HYPOKALEMIA

(Last updated 07/25/2019; Reviewers: Abhay Vakil, MD)

IMMEDIATE CONSIDERATIONS

FINDINGS

• Signs & Symptoms
 o Severe muscle weakness
 o Cardiac arrhythmias
 o Renal abnormalities
 o Glucose intolerance

• Lab Findings
 o ECG changes
 ▪ PVCs
 ▪ ST segment depression
 ▪ Prolonged QTc
 ▪ T wave attenuation
 ▪ Appearance of U waves
 o Digoxin toxicity can lead to similar ECG findings

• Predisposing Conditions
 o GI loss of potassium
 ▪ Vomiting
 ▪ Diarrhea
 ▪ Gastric tube drainage
 ▪ Laxative overuse
 o Increased intracellular potassium shift
 ▪ Metabolic alkalosis
- Increased insulin levels
- Marked increase in blood cell production
- Hypothermia
- Chloroquine intoxication
 - Urinary loss
 - Diuretic use
 - Renal tubular acidosis
 - Hypomagnesemia
 - Polyuria
 - Use of amphotericin B
 - Bartter’s or Gitelman’s syndrome
 - Primary mineralocorticoid excess
 - Other causes
 - Sweating
 - Hemodialysis
 - Plasmapheresis

DIAGNOSTIC INTERVENTIONS

- Labs
 - BUN
 - Creatinine
 - Magnesium level
 - pH
 - Urinary potassium excretion
 - Spot vs 24 hour
- Urine protein to creatinine ratio

Monitoring
- ECG
- Serial serum potassium concentrations

THERAPEUTIC INTERVENTIONS

Medications
- Treatment for hypokalemia should be instituted at the earliest possible juncture, especially in the presence of ECG changes
 - Intravenous and/or oral potassium chloride administration should be instituted as soon as possible
 - Intravenous potassium replacement should be used in patients unable to tolerate oral medications potassium and/or as an adjunct to oral potassium in cases of severe hypokalemia
 - Identify and treat the underlying cause of hypokalemia

MANAGEMENT AFTER STABILIZATION

Follow-Up
- In patients with ECG changes, perform serial ECGs to monitor of correction

Manage Complications
- The most common complication after potassium replacement is hyperkalemia from overcorrection
 - Close monitoring of potassium levels is essential
 - Relatively rapid intravenous potassium replacement may be required in DKA and hyperosmolar hyperglycemic states
CAUTIONS

- Severe hypokalemia requires exponentially larger replacement needs
 - Use electrolyte replacement protocols
- IV potassium >10 meq per hour should be infused via central venous access

ALGORITHM TO DETERMINE CAUSE OF HYPOKALEMIA

1. Hypokalemia <3.5
 - Increase loss
 - Check urinary spot potassium
 - Distribution defect
 - Insulin excess, hyperglycemia, metabolic alkalosis, periodic paralysis
 - If Urinary Spot K <10
 - Non-renal loss
 - Diarrhea, vomiting, laxative abuse
 - If Urinary Spot K >20
 - Renal loss
 - Check BP
 - If BP High
 - Hyperaldosterone state
 - Check Plasma Renin
 - If Decreased
 - Primary hyperaldosteronism
 - If Increased
 - Secondary hyperaldosteronism
 - If Normal BP
 - Check bicarbonate level
 - If Decreased
 - RTA 1 / RTA 2
 - If Increased
 - Check urinary chloride
 - If <10
 - Vomiting with metabolic alkalosis
 - Hyperaldosterone state
 - If >10
 - Bartters, diuretic use
 - Distribution defect
 - Insulin excess, hyperglycemia, metabolic alkalosis, periodic paralysis
REFERENCES & ACKNOWLEDGMENTS

Acknowledgement: John M. Litell, DO