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ORIGINAL RESEARCH

A CNN-aided method to predict glaucoma progression using DARC (Detection of
Apoptosing Retinal Cells)
Eduardo M. Normando a,b, Tim E. Yap a,b, John Maddisonc, Serge Miodragovica, Paolo Bonettia, Melanie Almontea,
Nada G. Mohammad a, Sally Ameena, Laura Crawleya, Faisal Ahmeda, Philip A. Blooma,b

and Maria Francesca Cordeiro a,b,d

aICORG, Imperial College London, London, UK; bWestern Eye Hospital, Imperial College Healthcare NHS Trust, London, UK; cMaddisys Ltd, London,
UK; dUCL Institute of Ophthalmology, London, UK

ABSTRACT
Background: A key objective in glaucoma is to identify those at risk of rapid progression and blindness.
Recently, a novel first-in-man method for visualising apoptotic retinal cells called DARC (Detection-of-
Apoptosing-Retinal-Cells) was reported. The aim was to develop an automatic CNN-aided method of
DARC spot detection to enable prediction of glaucoma progression.
Methods: Anonymised DARC images were acquired from healthy control (n=40) and glaucoma (n=20)
Phase 2 clinical trial subjects (ISRCTN10751859) from which 5 observers manually counted spots. The
CNN-aided algorithm was trained and validated using manual counts from control subjects, and then
tested on glaucoma eyes.
Results: The algorithm had 97.0% accuracy, 91.1% sensitivity and 97.1% specificity to spot detection
when compared to manual grading of 50% controls. It was next tested on glaucoma patient eyes
defined as progressing or stable based on a significant (p<0.05) rate of progression using OCT-retinal
nerve fibre layer measurements at 18 months. It demonstrated 85.7% sensitivity, 91.7% specificity with
AUC of 0.89, and a significantly (p=0.0044) greater DARC count in those patients who later progressed.
Conclusion: This CNN-enabled algorithm provides an automated and objective measure of DARC,
promoting its use as an AI-aided biomarker for predicting glaucoma progression and testing new drugs.
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1. Background

Artificial intelligence (AI) is increasingly used in health care
especially ophthalmology [1,2]. Machine learning algo-
rithms have become important analytical aids in retinal
imaging, being frequently advocated in the management
of diabetic retinopathy, age-related macular degeneration
and glaucoma, where their utilization is believed to opti-
mize both sensitivity and specificity in diagnosis and mon-
itoring [3–7]. The use of deep learning in these blinding
conditions has been heralded as an advance to reduce
their health and socio-economic impact, although their
accuracy is confounded by dataset size and deficient refer-
ence standards [4].

Glaucoma is a progressive and slowly evolving ocular neuro-
degenerative disease that it is the leading cause of global irre-
versible blindness, affecting over 60.5 million people, predicted
to double by 2040, as the aging population increases [8,9]. A key
objective in glaucoma research over the last few years is to
identify those at risk of rapid progression and blindness. This
has included,methods involvingmultiple levels of data including
structural (optical coherence tomography (OCT), disc imaging)
and functional (visual fields or standard automated perimetry
(SAP)) assessments. However, several studies have demonstrated

there is great variability amongst clinicians in agreement over
progression using standard assessments including SAP, OCT, and
optic disc stereo photography [3,10–12]. However, clinical grad-
ing is regarded as the gold standard in real-world practice. In
deep learning datasets, manual grading of retinal images is
regarded as the ‘ground truth’ and is essential in order to train
and test AI strategies in the automated detection of diseases
such as glaucoma [13–19]. Moreover, it is recognized that both
OCT and SAP change only after significant death of a large
number of retinal ganglion cells (RGC) [20], and with this the
unmet need for earlier markers of disease.

Recently, we reported a novel method to visualize apoptotic
retinal cells in the retina in humans called DARC (Detection of
Apoptosing Retinal Cells) [21]. The molecular marker used in the
technology is fluorescently labeled annexin A5, which has a high
affinity for phosphatidylserine exposed on the surface of cells
undergoing stress and in the early stages of apoptosis. The
published Phase 1 results suggested that the number of DARC
positively stained cells seen in a retinal fluorescent image could
be used to assess glaucoma disease activity, but also correlated
with future glaucoma disease progression, albeit in small patient
numbers. DARC has recently been tested in more subjects in
a Phase 2 clinical trial (ISRCTN10751859).
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The aim of this study was to devise an automatic method
of DARC spot detection using a convolutional neural network
(CNN). CNNs have shown strong performance in computer
vision tasks in medicine, including medical image classifica-
tion. This CNN-aided algorithm was to be developed by train-
ing on a control cohort of subjects and then tested on
glaucoma patients in the Phase 2 clinical trial of DARC.

2. Research design and methods

2.1. Study population and setting

The Phase 2 clinical trial of DARC was conducted at The Western
Eye Hospital, Imperial College Healthcare NHS Trust, as a single-
center, open-label study with subjects each receiving a single
intravenous injection of fluorescent annexin 5 (ANX776, 0.4 mg)
between 15 February 2017 and 30 June 2017. Both healthy and
progressing glaucoma subjects were recruited to the trial, with
informed consent being obtained according to the Declaration
of Helsinki after the study was approved by the Brent Research
Ethics Committee. (ISRCTN10751859).

All glaucoma subjects were already under the care of the
glaucoma department at the Western Eye Hospital. Patients
were considered for inclusion in the study if no ocular or
systemic disease other than glaucoma was present and they
had a minimum of three recent, sequential assessments with
retinal optical coherence tomography (Spectralis SD OCT,
software version 6.0.0.2; Heidelberg Engineering, Inc.,
Heidelberg, Germany) and standard automated perimetry
(SAP, HFA 640i, Humphrey Field Analyzer; Carl Zeiss
Meditec, Dublin, CA) using the Swedish interactive threshold
algorithm standard 24–2. Patient eligibility was deemed pos-
sible if evidence of progressive disease in at least one eye of
any parameter summarized in Tables 1–3, was found to be
present, where progression was defined by a significant
(*p < 0.05; **p < 0.01) negative slope in the rate of progres-
sion (RoP). SAP parameters included the visual field index
(VFI) and mean deviation (MD). OCT parameters included
retinal nerve fiber layer (RNFL) measurements at three differ-
ent diameters from the optic disc (3.5, 4.1, and 4.7 mm) and
Bruch’s membrane opening minimum rim width (MRW).
Where it was not possible to use machine in-built software
to define the rate of progression, due to the duration of the
pre-intervention period of assessment, linear rates of change
of each parameter with time were computed using ordinary
least squares [22,23]. Inclusion of these features of progres-
sion was to ensure that only patients with active disease
were included in the study, especially as the majority of
eyes had early disease, with a diagnosis of glaucoma suspect
in 23 eyes of 12 patients, as indicated in Tables 1 and 2.

Healthy volunteers were initially recruited from people
escorting patients to clinics and referrals from local optician
services who acted as Patient Identification Centers (PICs).
Healthy volunteers were also recruited from the Imperial
College Healthcare NHS Trust healthy volunteers database.
Potential participants were approached and given an invita-
tion letter to participate. Participants at PICs who agreed to be
contacted were approached by the research team and booked
an appointment to discuss the trial. Enrollment was performed

once sequential participants were considered eligible, accord-
ing to the inclusion and exclusion criteria detailed in Table S1.
Briefly, healthy subjects were included if there was no ocular
or systemic disease, as confirmed by their GP; there was no
evidence of any glaucomatous process either with optic disc,
RNFL (retinal nerve fiber layer) or visual field abnormalities and
with normal IOP (intraocular pressure); and they had repeata-
ble and reliable imaging and visual fields.

2.2. DARC image acquisition and study blinding

All participants received a single dose of 0.4 mg of ANX776 via
intravenous injection following pupillary dilatation (1% tropica-
mide and 2.5% phenylephrine) and were assessed using a similar
protocol to Phase 1 [21]. Briefly, retinal imageswere acquired using
a cSLO (HRA+OCT Spectralis, Heidelberg Engineering GmbH,
Heidelberg, Germany) with ICGA infrared fluorescence settings
(diode laser 786 nm excitation; photodetector with 800-nm barrier
filter) in the high-resolution mode. Baseline infrared autofluores-
cent images were acquired prior to ANX776 administration, and
then during and after ANX776 injection at 15, 120, and 240 min-
utes. Averaged images from sequences of 100 frames were
recorded at each time point. All images were anonymized before
any analysis was performed. For the development of the CNN-
algorithm, only baseline and 120 minute images from control and
glaucoma subjects were used.

The breakdown of the images analyzed is shown in the
‘Consort’ diagram in Figure 1. For the CNN-training, 73 control
eyes at baseline and 120 minutes were available for the ana-
lysis. Similarly, of the 20 glaucoma patients who received
intravenous ANX776, images were available for 27 eyes at
baseline and 120 time-points.

Table 1. Glaucoma eligibility (Exclusion/Inclusion Criteria Glaucoma).

Subject ID Eligible eye Diagnosis

6 Both Primary Open Angle Glaucoma
7 Both Glaucoma suspect
9 Both Glaucoma suspect
11 Both Glaucoma suspect
13 Both Glaucoma suspect
17 Both Glaucoma suspect
18 Both Glaucoma suspect
21 Both Primary Open Angle Glaucoma
23 Both Primary Open Angle Glaucoma
25 Both Glaucoma suspect
31 Left Primary Open Angle Glaucoma
32 Both Primary Open Angle Glaucoma
38 Both Primary Open Angle Glaucoma
39 Both Glaucoma suspect
44 Both Primary Open Angle Glaucoma
45 Both Glaucoma suspect
52 Both Glaucoma suspect
61 Both Primary Open Angle Glaucoma
72 Left Glaucoma suspect
74 Both Glaucoma suspect

Table 2. Glaucoma characteristics on study entry.

Diagnosis n (%)

Glaucoma 8 (40)
Glaucoma suspect 12 (60)
Ocular hypertension 0 (0)
Total 20
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2.3. DARC spot detection

2.3.1. Manual observer analysis
Anonymized imageswere randomlydisplayedon the samecomputer
and under the same lighting conditions, and manual image review
was performed by five blinded operators using ImageJ® (National
Institutes of Mental Health, USA) [24]. The ImageJ ‘multi-point’ tool
was used to identify each structure in the image which observers
wished to label as an ANX776-positive spot. Each positive spot was
identified by a vector co-ordinate. Manual observer spots for each
image were compared: spots from different observers were deemed
to be the same spot if they were within 30 pixels of one another.
A breakdown of concordance including interobserver agreement is
provided in Figure S2, withmore than 50% of candidate spots having
agreement with more than 2 observers. The criteria for spots used in
the automated application to train and compare the systems was
when there was concordance of two or more observers.

2.3.2. Automated analysis
2.3.2.1. Automated image analysis overview (Figure 2).
To detect the DARC labeled cells, candidate spots were
identified in the retinal images, then classified as ‘DARC’

or ‘not DARC’ using an algorithm trained using the candi-
dates and the spots identified by manual observers. Figure
2 provides an overview of the process.

2.3.2.2. Image optimization.. As part of the automated
image analysis pipeline, images at 120 minutes were
aligned to the baseline image for each eye using an affine
transformation followed by a non-rigid transformation.
Images were then cropped to remove alignment artifacts.
The cropped images then had their intensity standardized
by Z-Scoring each image to allow for lighting differences.
Finally, the high-frequency noise was removed from the
images with a Gaussian blur with a sigma of 5
pixels.

2.3.2.3. Spot candidate detection. Template matching,
specifically Zero Normalized Cross-Correlation (ZNCC) is
a simple method to find candidate spots. Thirty (30) x
thirty (30) pixel images of the spots identified by manual
observers were combined using a mean image function to
create a spot template. This template was applied to the
retinal image producing a correlation map. Local maxima

Table 3. Baseline and Qualification Progression parameters Glaucoma Patients, where progression was defined by a significant (p < 0.05) negative
slope in the rate of progression.

OCT SAP

Subject Eye RNFL 3.5 µm/year RNFL 4.1 µm/year RNFL 4.7 µm/year MRW µm/year MD dB/year VFI %/year

6 R + +
L

7 R
L + +

9 R +
L +

11 R
L + +

13 R + + +
L +

17 R +
L +

18 R + + +
L

21 R + +
L +

23 R +
L + + +

25 R
L + +

31 R +
L

32 R +
L +

38 R + + + +
L + + +

39 R + +
L

44 R +
L +

45 R +
L

52 R + +
L + +

61 R + + +
L + + + +

72 R + +
L + +

74 R + +
L + + + +
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were then selected and filtered with thresholds for the
correlation coefficient and intensity standard deviation
(corresponding to the brightness of the spot). These
thresholds were set low enough to include all spots seen
by manual observers. Some of the manual observations

were very subtle (arguably not spots at all) and correlation
low for quite distinct spots due to their proximity to blood
vessels. This means the thresholds needed to be set very
low and produce many more spot candidates than manu-
ally observed spots (approximately 50–1).

Figure 1. Consort diagram showing glaucoma and control cohorts subjects and DARC image analysis.
* 3 screen failures, 37 declined ** 24 screen failure, 36 were ineligible from pre-screening GP letter, 50 declined.

Alignment to baseline Crop Standardising Intensity Noise Filter

Local Maxima Template MatchingFiltering by match featuresFilter for spots with 64x64 imageShown on original image

o Manually observed (2 agree)

o Other spot candidates

Manually observed spots

CNN Training

CNN Predictions

Mode Scaled 

Intensity 

Normalisation

Other spot candidates

Spot segmentation

x3 zoom

o True Positives (manual and CNN agree)

o False Positives (CNN but not manual)

o False Negatives (manual but not CNN)

x3 zoomx3 zoomx3 zoom

Figure 2. CNN-aided Algorithm Flowchart showing Analysis Stages of DARC Images
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As can be seen from Figure 3, the spot candidates cover
much of the retinal image; however, this reduces the number
of points to classify by a factor of 1500 (compared with look-
ing at every pixel). Using local maxima of the ZNCC, each
candidate detection is centered on a spot-like object, typically
with the brightest part in the center. This means the classifier
does not have to be tolerant to off-centered spots. It also
means that the measured accuracy of the classifier will be
more meaningful as it reflects its ability to discern DARC
spots from other spot-like objects, not just its ability to discern
DARC spots from random parts of the image.

2.3.2.4. Spot classification. To determine which of the spot
candidates were DARC cells, the spots were classified using an
established Convolutional Neural Network (CNN) calledMobileNet
v2 [25–28]. This CNN enables over 400 spot images to processed in
a single batch. This allows it to cope with the 50–1 unbalanced
data since each batch should have about 4 DARC spots.

Although the MobileNet v2 architecture was used, the first
and last layers were adapted. The first layer became a 64x64x1
input layer to take the 64 × 64 pixel spot candidate images (this
size was chosen to include more of the area around the spot to
give the network some context). The last layer was replaced with
a dense layer with sigmoid activation to enable a binary classifi-
cation (DARC spot or not) rather than multiple classification. An
alpha value for MobileNet of 0.85 was found to work best,
appropriately adjusting the number of filters in each layer.

2.3.2.5. Training. CNN training and validation sets were split
by eye then trained at spot level. Training of spot identification
was performed only on spots from 50% of control eyes; the
remaining 50% were then used for validation/testing. Final test-
ing was done on the whole glaucoma dataset to avoid over-
training given the relatively small sample numbers. All training,
validation, and testing were performed at spot level and not
image or eye level, although the selection of train/test was

done at an eye level, again to prevent over-training. Briefly,
retinal images were randomly selected from baseline and
120 minute images of 50% of the control patients. The CNN
was trained using candidate spots, marked as DARC if two or
more manual observers observed the spot. A total of 58,730 spot
candidates were taken from these images (including 985 2-agree
manually observed DARC spots). Seventy percent of these spots
were used to train, and 30% to validate. The retinal images of the
remaining 50% of control patients were used to test the classifi-
cation accuracy (48,610 candidate spots of which 898 were
2-agree manually observed).

The data were augmented to increase the tolerance of the
network by rotating, reflecting, and varying the intensity of the
spot images. TheDARC spots class weights were set to 50 for spots
and 1 for other objects to compensate for the 50–1 unbalanced
data.

The training validation accuracy converges, and thematching
validation accuracy also shows similar accuracy without signs of
over training. As the training curves show (see Figure 4) a good
accuracy is achieved in 200 epochs, although training was left for
300 epochs to verify stability.

Three training runs were performed, creating three CNN
models. For inference, the three models were combined: each
spot was classified based on the mean probability given by
each of the three models.

2.3.2.6. Testing on glaucoma DARC images. Once the
CNN-aided algorithm was developed, it was tested on the
glaucoma cohort of patients in images captured at baseline
and 120 minutes. Spots were identified by manual observers
and the algorithm. The DARC count was defined as the num-
ber of a ANX776-positive spots seen in the retinal image at
120 minutes after baseline spot subtraction.

2.4. Glaucoma progression assessment – the comparator

Rates of progression were computed from serial OCTs on
glaucoma patients 18 months after DARC, where progression
was defined by a significant (*p < 0.05; **p < 0.01) negative
slope RoP greater than 1 μm/year, based on the 5% lower limit
for age-related change of −0.92 μm/year identified by Wu
et al. [29] to distinguish between normal aging losses [30,31].
All OCTs were assessed for quality at the time of imaging,
where motion artifact or other issues were identified, patients
were rescanned at the same visit. Those patients with
a significant (p < 0.05) negative slope were defined as pro-
gressing compared to those without who were defined as
stable. Additionally, assessment was performed by five
masked expert clinicians using visual field (including VFI, MD,
and PSD), OCT (including RNFL and MRW parameters), optic
disc clinical observations (cup-disc ratio on biomicroscopy),
and documented treatment changes.

2.5. Main outcome measures & statistical analysis

Statistical analysis was performed using GraphPad Prism (ver-
sion 8.01), SPSS (version 25.0) and Python. Receiver operating
characteristic (ROC) curves were constructed with the area

Figure 3. Representative retinal image of the possible spot candidates.
Candidate spots were detected using template matching and a correlation map. Local
maxima were selected and filtered with thresholds for the correlation coefficient and
intensity standard deviation (corresponding to the brightness of the spot). These thresholds
were set very low and produce many more spot candidates than manually observed spots
(approximately 50–1).
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under the curve (AUC), standard errors, maximal sensitivities
and specificities generated for CNN training, validation and
testing data and comparisons with manual observers counts.
Interobserver agreements were calculated for manual observer
DARC counts and clinician progression status using Cohen’s
kappa coefficient. Rates of progression (RoP) were calculated
from serial tests of visual field MDs and VFIs, and OCT RNFL
and MRW parameters and progression was defined by
a significant (*p < 0.05; **p < 0.01) negative slope. Where it
was not possible to use machine in-built software to define
RoP due to the duration of the pre-intervention period of
assessment, linear rates of change of each parameter with
time were computed using ordinary least squares.
Comparisons between stable and progressing glaucoma eyes
were made with DARC counts, age, CCT, BP, baseline MD, VFI,
RNFL and corresponding abnormal RNFL and BMO-MRW sec-
tors using the unpaired t-test (*p < 0.05; **p < 0.01).

3. Results

3.1. Patient demographics

Demographics of glaucoma and control subjects are shown in
Table supp2. Sixty glaucoma patients were screened according
to the inclusion/exclusion criteria in Tables 1 and 2, from
which 20 patients with progressing (defined by a significant
(p < 0.05) negative slope in any parameter in at least one eye)
glaucoma underwent intravenous DARC. Baseline characteris-
tics of these glaucoma patients are presented in Table 3.
Thirty-eight eyes were eligible for inclusion, of which three
did not have images available for manual observer counts, two

had images captured in low-resolution mode and another two
had intense intrinsic autofluorescence. All patients apart from
two were followed up in the Eye clinic, with data being avail-
able to perform a post hoc assessment of progression.

3.2. Testing of spot classification

The results in Figure 4 were achieved when testing the CNN-
aided algorithm with the 50% of the control eyes that were
reserved for test (and so were not used in training). The
accuracy was found to be 97%, with 91.1% sensitivity and
97.1% specificity.

The sensitivity and specificity were encouragingly high,
especially as the manual observation data that it was trained
and tested on had been shown to have high levels of inter-
observer variation (see supplementary data). Typical examples
of images and manual observer/algorithm spots are shown in
Figure 5

3.3. Testing in glaucoma cohort

Follow-up data to 18 months after DARC was available for 18
patients, with a mean number of 6.11 ± 2.27 (SD) tests each
with a range of 3 to 11 tests. Using only the OCT global RNFL
rates of progression (RoP 3.5 ring) performed at 18 months to
define progression, the glaucoma cohort was divided into
progressing and stable groups. Clinical agreement was poor
between observers, as shown in Figure S2, hence, the use of
objective, simple and single OCT parameter. Those patients
with a significant (p < 0.05) negative slope were defined as

a b

Accuracy 97.0% Total candidate spots 48610

Sensitivity 91.1% Total manual 2-agree spots 898

Specificity 97.1%

True Positives 818 False Positives 1395

False Negatives 80 True Negatives 46317

c

Figure 4. CNN training and validation stages.
CNN training (a) and validation (b) curves. A good accuracy is achieved in 200 epochs (training cycles) although training was left for 300 epochs to verify stability. The matching validation
accuracy also shows similar accuracy without signs of over training. The accuracy was found to be 97%, with 91.1% sensitivity and 97.1% specificity.
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progressing compared to those without who were defined as
stable, and are detailed in Tables 4 and 5. Of the 29 glaucoma
eyes analyzed, 8 were found to be progressing and 21 stable,
by this definition.

Using this definition of glaucoma progression, a Receiver
Operating Characteristic (ROC) curve was constructed for
both CNN-aided algorithm and manual observer 2-agree
and shown in Figure 6, to investigate if the DARC count
was predictive of glaucoma progression at 18 months.
Maximal sensitivity (85.7%) and specificity (91.7%) were
achieved above a DARC count of 24 with an AUC of 0.88
and likelihood ratio of 8.57 with the CNN algorithm as
opposed to the manual observer with maximal sensitivity
(71.4%) and specificity (87.5%) above a DARC count of 11,
an AUC of 0.79, and likelihood ratios of 4.76, showing the
CNN-aided algorithm to be performing superiorly.
A comparison of the CNN and all agreement states of the
manual observers is shown in Supplementary Figure S3.

4. DARC counts as a predictor of glaucoma
progression

DARC counts in both stable and progressing glaucoma groups
with the CNN-aided algorithm are shown in Figure 7(a) and
manual DARC counts (observer 2 agree) in Figure 7(b). The
DARC count was found to be significantly higher in patients
who were later found to be progressing at 18 months (mean
26.13; 95% CI 9.41 to 42.84) compared to those who were
stable (mean 9.71; 95% CI 5.68 to 13.75) using the CNN-aided
algorithm (p = 0.0044; unpaired t-test). Manual observers (2
agree or more) DARC counts, were also significantly higher in
those progressing at 18 months (mean 12.25; 95% CI 3.67 to
20.83) compared to stable (mean 4.38; 95% CI 2.20 to 6.57)
glaucoma patients (p = 0.0084; unpaired t-test). No stable eyes
had a CNN DARC count above 30 (dashed line, Figure 7(a)),
highlighting this as a threshold that could be confidently used
to separate those at risk of progression.

Analyses of baseline age, CCT, BP, visual field MD, VFI and
average RNFL thickness (all at the time of DARC), were per-
formed in a similar manner to that described for DARC counts,
but none were found to be significantly predictive of progres-
sion. Additionally, we have used a newly described structural
OCT parameter being the baseline topographically correspon-
dent abnormal sectors on OCT RNFL and BMO-MRW imaging
[32]. This interestingly did show a significant (p = 0.045) dif-
ference between stable and progressing groups, as shown in
Supplement Figure S5.

5. Discussion

The main goal of glaucoma management is to prevent vision
loss. As the disease progresses slowly over many years, current
gold standards of assessing changes not only take a long time
to develop but also after significant structural and functional
damage has already occurred [21]. There is an unmet need in
glaucoma for reliable measures to assess risk of future pro-
gression and effectiveness of treatments [33,34]. Here, we
describe a new CNN-aided algorithm which when combined

a b

Figure 5. Representative comparison of manual observer and CNN-algorithm DARC spots.
Spots found by the CNN and spots found by at least two manual observers shown on an original retinal image. (a) Patient 6, left eye. Progressive glaucoma (as measured by OCT global
RFNL 3.5 ring) (b) Patient 31, left eye. Stable glaucoma. Green circles: manual observers only (False negative); Blue circles: CNN-aided algorithm only (False Positive); Turquoise circle:
Algorithm and manual observers agree (True Positive)

Table 4. Progression classification per glaucoma eye (OCT global RNFL 3.5 ring)
18 months after DARC.

Category Number of eyes

Progressing 8
Stable 21
Unknown 4
N/a 5
Total 38

Table 5. Clinical findings of eyes meeting the inclusion criteria.

Glaucoma Healthy volunteer

mean (SD) mean (SD) p

Age 61.1 (13.7) 47.6 17.1 <0.005
Females
Males

6
14

21
18

Systolic BP 140 (17.0) 129 (14.5) <0.05
Diastolic BP 77.9 (10.3) 75.8 (9.0) NS
BCVA, logmar 0.01 (0.08) −0.03 (0.08) <0.05
IOP, mmHg 18.90 (2.61) 13.63 (2.50) <0.005
Corneal pachimetry (CCT) 555.58 (33.21) 529.99 (25.60) <0.005
MD (dB) −1.7 (2.1) −0.3 (0.1) <0.005
OCT RNFL (um) 80.0 (17.4) 100.1 (10.7) <0.005
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with DARC – a marker of retinal cell apoptosis, is able to
predict glaucoma progression defined by RNFL thinning on
OCT, 18 months later. This method when used with DARC was
able to provide an automated and objective biomarker.

The development of surrogate markers has been predomi-
nantly in cancer where they are used as predictors of clinical
outcome. In glaucoma, the most common clinical outcome
measure is vision loss followed by a decrease in quality of
life for assessing treatment efficacy. Surrogates should enable
earlier diagnoses, earlier treatment, and also shorter, and
therefore more economical clinical trials. However, to be
a valid surrogate marker, the measures have to be shown to
be accurate. For example, OCT, which is in widespread use has
been found to have a sensitivity and specificity of 83% and
88%, respectively, for detecting significant RNFL abnormalities
[35] in addition to good repeatability [36,37]. In comparison,
our CNN algorithm had a sensitivity of 85.7% and specificity of
91.7% to glaucoma progression, with an AUC of 0.88. The CNN
algorithm appeared to perform better than the manual
2-agree counts in terms of sensitivity, specificity, and likeli-
hood ratio of predicting progression; nevertheless, the AUCs
were not significantly different which could be related to the
small sample numbers. Despite this, both the manual 2-agree
and CNN were able to significantly predict progression. The
main advantage, however, of the CNN lies in its practicality;
employing manual observers is labor-intensive, time-
consuming, and expensive compared to an automated system,
with its scalability enabling wider accessibility in the future
[38]. Moreover, automated detection being more objective

than manual observers may facilitate the consistency and
accuracy of DARC as a biomarker in clinical care.

Although the Phase 1 results suggested there was some
level of DARC being predictive, this was done on a very small
dataset [21] with different doses of Anx776 of 0.1, 0.2, 0.4, and
0.5 mg, with a maximum of 4 glaucoma eyes per group, of
which there were only 3 in the 0.4 mg group. In this present
study, all subjects received 0.4 mg Anx776, and 29 eyes were
analyzed. However, moving forwards, we would hope to
obtain even more data on glaucoma patients, as this study
had a small sample size, and also establish repeatability and
test–retest metrics, as we were limited to a single DARC
assessment in this study, as per protocol. Furthermore, we
recognize that longitudinal studies will be needed to further
validate our findings, especially if we are to investigate the
correlation of disease severity and DARC. In this Phase 2 study,
the majority of patients had early disease (MD between −1.61
and 2.22 dB) so it was not possible to investigate the full
spectrum of glaucoma disease severity.

In clinical practice, glaucoma patients are assessed for risk
of progression based on establishing the presence of risk
factors including older age, a raised intraocular pressure (IOP,
too high for that individual), ethnicity, a positive family history
for glaucoma, stage of disease, and high myopia [39]. More
advanced disease risks included a vertical cup:disc ratio >0.7,
pattern standard deviation of visual field per 0.2 dB increase,
bilateral involvement and disc asymmetry, as also the pre-
sence of disc hemorrhages and pseudexfoliation [40–44]. In
this study, we assessed baseline age, CCT, BP, visual field MD,

a b

Algorithmic Count Manual Observers Count (2 agree)

AUC: 0.88 (95% CI 0.67 – 1.00) AUC 0.79 (95% CI 0.49 – 1.00)

Sensitivity: 85.7%, Specificity: 91.7% Sensitivity: 71.4%, Specificity: 87.5%

Likelihood ratio: 8.57 Likelihood ratio: 4.76

c

Figure 6. ROC curves of glaucoma progression of manual observer and CNN-algorithm analysis.
Receiver Operating Characteristic (ROC) curves were constructed for both the CNN-aided algorithm (a) and manual observer 2-agree or more (B), to test predictive value of glaucoma
progression at 18 months. The rate of progression (RoP) was calculated from the Spectralis OCT global retinal nerve fiber layer (RNFL) measurements at 3.5 mm from the optic disc at
18 months follow up of glaucoma subjects after DARC. Those patients with a significant (p < 0.05) negative slope were defined as progressing compared to those without who were
defined as stable. Maximal sensitivity (90.0%) and specificity (85.71%) were achieved at a DARC count of 23 with the AUC of 0.89 with the CNN algorithm as opposed to the manual
observer count with maximal sensitivity (0.85%) and specificity (71.43%) at DARC count of 12, with the AUC of 0.79, showing the CNN-aided algorithm to be performing superiorly.
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VFI, average RNFL thickness and topographically correspon-
dent abnormal sectors on OCT RNFL and BMO-MRW imaging
[32]. Only the OCT RNFL and BMO-MRW sector parameter was
found to be predictive of progression, and emphasizes the
importance of this new parameter. Compared to the CNN
DARC count, however, there was overlap between the stable
and progressing groups, with no clear threshold in the num-
ber of abnormal sectors that could be used to define those at
greatest risk of progression, and therefore difficult to apply in
practice as a biomarker. However, the presence of predictive
structural changes in the same eyes where the CNN DARC
count is higher does provide some confidence in the validity
of our results.

Objective assessment is increasingly recognized as being
important in glaucoma, as there is variable agreement
between clinicians, even with technological aids. Poor agree-
ment has been shown with respect to defining progression in
patients using visual fields, OCT and stereophotography
[3,10,11,45]. Indeed, for this study, we asked five masked
senior glaucoma specialists (coauthors) to grade for progres-
sion of patients using their clinical judgment based on optic
disc assessment, OCT, visual fields and management history;
unfortunately, there was variable agreement between them
although three of the more senior clinicians (OBS 1, 2 and 3,
Supplementary Figure S4), did appear to agree more than the
more junior experts (OBS 4 and 5). For this reason, a single,
objective metric [29,46] of rate of progression was used to
define the groups used to test the CNN-aided algorithm.

The analysis of progression was post hoc, and there was no
protocol guiding treating clinicians during the 18 month per-
iod of follow-up. Similar to the oral memantine trial [47], manage-
ment of patients, especially with regard to IOP lowering, was left to
the discretion of the glaucoma specialist, and following normal
standard of care. As a result, there was a wide range in the number
ofOCT scans eachpatient had in the18monthperiod fromn=3 to
n = 11 scans per eye. However, despite this and using the OCT
global RNFL 3.5 ring RoP, 8 of 29 eyes were progressing at
18months. To compensate for aging losses and high false positive
rates of progression, we defined a significant RoP only when the
negative slopewas greater than 1 μm/year to distinguish between
normal aging losses [29]. It would be interesting in the future to
compare DARC to conventional risk factors such as IOP using
a multivariable analysis, though this will require a larger, prospec-
tive, longitudinal trial with a strict protocol regarding patient
management.

We recognize that it is debatable to include both right and
left eyes of patients as individual study eyes, although this was
not a treatment trial [48]. Indeed, there are several published
clinical studies that have recorded different rates of glaucoma
progression between the right and left eyes of the same
individuals [49–53]. However, we do see this as a limitation
of our own study, and will address this in the future, especially
with the opportunity of larger trials.

The poor agreement between clinicians identifying pro-
gression has generated great interest in the last few years in
the use of artificial intelligence to help aid glaucoma diagnosis

a b

Figure 7. CNN DARC counts significantly increased in glaucoma patients who go on to progress compared to those who are stable.
Violin plots illustrating the distribution of data in glaucoma eyes with and without significant RoP as measured by OCT global RFNL 3.5 ring at 18 months follow-up. (a) The CNN DARC count was
significantly higher in patients progressing at 18months (mean 26.13) compared to thosewho were stable (mean 9.71) using the CNN-aided algorithm (p = 0.0044). The DARC countwas defined as the
number of ANX776-positive spots seen in the retinal image at 120 minutes after baseline spot subtraction. No stable eyes had a CNN DARC count above 30 (dashed line), highlighting this as a threshold
that could be confidently used to separate those at risk of progression. (b) a similar trendwas foundwithmanual observers (2 agree ormore) DARC counts, although counts were lower compared to the
CNN. Again, a significant difference was found between those progressing at 18 months (mean 12.25) compared to stable (mean 4.38) glaucoma patients (p = 0.0084). Asterisks indicate level of
significance by unpaired t-test. Horizontal lines indicate medians and interquartile ranges with minimum and maximum points.
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and prognosis using AI with optic disc photographs [17–19],
visual fields [14,27] and OCT [15,16]. A recent study by
Medeiros et al. described an algorithm to assess fundus photo-
graphs based on predictions of estimated RNFL thickness,
achieved by training a CNN using OCT RNFL thickness mea-
surements [15]. At specificity of 95%, the predicted measure-
ments had a sensitivity of 76% whereas actual SD OCT
measurements had sensitivity of 73%. For specificity at 80%,
the predicted measurements had sensitivity of 90% compared
to OCT measurements which had sensitivity of 90%. The
authors suggest their method could potentially could be
used to extract progression information from optic disc photo-
graphs, but comment that further validation on longitudinal
datasets is needed, in the same way we are suggesting from
this work.

Template matching is routinely used for tracking cells in
microscopy with similar assessment needed to analyze single
cells in vivo longitudinally in this study. For template matching
here, a 30 × 30 pixel template was used, for the CNN a 64 × 64
pixel image was used. The reason for this size difference is
template matching is sensitive to blood vessels and so a small
template is beneficial to reduce the likelihood of a blood vessel
being included. For the CNN a larger image is useful to give the
CNN more context of the area around the spot which may be
useful in classification. As mentioned previously, there was some
unbalanced data between the template-matching and the train-
ing of the CNN algorithm. We compensated for this by setting
the DARC spots class weights to 50 for spots and 1 for other
objects, but we believe our method for template matching could
be improved to reduce the number of candidate spots.

Although the algorithm performs well, providing a viable
method to detect progressive glaucoma 18 months ahead of
alternative methods, we believe there are areas where it can
be optimized, some of which are described below.

Alternative classification algorithms to MobileNetV2 such as
Support Vector Machines (SVMs) or Random Forests require
‘hand-crafted’ features which are difficult to produce as they
need to account for complexities caused by the image capture
such as non-linear intensity variation, optical blur, registration
blur and low light noise, as well as biological complexities
such as the patterning in the choroidal vasculature, blood
vessels, blur due to cataracts, etc. The network has some
biases to do with the intensity of the original retinal image.
We believe we can improve results by looking at the intensity
standardization and augmenting the data by varying the
intensity in ways more realistic with a larger dataset. The
performance of other networks such as VGG16 was evaluated,
at the time of writing MobiNetV2 was found to perform best.
We are continuing to evaluate if this network is optimum for
this need. In comparison, VGG16, an alternate CNN, would be
limited to 64 spots in a batch which could mean a batch has
no DARC spots in it which hinders training. We have an alter-
native method that detects and classifies spots in a single step
using the detection and segmentation algorithm, YOLO3. We
believe this may be a more efficient and effective method with
more data; however, at this stage the highest accuracy we
have achieved with YOLO is not as good as the method out-
lined in this document.

6. Conclusion

This study describes a CNN-aided algorithm to analyze DARC
as a marker of retinal cell apoptosis in retinal images in
glaucoma patients. The algorithm enabled a DARC count to
be computed which when tested in patients was found to
successfully predict OCT RNFL glaucoma progression
18 months later. Further validation with longitudinal studies
is needed, but this data supports use of this method to
provide an automated and objective biomarker with poten-
tially widespread clinical applications.
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