HYPERKALEMIA

(Last updated 07/24/2019; Last reviewed 03/17/2017; Reviewers: Abhay Vakil, MD; John M. Litell, DO)

IMMEDIATE CONSIDERATIONS

FINDINGS

• Signs & Symptoms
 o ECG changes
 o Arrhythmias
 o Severe muscle weakness
 o Often asymptomatic

• Diagnostic Findings
 o ECG changes
 ▪ Early changes include:
 • Tall peaked T waves in multiple leads
 • Shortened QT interval
 ▪ More severe changes include:
 • Progressive lengthening of PR interval and QRS duration
 • Disappearance of P wave
 • QRS widening to sine wave pattern

• Predisposing Conditions
 o Reduced urinary excretion of potassium
 ▪ Can be:
 • Secondary acute or chronic renal failure
 • Reduced aldosterone secretion
 • Aldosterone resistance
• Reduced distal sodium and water delivery

 o Increased production of potassium:
 ▪ Tissue catabolism
 • Necrosis
 ▪ Medications
 • Beta-blockers
 • ACE inhibitors
 • Digoxin
 • Potassium-sparing diuretics
 ▪ Metabolic acidosis
 ▪ Exercise
 ▪ Insulin deficiency
 ▪ Hyperkalemic periodic paralysis
 ▪ Massive red blood cell transfusion with hemolysis

• Differential Diagnoses
 o Pseudohyperkalemia
 ▪ Commonly due to hemolysis of red blood cells during or after specimen collection
 • Repeat the test if hyperkalemia does not fit the clinical picture
 ▪ Elevation in measured serum potassium is due to potassium movement out of the cells during or after the specimen is drawn (hemolysis)

DIAGNOSTIC INTERVENTIONS

• First priorities
 o Immediate ECG to assess for dangerous manifestations of hyperkalemia
 ▪ Any ECG changes should prompt immediate empiric treatment
Repeat electrolyte panel to confirm hyperkalemia if it does not fit the overall clinical picture
 - May be pseudohyperkalemia

Second priorities

- Perform additional testing to assess for cause of renal failure, including:
 - Blood urea nitrogen
 - Creatinine
 - Serum electrolytes
 - Sodium
 - Bicarbonate
 - Chloride
 - Calcium
 - pH
 - Glucose levels
 - Creatinine kinase

- Also consider adding urine microscopy and urine electrolytes to assist in the differential diagnosis of renal failure
- Consider renal ultrasound with doppler to evaluation for renal perfusion abnormalities

Ongoing priorities

- Continuous cardiac monitoring
- Serial serum potassium measurements until the level normalizes
- Monitor urine output

THERAPEUTIC INTERVENTIONS

Medications

- In presence of ECG abnormalities and/or cardiac arrhythmias:
- Intravenous calcium
 - Antagonizes membrane action of hyperkalemia to prevent lethal cardiac arrhythmias
 - Calcium gluconate or calcium chloride can be used, but gluconate is safer
 - The temporizing effect of calcium therapy is very short-lasting and **does not correct the problem**
- Intravenous insulin and dextrose, inhaled beta-2 adrenergic agonists, and intravenous sodium bicarbonate will temporarily shift potassium into the intracellular space
 - **These therapies also do not correct the problem** but temporize until potassium removal
- Diuretic therapy and hemodialysis
 - In the case of severe oligoanuric renal failure
 - Will actually remove potassium from the body
- Cation exchange resins may aid in removing potassium from the body via the gastrointestinal tract, but this approach is unpredictable
 - Ex. sodium polystyrene sulfonate
- Identify and treat reversible underlying causes for hyperkalemia
 - Stop any potassium supplementation or associated medications

MANAGEMENT AFTER STABILIZATION

- **Follow-Up**
 - Follow potassium levels every 4-6 hours until stable and/or underlying cause is reversed
- Persistent hyperkalemia despite diuresis may suggest tissue necrosis
CAUTIONS

- Lethal cardiac arrhythmia can result from delayed empiric intervention
 - These arrhythmias can occur unpredictably with relatively mild hyperkalemia
- Cation exchange resins have been implicated in intestinal necrosis
REFERENCES & ACKNOWLEDGEMENT

