarthy et al., 2004). Finally, the
efficacy of topically applied CoQ10/TPGS micelles was next evaluated
in vivo using the well-established Morrison's ocular hypertension model
(OHT) (Morrison et al., 1997) and in vivo DARC (Cordeiro et al., 2017)
and Brn3a-RGC immunohistochemistry as endpoints (Galvao et al.,
2013; Davis et al., 2016b).

2. Methods

2.1. Cell culture

Both primary murine retinal mixed cultures (pMC) and an immor-
talised retinal neuronal (RN) cell line (RGC5, a gift from Dr. Neeraj
Agarwal, Department of Cell Biology and Genetics, UNT Health Science
Centre, Fort Worth, TX) were used. These cells express retinal neuronal
proteins Thy-1, Brn3a, and β3 tubulin (Krishnamoorthy et al., 2001;
Burugula et al., 2011; Nadal-Nicolás et al., 2009), and are known to be
similar to the 661w photoreceptor cell line and RGCs (Al-Ubaidi, 2014;
Van Bergen et al., 2009; Krishnamoorthy et al., 2013). RN were
cultured in Dulbecco's modified Eagle's medium (DMEM; Invitrogen,
Paisley, UK), supplemented with 10% heat-inactivated fetal bovine
serum (Invitrogen), 100 U/mL penicillin and 100 mg/mL streptomycin.
Primary murine (C57BL/6) mixed retinal cultures were isolated from
P1 pups and neuronal cells isolated by incubation in a solution
containing 10 units of papain/mL, and cultured in DMEM supplemen-
ted with 5% fetal bovine serum (Invitrogen, UK), 100 U/mL penicillin,
100 μg/mL of streptomycin and 0.292 mg/mL glutamine (Gibco, UK),
7.5% sterile dH20 and 1.5 mM KCl (Sigma-Aldrich, UK). The medium
was changed completely on day 1 and 50% refreshed on day 2. Cells
were used for experiments on day 3.

2.2. P-glycoprotein activity assessment

Analysis of P-gp activity was performed as previously described
(Ohashi et al., 2006). Briefly, RN cells were seeded at 4000 cells/well in
a 96 well plate for 24 h. On the day of the study, cell monolayers were
washed before treatment with varying concentrations of TPGS or
verapamil hydrochloride (Sigma-Aldrich), a known P-gp inhibitor for
10 min and incubated for 10 min at 37 °C. After this time, cells were
incubated with the P-gp substrate calcein-AM (Invitrogen) for 60 min
before P-gp activity was measured by quantifying calcein fluorescence
using excitation and emission wavelengths of 485 nm and 530 nm
respectively (Safire plate reader). Percentage P-gp activity at each
concentration of drug was determined using Eq. (1);

Pgp activity (%) = 100 − (RFU − RFU )
(RFU − RFU )

test BK

MAX BK (1)

where; RFUtest is the fluorescence in the presence of test compound,

RFUBK is the fluorescence in the absence of test compounds and RFUMAX

is the fluorescence in the presence of 66 μM verapamil which induced
maximal P-gp inhibition. EC50 values were determined by fitting results
to four-parameter dose response curves.

2.3. Dipole potential assessment

RN cultures were seeded at 4000 cells/well in a 96 well plate and
permitted to settle for 24 h before washing well before labelling with
0.5 μM of the fluorescent probe di-8-ANEPPs (Invitrogen, from 2 mM
stock solution in ethanol) for 1.5 h in phenol-red free DMEM (Sigma-
Aldrich) (Davis et al., 2015). After this time the ratiometric di-8-ANEPS
fluorescence intensity at excitation of 420/520 nm and emission of
670 nm using a Safire plate reader for each cell population was
recorded before and 10 min after cells were treated with varying
concentrations of TPGS for 10 min. The change in fluorescence ratio
of di-8-ANEPPS indicates a change in the membrane dipole potential on
addition of an agent of interest. The dissociation constant (Kd) of the
interaction of TPGS for neuronal cells was determined by fitting the
change in di-8-ANEPPs fluorescence ratio to a hyperbolic binding
equation as described previously (Davis et al., 2010).

2.4. Immunocytochemistry

pMC were fixed in 4% paraformaldehyde for 15 min before washing
twice with PBS and permeabilizing in PBS plus 0.1% Tween-20. Cells
were blocked with PBS containing 3% bovine serum albumin (BSA,
Sigma-Aldrich, UK) for 1 h prior to incubation with primary antibodies
overnight at 4 °C (diluted in PBS containing 3% BSA; see Table 1 for
details of antibodies used), followed by the appropriate Alexa Fluor
488 nm or 555 nm secondary antibody for a further hour at a 1:1000
dilution (Life technology, UK). Cells were subsequently washed twice
with PBS, before addition of 5 μg/mL cell permeable dye Hoechst
33342 (Molecular Probes, Eugene, OR, USA) for 5 min at room
temperature prior to visualisation. Then mounted with mowiol (Merck,
UK) and were observed under a confocal fluorescence microscope (LSM
700, Carl Zeiss MicroImaging GmbH, Jena, Germany).

2.5. Reverse transcription PCR assay

To test pMC for retinal neuronal marker expression, total RNA was
extracted from primary mixed retinal cultures using RNeasy mini kit
following manufacturer's specifications (Qiagen, UK). Complementary
DNA (cDNA) synthesis was conducted by QuantiTect Reverse
Transcription (Qiagen) according to manufacturer's protocol. The PCR
reaction was conducted using the GoTaq G2 DNA polymerase kit
(Promega, UK). Primers and cycle conditions are summarised Table 2.

2.6. Oxidative cytotoxicity evaluation and cell viability assays

pMC were plated at 30,000 cell/well in 96-well plates for 24 h. After
this time cells were treated with either 20 μM CoQ10 with 57 μM TPGS,
or 57 μM TPGS only (vehicle control) for 2 h. The molar ratio of CoQ10
and TPGS chosen was the same as that present in the micelle
formulation subsequently used in vivo. After this time, treatments were
removed before application of varying concentrations of cytotoxic

Table 1
Antibodies source and optimized dilutions.

Antibody Company Cat. Host species Dilution

Brn3a Abcam AB81213 Rabbit 1:200
Thy-1 Abcam AB225 Mouse 1:500
RBPMS Abcam AB152101 Rabbit 1:500
γ-synuclein Abcam AB55424 Rabbit 1:1200
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insults (DMSO or paraquat, Sigma-Aldrich, UK) which were incubated
for 24 h (5% CO2, 37 °C). Cell viability was then assessed using the
Alamarblue (Invitrogen, UK) assay according to manufacturer's instruc-
tions. Briefly, the Alamarblue solution was added to each well to a final
concentration of 10% v/v. Cells were incubated for 4 h at 37 °C before
fluorescence was recorded using a Safire plate reader (excitation of
530 nm and emission of 590 nm) and cell viability determined as
previously described (Lancaster and Fields, 1996). Results presented
are averages of at least three independent experiments.

2.7. Animals

All animal experiments were performed with procedures approved
by the U.K. Home Office and in compliance with the ARVO Statement
for the Use of Animals in Ophthalmic and Vision Research. For in vivo
assessment of experiments: in total 20 Adult male Dark Agouti (DA) rats
(Harlan Laboratories, UK) weighing 150 to 200 g were housed in an air-
conditioned, 21 °C environment with a 12 h light-dark cycle
(140–260 lx), where food and water were available ad libitum.

2.8. Ocular hypertension model

Ocular hypertension was surgically induced in the left eye of 20 DA
rats as described previously (Morrison et al., 1997). Procedures were
conducted under general anaesthesia using a mixture of 37.5%
Ketamine (Pfizer Animal Heath, Exton, PA), 25% Dormitol (Pfizer
Animal Heath, Exton, PA) and 37.5% sterile water, at 2 mL/kg
administered intraperitoneally. Briefly, 50 μL of hypertonic saline
solution (1.8 M) was injected into the two episcleral veins using a
syringe pump (50 μL/min; UMP2; World Precision Instruments, Sar-
asota, FL, USA). A propylene ring with a 1 mm gap cut from the
circumference was placed around the equator to prevent injected saline
outflow from other aqueous veins. The IOP from both eyes of each rat
was measured at regular intervals using a TonoLab tonometer (Tiolat
Oy, Helsinki, Finland) under inhalational anaesthesia (0.4% isoflurane
in oxygen). Daily administration of topical CoQ10/TPGS micelles (0.5%
w/v TPGS with 0.1% CoQ10 w/v in PBS, pH 7.4) or TPGS only micelles
(0.5% w/v TPGS, vehicle control) was performed in DA rats (two 30 μL
drops/day 5 min apart at 10 am each day) starting two days prior to
model induction and continuing until model termination (21 days post
IOP elevation). Animals underwent DARC imaging before sacrifice
three weeks after unilateral IOP elevation.

2.9. Detection of apoptotic retinal cells

Fluorescently labelled Annexin A5 (Anx776, (Cordeiro et al., 2017))
was given by intravitreal administration as described previously (5 μL
of 0.4 μg/mL) (Cordeiro et al., 2010; Galvao et al., 2013; Guo et al.,
2014). In vivo DARC imaging was performed using a modified cSLO
(Heidelberg Retina Angiograph 2, Heidelberg Engineering, Dossen-
heim, Germany) (Cordeiro et al., 2004; Maass et al., 2007) and a 55°
field of view centred on the optic disc (Cordeiro et al., 2004; Maass
et al., 2007). No complications or intraocular side effects associated

with topical treatments were recorded.

2.10. Brn3a immunohistochemistry and confocal microscopy

Brn3a labelling of RGCs in retinal whole mounts was completed as
described previously (Davis et al., 2016a). Briefly, eyes were enucleated
upon sacrifice and fixed in 4% paraformaldehyde at 4 °C overnight
before dissecting retinal whole mounts. Whole mounts were stained for
the RGC specific nuclear-localised transcription factor Brn3a using an
anti-mouse mAb (1:500, Merck Millipore, Darmstadt, Germany) and
examined under confocal microscopy (LSM 710, Carl Zeiss MicroIma-
ging GmbH, Jena, Germany). Each retinal whole mount was imaged as
a tiled z-stack at ×10 magnification which was used to generate a
single plane maximum projection of the RGC layer in each retina for
subsequent analysis. Each whole mount image was manually orientated
so that the superior retina was towards the top of the image using in vivo
cSLO imaging of retinal vasculature as a reference. Retinal image
acquisition settings were kept constant for all retinas imaged, allowing
comparison of Brn3a expression in each experimental group as pre-
viously described (Nadal-Nicolás et al., 2012). Automated quantifica-
tion of Brn3a labelled RGCs in retinal whole mounts was completed as
described previously (Davis et al., 2016a). Naïve Brn3a whole retinal
counts from DA rats (Fig. 6) was obtained from our previous work
(Davis et al., 2016a).

2.11. Statistical analysis

All data were analysed with the Student's t-test or ANOVA with
posthoc testing using GraphPad Prism 5 (GraphPad Software, Inc., La
Jolla, CA, USA) as appropriate. Data were presented as means ± SE
and p < 0.05 was considered significant.

3. Results

3.1. The vitamin E derivative TPGS modulates P-glycoprotein activity and
membrane dipole potential over the same concentration range in
immortalised neuronal cells

The effect of TPGS on the viability of immortalised RN cells was first
established using the AlamarBlue viability assay (Fig. 1A). The IC50 of
TPGS after 24 h incubation was found to be 259 ± 14 μM with no
significant reduction in cell viability observed up to TPGS concentra-
tions of 132 μM. The calcein-AM P-gp activity assay (Fig. 1B) deter-
mined the IC50 of verapamil as 1.03 ± 0.02 μM which is similar to that
reported elsewhere in the literature (Kishimoto et al., 2016). The IC50 of
TPGS was found to be 2.48 ± 0.06 μM, in agreement with reports in
the existing literature that this molecule is a P-gp inhibitor despite not
being a direct P-gp substrate (Collnot et al., 2010). Using the same
model, the influence of TPGS on the membrane dipole potential was
investigated (Fig. 1C). The interaction of TPGS with this neuronal cell
line was found to induce a marked decline in the membrane dipole
potential in a similar manner to that previously reported for α-
tocopherol which fit a hyperbolic binding equation with a dissociation
constant of 2.22 ± 0.03 μM. The striking similarity between the IC50

of TPGS for P-gp and the effect of TPGS on the membrane dipole
potential provide further evidence to support the hypothesis that
modulation of membrane dipole potential indirectly modulates P-gp
activity.

3.2. Coenzyme Q10 micelles are neuroprotective in vitro against established
models of mitochondrial-mediated neurotoxicity in rodent primary mixed
retinal cultures

Primary mixed murine retinal cultures were firstly characterised
immunohistochemically (Fig. 2A–D) and by mRNA expression using
PCR (Fig. 2E). A proportion of mixed retinal cultures were found to

Table 2
Summary of PCR primers.

Gene NCBI ref.
(Murine

mRNA[cDNA])

Primers
Forward (5′- > 3′)
Reverse(3′- > 5′)

PCR
product
length

Tm
(°C)

Thy-1 NM_009482.3 TGAGGGAAGTTGGACTGTGC
CCCTTCCTGCACGGACTTAG

405 60

Brn3a
(Pou4f1)

NM_011143.4 CCTCGTCTGAGAAGATCGCC
AACAACGCCTACCCAGAGTG

790 60

γ-synuclein NM_011430.3 CACACTGAATGCCCTGCCTA
ACAGCAGCATCTGATTGGTGA

156 60
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label with the RGC specific markers Brn3a, γ-synuclein, RBPMS and
Thy-1 and expression of RGC specific markers was confirmed by PCR
(Fig. 2E).

Pre-treatment of pMC cultures with CoQ10/TPGS micelles was
found to significantly reduce cell death induced by DMSO and paraquat
(unmatched two-way ANOVAs, p = 0.031 & p = 0.002 respectively)
(Fig. 3A–B). Treatment of cells with equivalent concentrations of TPGS
alone did not elicit a significant neuroprotective effect in either
cytotoxic model.

3.3. Topically applied Coenzyme Q10 micelles reduce RGC apoptosis in the
Morrison's model of ocular hypertension independent of IOP

Having established the neuroprotective potential of CoQ10/TPGS
micelles in vitro, we next sought to determine whether topical applica-
tion of CoQ10/TPGS micelles could induce neuroprotection using a
well-established rodent model of experimental glaucoma. Induction of
OHT in DA rats resulted in an increase in IOP (Table 3), which peaked
1-day post-surgery in all treatment groups (Fig. 4A) and returned to
baseline levels by the three-week time point. No significant change in
IOP was observed in contralateral eyes (Fig. 4A–C), in agreement with
previous studies (Davis et al., 2016a). Topical instillation of CoQ10/
TPGS or TPGS only micelles did not cause a significant change in IOP
profile compared to untreated OHT, suggesting any other effects
observed were independent of IOP (Fig. 4D).

Three weeks after surgical induction of OHT, animals had DARC
imaging performed. The number of apoptotic RGCs was quantified from
acquired retinal images by recording mean counts from two trained
masked observers. A significantly lower number of apoptotic retinal
cells was detected in OHT eyes treated with CoQ10/TPGS micelles
compared to those treated with micelles containing only TPGS (one-
way ANOVA with Tukey posthoc test, p < 0.05, Fig. 5). The number of
apoptotic cells detected after treatment with CoQ10/TPGS micelles was
similar to that detected in contralateral unoperated eyes.

RGC loss was evaluated by whole-retinal flat mounts labelled with
Brn3a. CoQ10/TPGS but not TPGS treatment alone could protect rat
retinal RGCs against IOP-induced apoptosis as indicated by the
preservation in RGC density (Fig. 6A & B) and nearest neighbour
distance (Fig. 6C &D) in the CoQ10/TPGS treated groups versus TPGS
only or untreated (OHT only) controls.

4. Discussion

This study uses both in vitro and in vivo mitochondrial-mediated
neurotoxicity models to successfully demonstrate the neuroprotective
activity of CoQ10/TPGS compared to TPGS alone. Furthermore, twice-
daily topical instillation of CoQ10/TPGS micelles was found to be
significantly neuroprotective against RGC loss in a well-established rat
model of OHT using in vivo and ex-vivo endpoints.

The findings also suggest that the antioxidant activity of TPGS alone

Fig. 1. The P-gp inhibition activity of TPGS in a neuronal cell line closely matches its dipole potential modulating effects [A] Dose response curve (AlamarBlue) for a retinal neuronal cell
line after 18 h incubation with TPGS (n = 3). [B] Comparison of the effect of TPGS and verapamil hydrochloride on P-gp activity in the same retinal neuronal cell line. Data expressed as
the mean ± SE (n = 6). The figure shows a dose-dependent decrease in P-gp activity with both verapamil hydrochloride and TPGS fit four parameter dose-response curves. [C] Change
in membrane dipole potential on titration of TPGS into retinal neuronal cell line as determined by di-8-ANEPPs fit best to a hyperbolic binding equation with a dissociation constant
similar to the IC50 of TPGS for P-gp (2.48 ± 0.06 μM versus 2.22 ± 0.03 μM respectively). Results are means ± SE.

Fig. 2. Characterization of primary mixed murine retinal cultures enriched in RGCs. Immunostaining of primary murine cultures reveals a high concentration of cells labelled with RGC
specific markers [A] Brn3a, [B] γ-synuclein, [C] RBPMS [D] Thy-1. Hoechst nuclear staining (blue) with immunostaining (FITC/TRITC). Scale bar = 20 μm, ×10 magnification. [E]
Results were confirmed with reverse-transcriptase PCR using primers against (1) Thy-1, (2) Brn3a and (3) γ-synuclein. Band sizes were confirmed by comparison to appropriate molecular
weight ladder; 200 bp (L200) or 100 bp (L100). No bands were detected in primary cell-free controls (data not shown) ruling out primer-dimers. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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was insufficient to protect an immortalised neuronal cell line from
insults generating mitochondrial oxidative stress, such as DMSO and
paraquat. This is in agreement with previous work which reported that
co-administration of CoQ10 with the α-tocopherol derivative trolox
enhances the neuroprotective activity of CoQ10 in vitro (Nakajima
et al., 2008). The authors postulated the beneficial effect of vitamin E/
CoQ10 co-therapy is a result of both agents having a synergistic
antioxidant potential (Constantinescu et al., 1994). The reactivity of
CoQ10 towards peroxyl radicals is reported to be much lower than that
of α-tocopherol (0.33 × 104 M−1·s−1 versus 3.3 × 106 M−1·s−1 re-
spectively (Sohal, 2004)). However, the ability of CoQ10 to regenerate
reduced α-tocopherol in the mitochondrial membrane (Sohal, 2004)
and previous observations that supplementation with CoQ10 increases
mitochondrial α-tocopherol concentration but not vice-versa (Lass and
Sohal, 2000) could explain this effect. TPGS is not an antioxidant, first
requiring decomposition by cellular esterases to liberate α-tocopherol,
perhaps reducing the effective concentration of this antioxidant (Carini
et al., 1990).

CoQ10 has been used in several treatment trials of retinal disorders.
A randomized, double-blind, placebo-controlled clinical trial of 106
AMD (age-related macular degeneration) patients, reported improve-
ments in visual function and retinal lesions after 12 months of oral
CoQ10 therapy (20 mg/day) combined with mitochondrial targeting
therapies Acetyl-L-Carnitine (200 mg/day) and n-3 Fatty acids (20 mg/
day) (Feher et al., n.d.). More recently, the effects of topical CoQ10
therapy (2 drops/day) in combination with vitamin E TPGS (CoQun)
was assessed in 22 open-angle glaucoma patients receiving β-blocker
versus 21 patients receiving β-blocker monotherapy alone. This study
reported a beneficial effect of CoQun therapy on electrophysiological

functional tests including pattern electroretinography and visual cor-
tical responses after 12 months Coqun therapy versus controls (Parisi
et al., 2014).

The mechanism by which CoQ10 is thought to elicit neuroprotec-
tion is suggested to be a result of a combination of its well-documented
antioxidant activity (Turunen et al., 2004), mechanical stabilisation of
membrane structure reducing the risk of mitochondrial depolarisation
(Sévin and Sauer, 2014) or via its Ca2+ buffering activity (Bogeski
et al., 2011), important as an increase in intracellular Ca2+ is
associated with apoptosis induction (Pinton et al., 2008). The ability
of CoQ10 to inhibit glutamate excitotoxicity has been attributed to the
reduction in expression of NR1 and NR2A subunits of N-methyl-D-
aspartate receptor in the DBA/2J murine glaucoma model (Lee et al.,
2014b). As both oxidative stress and glutamate excitotoxicity have been
suggested to contribute to glaucoma pathogenesis, CoQ10 presents an
intriguing glaucoma therapy (Davis et al., 2016c). Particularly as
CoQ10 levels in the retina decline by approximately 40% with age,
which may be associated with the onset of retinal disease (Qu et al.,
2009).

In vitro, CoQ10 treatment was found to have a more pronounced
effect on DMSO than paraquat IC50 values. A possible explanation for
the observation is that while both DMSO and paraquat induce oxidative
stress via affecting mitochondrial mediated respiration (Galvao et al.,
2014; Yuan et al., 2014; Castello et al., 2007), we recently reported that
DMSO can also induce an increase in cytoplasmic calcium resulting in
BAX-mediated apoptosis induction. Coenzyme Q10 has recently been
reported to bind and transport Ca2+ across membranes (Bogeski et al.,
2011). The authors postulate that in addition to its anti-oxidant
properties, coenzyme Q10 could therefore act as a cytosolic Ca2+

Fig. 3. CoQ10/TPGS micelles but not TPGS alone are neuroprotective against mitochondrial targeted cytotoxic insults in mixed murine retinal cultures containing RGCs. Pre-treatment of
primary mixed murine retinal cell cultures with CoQ10/TPGS micelles (20 μM CoQ10 and 57 μM TPGS) but not equivalent concentrations of TPGS only significantly (two-way ANOVA,
p = 0.033 and p= 0.0002 respectively) reduced the susceptibility of these cells to [A] DMSO and [B] paraquat-induced cytotoxicity.

Table 3
Mean IOP measurements and integral IOP (± SD) for each treatment group in this study.

Time post OHT induction (days) OHT only OHT (co-eye) OHT + CoQ10/TPGS OHT + CoQ10/TPGS (co-eye) OHT + TPGS OHT + TPGS (co-eye)

0 10.4
(1.0)

10.2
(0.88)

9.8
(0.2)

9.7
(0.2)

9.9
(0.3)

10.1
(0.4)

1 20.6
(3.8)

10.4
(1.7)

17.8
(2.7)

11.6
(0.9)

19.0
(2.8)

11.1
(1.5)

7 13
(4.0)

11.8
(3.3)

12.1
(1.1)

9.9
(0.4)

11.3
(0.6)

9.7
(0.1)

21 11.2
(2.0)

11.1
(1.2)

11.6
(1.5)

10.2
(0.8)

10.0
(0.6)

9.5
(0.3)

Integral IOP (mmHg/day) 286.0
(42.4)

237.3
(43.0)

270.2
(27.3)

216.2
(7.7)

255.1
(14.5)

206.9
(5.4)
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buffer so protecting mitochondria from elevated cytosolic Ca2+ levels.
In support of a RGC neuroprotective mechanism, local ocular and

systemic administration of CoQ10 (most commonly in conjunction with
vitamin E derivatives) have been reported to offer retinal neuroprotec-
tive activity against models of retinal damage. Intravitreal and topical
administration of CoQ10 has been reported to protect against retinal
damage caused by IOP-induced ischemia or staurosporine by prevent-
ing glutamate-induced excitotoxicity and RCG apoptosis respectively
(Nucci et al., 2007; Guo and Cordeiro, 2008). More recently, topical
CoQ10 was found to elicit RGC neuroprotection over and above its
antioxidant activity in a UV-induced rat model of retinal damage
through inhibition of mitochondrial depolarization after topical instil-
lation, (Papucci et al., 2003; Lulli et al., 2012) Nakajima et al. reported
that systemic administration of CoQ10 (10 mg/kg) protected retinal
cells against oxidative stress in an in vivo murine model of NMDA-
induced retinal injury (Nakajima et al., 2008). Furthermore, in a
transgenic DBA/2J murine glaucoma model, daily supplementation of
the diet with 1% CoQ10 was found to promote RGC survival by 29%
through decreasing Bax or increasing pBad protein expression and
preserving mtDNA content and Tfam/OXPHOS complex IV protein
expression in the glaucomatous retina (Lee et al., 2014b).

The protective effects of CoQ10 are not limited to neurons, with
increasing reports that dietary supplement with CoQ10 therapy can also
inhibit astroglial activation via mitochondrial-mediated effects,
(Papucci et al., 2003; Lee et al., 2014b; Noh et al., 2013) which is
increasingly recognised to play an important role in glaucoma pathol-
ogy (Seitz et al., 2013). As a result, in addition to the aforementioned
direct neuroprotective effects, CoQ10 may also elicit neuroprotective
activity by acting on retinal glia. Administration of both DMSO (up to
5% v/v) and paraquat have previously been reported to promote
astrocyte and glial toxicity in vitro (Yuan et al., 2014; Kim et al.,

2008). Furthermore, subcutaneous administration of DMSO in P7 C57/
BL/6By mice is reported to induce microglial activation in the brain
(Saito et al., 2015) and administration of sub-toxic doses of paraquat in
mice are reported to result in microglial activation prior to neurode-
generation (Purisai et al., 2007). In addition, a microglial inhibitory
mechanism has recently been proposed in CoQ10 mediated protection
against Aβ(1–42) induced cognitive dysfunction (Meneses et al., 2015)
and pentylenetetrazol induced kindling epilepsy in mice (Bhardwaj and
Kumar, 2016). In addition, with accumulating evidence for the
involvement of amyloid beta in glaucoma pathology (Guo et al.,
2007; Ito et al., 2012; Nizari et al., 2016) and growing recognition of
mechanistic similarities between glaucoma and Alzheimer's disease
(Gupta et al., 2016; Sivak, 2013), modulation of microglial activation
by CoQ10 could contribute to the reported neuroprotective effects of
this agent. Finally, reports of microglia activation in angiogenesis
(Arnold and Betsholtz, 2013) and recent reports of microglial contribu-
tion to elevated basic fibroblast growth factor (bFGF) expression in the
CNS after injury (Fujimaki et al., 2016) (perhaps via the ERK pathway
(Lu et al., 2007; Ibrahim et al., 2011)), suggest a potential mechanism
for the reported anti-angiogenic effects of CoQ10 (Choi et al., 2011;
Jung et al., 2009; Sachdanandam, 2008) and its potential as a
therapeutic for the treatment of age-related macular degeneration.

Beyond increasing the aqueous solubility and antioxidant potential
of CoQ10, this study provides evidence to suggest that inhibition of P-
gp activity may also play a role in the benefit of CoQ10/TPGS co-
therapy. Inhibition of P-gp will reduce the efflux of extracellularly
administered CoQ10, which is a recognised P-gp substrate (Hirano and
Iseki, 2008). P-gp inhibition could, therefore, act to both increase the
concentration of CoQ10 reaching intraocular tissues (via inhibition of P-
gp in corneal epithelial cells, which contributes to the formidable
corneal barrier to topically applied drugs (Dey et al., 2004)) and

Fig. 4. CoQ10/TPGS or TPGS eye drop administration did not significantly affect IOP elevation induced by the OHT model. IOP profiles in DA rats after induction of OHT demonstrate a
significant increase in IOP versus contralateral eyes [A–C] (Two-way repeated measures ANOVA with Bonferroni post-test, ***p < 0.001, **p < 0.01). Treatment of eyes with topical
administration of CoQ10/TPGS [B] or TPGS only micelles [C] did not significantly alter the IOP profiles compared on OHT induction (two-way repeated measures ANOVA with
Bonferroni post-test versus OHT model, p > 0.05) [D] suggesting any neuroprotective activity of treatments was a result of IOP independent effects. Results are mean ± SD.
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impede the removal of CoQ10 from neuronal cells in the retina.
Although the P-gp inhibiting activity of TPGS is well-established

(Dintaman and Silverman, 1999; Constantinides et al., 2006), the
mechanism of action is poorly understood. TPGS is known not to
interact directly with P-gp (Collnot et al., 2010), suggesting an indirect
mechanism of action. There has been a recent growth in interest in the
indirect modulation of membrane protein function via non-specific
(Type II) lipid-protein interactions (Richens et al., 2015). The mem-
brane dipole potential describes an electrical potential which arises
from the restricted orientation of dipoles within membrane lipids and
water molecules of the membrane solvation shell and has a magnitude
of ~300 mV (O'Shea, 2003). The ability of α-tocopherol to modulate
the membrane dipole potential of cholesterol containing membrane
microdomains has recently been suggested as a possible mechanism of
indirect P-gp activity modulation (Davis et al., 2015). In the present
study, titration of TPGS in an immortalised neuronal cell line was found
to induce a dose-dependent change in the membrane dipole potential,
which fitted to a hyperbolic binding equation with a dissociation
constant strikingly similar to the concentration of TPGS required to
inhibit 50% of P-gp activity in the same cell line. Together, this data
provides further evidence to support dipole potential modulation as a
mechanism for α-tocopherol mediated P-gp inhibition.

Topical instillation of CoQ10/TPGS micelles but not TPGS micelles
alone was found to significantly reduce the number of apoptotic retinal
ganglion cells three weeks after induction of the OHT model without
affecting IOP, suggesting an IOP independent neuroprotective effect of
topical CoQ10 therapy. These results were confirmed with Brn3a whole
mount histology which indicated almost complete protection of RGCs in
the OHT retina upon treatment with CoQ10/TPGS micelles versus TPGS

only or untreated groups. The results of this study provide evidence to
support the use of the DARC technique to provide a quantitative
assessment of retinal apoptosis and monitor the efficacy of therapeutic
interventions versus appropriate controls. The impressive neuroprotec-
tive effect of CoQ10/TPGS may be a result of treatment commencing
two days before OHT induction, suggesting this therapy may be most
effective for patients at risk of IOP spikes such as following posterior
capsulotomy or in pigment dispersion and Posner-Schlossman syn-
dromes.

5. Conclusion

In conclusion, this study presents evidence that topically instilled
CoQ10/TPGS micelles can deliver neuroprotective concentrations of
these antioxidants to the retina in vivo using an established rodent
model of ocular hypertension. These findings are in agreement with
recent literature which suggests that this formulation can be used to
deliver therapeutically relevant concentrations of CoQ10 to the poster-
ior ocular tissues in humans after topical instillation (Fato et al., 2010)
and suggest the potential utility of this neuroprotective therapies for the
treatment of glaucoma.
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