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ABSTRACT
When shopping online, buyers often express and refine their pur-
chase preferences by exploring different items in the product catalog
based on varying attributes, such as color, size, shape, and mate-
rial. As such, it is increasingly important for e-commerce ranking
systems to quickly learn a buyer’s fine-grained preferences and re-
rank items based on their most recent activity within the session.
In this paper, we propose an 𝑂nline 𝑃ersonalized 𝐴ttribute-based
𝑅e-ranker (OPAR), a light-weight, within-session personalization
approach using multi-arm bandits (MAB). As the buyer continues
on their shopping mission and interacts with different products in
an online shop, OPAR learns which attributes the buyer likes and
dislikes, forming an interpretable user preference profile and im-
proving re-ranking performance over time, within the same session.
By representing each arm in the MAB as an attribute, we reduce
the complexity space (compared with modeling preferences at the
item level) while offering more fine-grained personalization (com-
pared with modeling preferences at the product category level). We
naturally extend this formulation to weight attributes differently in
the reward function, depending on how the buyer interacts with the
item (e.g. click, add-to-cart, purchase). We train and evaluate OPAR
on a real-world e-commerce search ranking system and benchmark
it against 4 state-of-the-art baselines on 8 datasets and show an
improvement in ranking performance across all tasks.

KEYWORDS
In-Session Personalization; Action-Aware Bandits; Interpretable
Attribute-based Re-Ranker

1 INTRODUCTION
When buyers shop online, they are often faced with thousands, if not
millions, of products to explore and potentially purchase. In recent
years, we’ve seen a growing interest in industrial applications of
ranking systems as they help minimize distractions for the buyer
and surface a digestible number of products that are most relevant
to their shopping mission. These ranking systems take the form of
search or recommendation systems, where products are ranked in
descending order of relevance to the buyer [13, 17, 21, 31, 33, 37].

Just as a shopper might browse the aisles of a shop, online shop-
pers also spend time on a retailer’s website searching and clicking
on items before they decide what they want to buy. This process is
an attempt to refine their purchase intent as they learn more about
the product catalog. For example, a buyer might be interested in
purchasing a ring; however, they often must click on a number of
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Figure 1: The first two components show a typical 2-stage ranker, where the first-
pass narrows down the product catalog to relevant items, while the second-pass performs
fine-grained re-ranking to optimize for a business metric. The proposed model, OPAR,
is responsible for within-session, online personalization that can be effective on its own
or as a third-pass ranker on top of a 2-stage ranking system.

different rings before they understand possible styles, shapes, colors,
and materials that are available. Eventually, the buyer might decide
that they have a preference for an emerald gemstone, with a circular
shape, and a gold band. Shifting to looking for a necklace, the buyer
must refine their preference again. Often the buyer’s preference for
attributes like colors and materials changes quickly over the course
of one visit. An intelligent ranking system must continually serve
content that stays relevant to the buyer’s changing preference, a
capability we refer to as within-session personalization.

Many production ranking systems today have multiple goals to
balance: online retailers not only surface content that is relevant
to the shopper’s buying mission (for example, a search query for
"wristwatch" must produce wrist watches), but they also aim show
content that is likely to improve a business metric (eg. conversion
rate, or GMV). In order to balance these goals, many production
ranking systems leverage a 2-stage ranking process (Figure 1): the
first pass (commonly referred to as candidate set selection) narrows
hundreds of millions of items from the product catalog down to a
few hundred relevant items [14, 21, 36]; the second pass then re-
ranks the top few hundred relevant items in a way that optimizes for
specific user action (such as a click or purchase) [9, 10, 22, 31]. In
order to maximize prediction accuracy, these systems often train on
billions of historical data points that may span over the course of
months or years and thus cannot react quickly enough to the buyer’s
changing preference within a shopping visit.

In this paper, we propose an 𝑂nline 𝑃ersonalized 𝐴ttribute-based
𝑅e-ranker (OPAR) that can respond quickly to the changing pref-
erences of a buyer within their immediate shopping session, while
still reaping the benefits of a traditional 2-stage system. In the MAB
literature, it is common to address this problem by treating each
arm in the bandit to represent a single item [37], product category
[28, 33] or a context [13, 15, 16]. In contrast, OPAR decomposes
each product into a descriptive set of attributes (such as its color,
texture, material, and shape), and represents each arm as an attribute.
As the buyer interacts with different products in an online shop, the
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Figure 2: Example of attribute and action-aware re-ranking by OPAR. From
left to right: (1) shows search results for the query “Ring”. User 1 clicked
on two gemstone rings (outlined in green), while User 2 adds a diamond
ring to their cart (outlined in blue) (2) The attribute of the clicked items are
“Crystal”, “Gemstone”, “Ruby” and “Rose Gold”, while the add-to-cart item
has the attributes “Diamond”, “Engagement”, “Oval-Cut” and “14k Gold”
(3) On a subsequent search page, OPAR re-ranks items based on each user’s
diverging preferences.

bandit learns which attributes the buyer likes and dislikes, forming
an interpretable user preference profile that is used to re-rank prod-
ucts in real-time in a personalized manner. By representing each arm
as an attribute, we reduce the complexity of the space, while allow-
ing more fine-grained personalization within a product category. We
naturally extend this formulation to weight attributes differently in
the reward function, depending on how the user interacts with that
item (e.g. attributes from a clicked item will be weighted less than
attributes from an add-to-cart item).

In our example of searching for a ring, we see in Figure 2 that
initially, the same 12 items are shown to two different users. While
user 1 might click on items that contain the attributes crystal, gem-
stone, ruby, rose gold (outlined in green), user 2 might have different
preferences and click on items that contain the attributes diamond,
engagement, oval cut, 14K gold (outlined in blue). At this point,
OPAR will begin to differentiate the diverging preferences of these
two users based on the different attributes that each user has shown
interest in. On a subsequent search page, OPAR will rank gemstone
rings higher for user 1, while user 2 will see diamond rings at the top
of the list. Furthermore, because the learned weights of each attribute
can be observed for each user, our model is extremely interpretable.

While OPAR can be used as a stand-alone algorithm, we find it to
be most effective when deployed as a third-pass ranker on top of a
traditional two-stage ranking system (see Figure 1). This allows us
to leverage the power of traditional 2-pass systems that learn from
long-term data aggregated over billions of user and item preferences,
while still being nimble enough to personalize a buyer’s experience
by taking into account their most recent activity.

In the remainder of this paper, we will introduce the proposed
model, OPAR, and show how we apply it to a search ranking problem
on a popular e-commerce platform. Our contributions are as follows:

• Attribute-level personalization: OPAR is able to perform real-
time personalized re-ranking based on learning user’s preferences
at the attribute level. This reduces the space complexity while
offering more fine-grained personalization.

• Light-weight, online re-ranker: OPAR improves ranking perfor-
mance with little data and requires us to track a minimal number

of variables as arms and can be added on top of the traditional
2-pass ranking systems.

• Interpretable user preferences: The learned attribute weights
give visibility into attributes that the user likes and dislikes. Top-
weighted ones can be used for down-stream personalization tasks.

• Evaluation on real-world datasets: OPAR is trained and evalu-
ated on real-world e-commerce data and is compared to baselines
on 8 datasets from a production e-commerce ranking system. We
describe a session-level ranking metric that allows us to under-
stand ranking improvements within a session.

2 RELATED WORK
In this section, we summarize the related work from literature and
categorize them into two aspects: (1) Session-based Ranking System,
and (2) Multi-armed Bandit Ranking System.

2.1 Within-Session Ranking
The within-session ranking task tries to predict what action the user
will take next within the current shopping session, leveraging the
temporal nature of their browsing behavior from within the same
session [17, 34]. Significant breakthroughs in deep learning (i.e,
batch normalization and dropout), have led to its wide adoptions in
various communities and applications [35]. In [11], recurrent neural
networks (RNNs) were proposed for this within-session ranking
task and gained significant attraction given its superior predictive
performance for the next-item recommendation. This has been an
active research area with various enhancements proposed specifically
for predicting short-term user behavior within the same shopping
session[11, 12, 24, 27, 34].

Given that a long-term memory models are insufficient to address
drift in user interests, [18] proposed a short-term attention priority
model to capture users’ general (long-term) interest in addition to the
users’ within-session interest via a short-term memory model based
on the recent clicks. In parallel, [17] studied the behavior-intensive
neural network for personalized next-item recommendation by con-
sidering both users’ long-term preference as well as within-session
purchase intent. As RNNs have shown and emerged as the powerful
technique to model sequential data for this task, [20] argued for an
alternative model, inspired by machine translation, by proposing an
encoder-decoder neural architecture with an attention mechanism
added to capture user session intents and inter session dependencies.
In addition to sequential models, [23] leverages graph neural net-
works by constructing a session graph and then modeling a weighted
attention layer when predicting user’s preference in session. To
tackle uncertainty that arises in a user’s within-session behavior, au-
thors in [8] proposed a Matrix Factorization-based attention model
to address large-volume and high-velocity session streaming data
and [19] handles the missing value issue for the matrix factorization.

Most previous work cited above do not aim for interpretability of
its results. In contrast, the model we propose specifically leverages
item attributes from the product catalog, resulting in a simple algo-
rithm that learns interpretable user profiles that aid in within-session
personalization. The closest related work is [4] that proposes the
attribute-aware neural attentive model for the next shopping basket
recommendation but does not seem to easily adapt for the real-time
scenario due to its complexity.
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Figure 3: Top attribute-value pairs for top categories

2.2 Multi-Armed Bandits Ranking System
Requiring a responsive and scalable ranking system that can adapt
to the dynamic nature of shifting user preferences (especially in the
cold start setting) has led to increasingly wider industry adoption
of multi-armed bandit (MAB) in modern day ranking systems. The
theoretical foundation and analysis of MABs have been well-studied,
with popular approaches include 𝜖-greedy [26], Upper Confidence
Bounds [2], Thompson sampling [7], EXP3 [3], and others [26]. In
the e-commerce [37] setting, the goal is to maximize user satisfaction
(i.e., exploitation), while quickly learning (i.e., exploration) users
preferences by exploring unseen content.

Hu et al. in [13] proposed to use reinforcement learning to learn
an optimal ranking policy that maximizes the expected accumulative
rewards in a search session. Yan et al. from [33] built a scalable deep
online ranking system (DORS) with MABs as the last pass to dynam-
ically re-rank items based on user real-time feedback and showed sig-
nificant improvement in both users satisfaction and platform revenue.
Furthermore, authors from [25] proposed a multi-armed nearest-
neighbor bandit to achieve collaborative filtering for the interactive
recommendation, by modeling users as arms and exploring the users’
neighborhood. [29] proposed an interactive collaborative topic re-
gression model that infers the clusters of arms via topic models [5]
and then utilizes dependent arms for the recommendation.

In this literature, it is common to address this problem by treating
each arm in the bandit to represent a single item [37], product cate-
gory [33] or a context [13, 15, 16]. In contrast, OPAR decomposes
each product into its descriptive set of attributes (such as its color,

texture, material, and shape), represents each arm as an attribute and
provides great explainability in addition to its performance.

3 PROBLEM FORMULATION
In this section, we provide definitions for commonly used terms
such as sessions and attributes. We then explain our model in two
parts: (1) how to represent within-session attribute preferences, and
(2) how to re-rank items based on these preferences.

3.1 Definitions
Definition 1: A session is a sequence of actions that the buyer takes
while engaging with an e-commerce platform in trying to fulfill
a shopping mission (e.g. search, click, add-to-cart). The session
typically ends when the buyer leaves the site with a purchase or
abandons after a significant duration of inactivity (e.g., 30 minutes).
Note that we focus on product search here but should be generally
applicable to other ranking or recommendation problems.

Let us define a session 𝑆 = {[𝑄𝑡 , 𝐼𝑡 , 𝐴𝑡 ]}𝑇𝑡=1 that is a sequence
of 𝑇 user actions within a session, in which 𝑇 can vary across ses-
sions. The session starts at 𝑡 = 1 and ends at 𝑇 with a purchase (or
becomes inactive). At each time step, item list 𝐼𝑡 ∈ 𝑅𝑀×1 contains
𝑀 candidate items to be re-ranked for query 𝑄𝑡 , and then how the
user engages with the list of items is represented by 𝐴𝑡 :

𝐴𝑡 (𝑥𝑖 ) =


0, no action on 𝑥𝑖
1, 𝑥𝑖 is purchased
2, 𝑥𝑖 is added to cart
3, 𝑥𝑖 is clicked

,∀𝑥𝑖 ∈ 𝐼𝑡 . (1)

Definition 2: An attribute is a basic unit (e.g. size, color) that de-
scribes the product characteristics of an item. The attributes are
determined by taxonomists based on the product category while the
value of the attributes (e.g. large, green) are volunteered by the seller,
or inferred by machine-learned classifiers. These attribute-value
pairs help buyers efficiently navigate through an overwhelmingly
large inventory. Thus, each item 𝑥𝑖 is represented as the composition
of its attributes, with 𝐻𝑥𝑖 denoting the total number of attributes
associated with 𝑥𝑖 : 𝑥𝑖 = {𝑎𝑡𝑟1, 𝑎𝑡𝑟2, . . . , 𝑎𝑡𝑟𝐻𝑥𝑖

}.
Figure 3 shows four category-specific word clouds of attributes-

value pairs exhibited in items from top categories at Etsy1, one
of the largest e-commerce platform for handmade, vintage, and
craft supplies. Some of the most common attributes are universal:
size, color, and material. Others are category specific: sleeve length,
earring location, and craft type. Lastly, some attributes (e.g. holiday,
occasion, recipient) describe how or when the item can be used.

3.2 Problem Statement
Our goal is to (1) formulate each user’s within-session preference
for product attributes and (2) re-rank a list of candidate items based
on the user’s inferred within-session preference on item attributes.
Part 1: How to formulate users’ in-session attribute preferences?
Input: For session 𝑆 , (1) item lists {𝐼𝑡 }𝑇𝑡=1 with each item 𝑥𝑖 =

{𝑎𝑡𝑟𝐻𝑥𝑖
} as composition of product attributes; and (2) session-level

record of user actions on shown items, {𝐴𝑡 }𝑇𝑡=1.
Output User’s preference Θ on attributes as beta-distributed: Θ =

{\𝑎𝑡𝑟𝑛 }𝑁𝑛=1 ∼ {𝐵𝑒𝑡𝑎(𝛼𝑎𝑡𝑟𝑛 , 𝛽𝑎𝑡𝑟𝑛 )}𝑁𝑛=1, where 𝑁 denotes the total
number of attributes encountered in session 𝑆 .
1E-commerce platform for Handmade products at https://www.etsy.com

https://www.etsy.com
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Algorithm 1: OPAR Algo: Re-Ranking & Parameter Update
Input:

Given a session 𝑆 = {[𝑄𝑡 , 𝐼𝑡 , 𝐴𝑡 ]}𝑇𝑡=1
{𝛿𝑖 }𝑖: actions: action-aware increments on attribute

parameters
𝛾 : hyper-parameter to control intensity on negatives
U𝑡 : the associated attributes from engaged items
V𝑡 : the associated attributes from impressed items
| · |0: cardinality operator

for [𝑄𝑡 , 𝐼𝑡 , 𝐴𝑡 ] ∈ 𝑆 do
(1) Rerank on the Item List 𝑓 : 𝐼𝑡 → 𝐼𝑡

sample 𝑠𝑎𝑡𝑟ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼𝑎𝑡𝑟ℎ , 𝛽𝑎𝑡𝑟ℎ ), ∀𝑎𝑡𝑟ℎ ∈ 𝑁𝑆

for 𝑥𝑖 ∈ 𝐼𝑡 do
Given 𝑥𝑖 = {𝑎𝑡𝑟ℎ}

𝐻𝑥𝑖

ℎ=1 as associated attributes in 𝑥𝑖

𝑠𝑐𝑜𝑟𝑒 (𝑥𝑖 ) =
∑
𝑎𝑡𝑟ℎ ∈𝑥𝑖 𝑔(𝑠𝑎𝑡𝑟ℎ )

end
𝐼𝑡 = 𝑠𝑜𝑟𝑡𝑒𝑑 ( [𝑠𝑐𝑜𝑟𝑒 (𝑥𝑖 )]𝑥𝑖 ∈𝐼𝑡 )
(2) Update attribute parameters given 𝐴𝑡

Let U𝑡 = ∪{𝑎𝑡𝑟ℎ : ∀𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 𝑖 𝑓 𝐴𝑡 (𝑥𝑖 ) ≠ 0, ∀𝑥𝑖 ∈ 𝐼𝑡 }
Let V𝑡 = ∪{𝑎𝑡𝑟ℎ : ∀𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 ∀𝑥𝑖 ∈ 𝐼𝑡 } for 𝑥𝑖 ∈ 𝐼𝑡 do

if 𝐴𝑡 (𝑥𝑖 ) ≠ 0, item 𝑥𝑖 has positive actions then
𝛼𝑎𝑡𝑟ℎ+ = 𝛿𝐴𝑡 (𝑥𝑖 ) × {1 − 𝐸𝑥𝑝 (−|U𝑡 |0)},
∀𝑎𝑡𝑟ℎ ∈ 𝑥𝑖

else if 𝐴𝑡 (𝑥𝑖 ) = 0, no action on item 𝑥𝑖 then
𝛽𝑎𝑡𝑟ℎ+ = 𝛿𝐴𝑡 (𝑥𝑖 ) × {1 − 𝐸𝑥𝑝 (−𝛾 |V𝑡\U𝑡 |0)},
∀𝑎𝑡𝑟ℎ ∈ 𝑥𝑖

end
end

end
Output: All re-ranking results [𝐼𝑡 ]𝑇𝑡=1

For a user, we model their within-session preference on an at-
tribute as a latent value \𝑎𝑡𝑟𝑛 ∈ [0, 1] denoting the probability that
they would like the attribute exhibited in the item. Motivated by
Thompson Sampling [1], let \𝑎𝑡𝑟𝑛 be beta-distributed, with 𝛼𝑎𝑡𝑟𝑛 , 𝛽𝑎𝑡𝑟𝑛
be the two parameters of the distribution. In Section 5.2 we show
a method on estimating the parameters of attributes from historical
data. From the list of shown items 𝐼𝑡 , the user engages on a subset of
items (denoted in 𝐴𝑡 ) to express their preference for item attributes
according to Θ. Given the feedback, we propagate rewards from the
user actions to the associated attributes with increments, 𝛿𝐴𝑡 (𝑥𝑖 ) , and
update the posterior distribution of Θ, with rewards normalized at 𝑥𝑖
by its cardinality (number of associated attributes on that item).
Part 2: How to sequentially re-rank 𝐼𝑡 based on user preference
Θ to optimize in-session personalization?
Input: At time 𝑡 , (1) Candidate list of items 𝐼𝑡 , and (2) user in-
session preference Θ.
Output: Sequentially learn 𝑓𝑡 : 𝐼𝑡 × Θ → 𝐼𝑡 .

Below we will present the OPAR algorithm to address the problem
statement discussed in this section.

4 PROPOSED ALGORITHM, OPAR
In this section, we present the details of the proposed OPAR model
and its extension OPAR𝑤 which differentiates different user actions.

4.1 Scoring and Re-ranking Item List
Given attribute-level bandits with each arm as an item attribute, we
describe below our approach on how we score and re-rank items,
motivated by the Thompson Sampling approach on [1]. Let 𝑁 denote
the number of attributes associated with item list 𝐼𝑡 . For each attribute
in {𝑎𝑡𝑟ℎ : 𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 , ∀𝑥𝑖 ∈ 𝐼𝑡 }, we randomly sample \𝑎𝑡𝑟ℎ from its
corresponding distribution, denoting the probability that the user is
interested in the attribute, 𝑎𝑡𝑟ℎ , at time 𝑡 :

\𝑎𝑡𝑟ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼𝑎𝑡𝑟ℎ , 𝛽𝑎𝑡𝑟ℎ ). (2)

Then, each item 𝑥𝑖 ∈ 𝐼𝑡 is scored and ranked by:

𝑠𝑐𝑜𝑟𝑒 (𝑥𝑖 ) =
∑

𝑎𝑡𝑟ℎ ∈𝑥𝑖
𝑔(\𝑎𝑡𝑟ℎ ), (3)

where 𝑔(\𝑎𝑡𝑟ℎ ) = 1
𝑟𝑎𝑛𝑘 (\𝑎𝑡𝑟ℎ )

is a harnomic function of the index

that \𝑎𝑡𝑟ℎ is ranked among [\𝑎𝑡𝑟ℎ ]
𝐻𝑥𝑖

ℎ=1, with a tie-breaker uniformly
at random. A larger 𝑠𝑐𝑜𝑟𝑒 (𝑥𝑖 ) indicates higher satisfication with item
𝑥𝑖 given users’ short in-session preference on the attributes. Lastly,
we present the user 𝐼𝑡 , which is reranked list of the items based on
[𝑠𝑐𝑜𝑟𝑒 (𝑥𝑖 )]𝑥𝑖 ∈𝐼𝑡 .

4.2 Attribute Parameter Updates
With the feedback gathered from the user action 𝐴𝑡 , we do the
following updates for the attribute parameters. Let U𝑡 denote the
set of attributes associated from items with positive actions (i.e.,
click, add-to-cart, purchase), and V𝑡 be union of all attributes exist
in 𝑥𝑖 ∈ 𝐼𝑡 :

U𝑡 = ∪{𝑎𝑡𝑟ℎ : ∀𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 if𝐴𝑡 (𝑥𝑖 ) ≠ 0, ∀𝑥𝑖 ∈ 𝐼𝑡 }
V𝑡 = ∪{𝑎𝑡𝑟ℎ : ∀𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 , ∀𝑥𝑖 ∈ 𝐼𝑡 }

For a given 𝑎𝑡𝑟ℎ , let Ỹ𝑡,𝑎𝑡𝑟ℎ and Z̃𝑡,𝑎𝑡𝑟ℎ denote the set of items
associated with positive user action and no-action, respectively,

Ỹ𝑡,𝑎𝑡𝑟ℎ = {𝑥𝑖 ∈ 𝐼𝑡 : 𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 and 𝑎𝑡𝑟ℎ ∈ U𝑡 }

Z̃𝑡,𝑎𝑡𝑟ℎ = {𝑥𝑖 ∈ 𝐼𝑡 : 𝑎𝑡𝑟ℎ ∈ 𝑥𝑖 and 𝑎𝑡𝑟ℎ ∈ V𝑡\U𝑡 }

Then, the Beta distribution of each attribute is updated as follows:

𝛼𝑎𝑡𝑟ℎ+ =
∑

Ỹ𝑡,𝑎𝑡𝑟ℎ

𝛿𝐴𝑡 (𝑥𝑖 )
(
1 − 𝑒−|U𝑡 |0

)
,∀𝑎𝑡𝑟ℎ ∈ U𝑡

𝛽𝑎𝑡𝑟ℎ+ =
∑

Z̃𝑡,𝑎𝑡𝑟ℎ

𝛿𝐴𝑡 (𝑥𝑖 )
(
1 − 𝑒−𝛾 |V𝑡 \U𝑡 |0

)
,∀𝑎𝑡𝑟ℎ ∈ V𝑡\U𝑡 ,

(4)

where | · |0 denotes the cardinality operator and 𝛾 controls intensity
on implicit no-actions.

4.3 OPAR algorithm Procedure
In summary, given a session 𝑆 = {[𝑄𝑡 , 𝐼𝑡 , 𝐴𝑡 ]}𝑇𝑡=1, OPAR can be sum-
marized with the following steps, with the pseudo code of OPAR𝑤

shown in Algorithm 1.
(1) Initialize attribute dictionary 𝑎𝑡𝑟𝐷𝑖𝑐 ∈ 𝑅𝑁×2, which contains

𝑁 pairs of parameters for attributes, where each row of 𝑎𝑡𝑟𝐷𝑖𝑐
denotes the Beta distribution parameter set (𝛼𝑎𝑡𝑟 , 𝛽𝑎𝑡𝑟 ) for
a given attribute. Different initializations have been experi-
mented, including uniform, random or estimated based on
held-out historical datasets (shown in Section 5.2).
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Table 1: Etsy Real-world Session-based Dataset Over 3 weeks
ID Category |Session (User)| |Query| |Item| |Attributes| |Actions|
1 Clothing 4642 46091 1100040 2495 58932
2 Home & Living 9073 103959 2282542 2455 134416
3 Paper & Party Supplies 4419 35132 691919 1666 55037
4 Craft Supplies & Tools 10913 123662 2536492 2799 171363
5 Accessories 5813 38215 897533 2419 49342
6 Electronics & Accessories 1638 10505 216860 1302 14354
7 Jewelry 5585 67507 1530285 2266 79874
8 Overall Category 26442 474594 9295453 3363 624882

(2) At time 𝑡 , we score each item 𝑥𝑖 ∈ 𝐼𝑡 based on Eq. (3): it first
aggregates over the associated attribute preferences sampled
in Eq. (2), and then re-rank items based on scores in Eq. (3)
and present as 𝐼𝑡 . More details in Section 4.1.

(3) At time 𝑡 , we receive the obervation 𝐴𝑡 on 𝐼𝑡 , and then update
the distribution of all attributes associated with item 𝑥𝑖 in the
atrDic based on the Eq. (4) described in Section 4.2.
OPAR: attribute-based bandits with equal action-weighting
for actions in {click, add-to-cart, purchase}. This means that
for positive actions, 𝛿click = 𝛿add-to-cart = 𝛿purchase.
OPAR𝑤 : extend OPAR to weight action-aware updates as
follows, 𝛿click ≠ 𝛿add-to-cart ≠ 𝛿purchase, and hypertune them.

(4) We iterate step (2) and (3) until the end of the session.

5 EXPERIMENTS
In this section, we show how OPAR performs on a real-world e-
commerce ranking system and benchmark it against 4 baselines on
8 datasets. While OPAR can be applied to any content that requires
re-ranking, we specifically chose to train, evaluate, and analyze the
model performance on a search ranking system, as the explicit search
queries issued by a user shows higher purchase intent, allowing us to
better evaluate OPAR’s ranking and interpretation capabilities. Our
experimentation seeks to answer the following questions:
Experiment #1: What is the ranking performance of the proposed
OPAR model? (Answered in subsection 5.4.1)
Experiment #2: How does OPAR perform as an action-aware model?
(Answered in subsection 5.4.2)
Experiment #3: How does OPAR help to understand users’ short-
term, in-session shopping preference? (Answered in subsection 5.4.3)

5.1 Data Collection
The dataset is collected and sampled from a month of user search
logs at Etsy, one of the largest e-commerce platforms for handmade,
vintage items, and craft supplies. To avoid bot traffic, filters are
added to only include search sessions with at least 10 search events
(i.e., queries, browses, clicks, add-to-carts) and at least one purchase
as we want to focus on sessions with strong shopping missions.
Using an existing query classifier, we predict the most probable
category (e.g. jewelry, home and living) associated with the first
query of each session, and then bucket the entire session into one of
7 categories. This helps us understand shopping behaviors within
each category. Table 1 shows statistics of each data set, representing
nearly 500k search queries from 26k sessions and 620k user actions
combined on nearly ten million items, with cardinalities computed
within each dataset. We do not perform the evaluation on existing
public datasets, because (to the best of our best knowledge) there is
no existing dataset that includes all meta-data needed for our study
(e.g. query, item attribute, user interaction logs).

5.2 Experimental Set-up
We split each of the 8 datasets into 2 parts (with sessions ordered
chronologically). The first two-thirds of the data is a held-out dataset.
Because we are focused on online learning, using only within-session
data, the held-out dataset is mainly used for estimating the param-
eters of the Beta distributions, {(𝛼𝑎𝑡𝑟 , 𝛽𝑎𝑡𝑟 )}∀𝑎𝑡𝑟 , and to aggregate
attribute counts associated with engaged items to determine attribute
popularity, powering the “Atr-POP” algorithm in Section 5.3.

The remaining data is the testing dataset, on which we report
re-ranking performance for OPAR and other baseline algorithms on
in Table 2.

While OPAR can function as a stand-alone ranking algorithm, we
evaluate OPAR (as well as other baselines) on top of an existing
2-pass ranking system (as described in Figure 1). More formally,
each session in the testing dataset, 𝑆 = {[𝑄𝑡 , 𝐼𝑡 , 𝐴𝑡 ]}𝑇𝑡=1 contains a
sequential list of query content 𝑄𝑡 , a candidate set 𝐼𝑡 of items to be
re-ranked, and logged user actions 𝐴𝑡 on 𝐼𝑡 (e.g. click, purchase). In
our experiments, 𝐼𝑡 is a truncated list of the top 48 items returned
by an existing 2-pass ranker, indicating that this list comprises of
the most relevant items to the query. As we will see in experimental
results, applying OPAR adds an effective layer of attribute-based
personalization in real-time that was not feasible with the underlying
system. In order to simulate an online environment, only within-
session user interactions leading up to the current time step are used
for ranking predictions.

5.3 Evaluation Metrics and Baselines
Below, we describe the offline metrics we use to evaluate OPAR on
the testing dataset, as well as the baselines we benchmark.

5.3.1 Evaluation Metrics. Following the general ranking metric
Normalized Discounted Cumulative Gain (NDCG) [30], we propose
a set of session-level ranking metrics to evaluate our model.

(1) Click-NDCG: For each query 𝑄𝑡 issued in 𝑆 that has at least
one click in 𝐴𝑡 (i.e, clicks as relevances), click-NDCG𝑡 mea-
sures the re-ranking performance of the item list 𝐼𝑡 (after
re-ranking 𝐼𝑡 ) shown to the user at 𝑡 . For all timestamp with at
least a click, we first compute stepwise sequential re-ranking
performance click-NDCG𝑡 as:

𝑐𝑙𝑖𝑐𝑘-𝑁𝐷𝐶𝐺𝑡 = 𝑐𝑙𝑖𝑐𝑘-𝐷𝐶𝐺𝑡/𝐼𝐷𝐶𝐺𝑡 ,∀𝑡 = 1, ...𝑇 , (5)

and click-NDCG of a session 𝑆 is the average of click-NDCG𝑡

over events that have at least one click:

click-NDCG = Average(click-NDCG𝑡 ) . (6)

(2) Purchase-NDCG: Following the above methodology, we com-
pute the session-level re-ranking performance limit to search
events with attributed purchases. A session on a shopping site
is defined as a sequence of events ending with a purchase or a
significant duration of inactivity. Given that, Purchase-NDCG
given a session is essentially purchase-NDCG𝑇 .

For each re-ranking algorithm reported in Table 2, we compute
Click-NDCG @k and Purchase-NDCG@k for each 𝑘 = {4, 12, 24, 48}
by averaging click-NDCG𝑠 @k and purchase-NDCG𝑠@k given ses-
sion 𝑠 over all sessions in each dataset. Note that 𝑘 is a multiple of 4
as that this shopping site displays 4 items per row on desktops.
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Table 2: Re-ranking performance comparison on over all data sets (top-left) and 7 category-specific data sets.

Over All Category Clothing
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤 LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤

Purchase
NDCG

@4 0.1795 0.0130 0.0749 0.0618 0.2994 0.3042 0.1948 0.0103 0.0516 0.0551 0.2384 0.2494
@12 0.2629 0.0412 0.1323 0.1425 0.3505 0.3607 0.2670 0.0348 0.1269 0.0824 0.2685 0.2744
@24 0.3162 0.1260 0.2112 0.2018 0.3718 0.3900 0.3019 0.0090 0.2193 0.1434 0.3209 0.3263
@48 0.3724 0.2554 0.2861 0.2518 0.4512 0.4578 0.3774 0.2462 0.2784 0.2157 0.3976 0.4030

Click
NDCG

@4 0.1459 0.0816 0.0705 0.0701 0.3120 0.3158 0.1328 0.0067 0.0690 0.0691 0.3058 0.3197
@12 0.2265 0.1456 0.1264 0.1354 0.3213 0.3229 0.2137 0.0228 0.1224 0.1414 0.3126 0.3257
@24 0.2955 0.2157 0.2021 0.1922 0.3318 0.3489 0.2821 0.0658 0.2045 0.1844 0.3274 0.3424
@48 0.3815 0.3245 0.2813 0.2689 0.4047 0.4051 0.3711 0.2309 0.2807 0.2613 0.3988 0.4061

Home & Living Paper & Party Supplies
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤 LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤

Purchase
NDCG

@4 0.1755 0.0131 0.0649 0.0571 0.2920 0.2952 0.1822 0.0010 0.1255 0.0684 0.2828 0.2965
@12 0.2670 0.0396 0.1226 0.1281 0.3391 0.3436 0.2667 0.0406 0.1692 0.0941 0.3367 0.3497
@24 0.3218 0.0936 0.2066 0.1752 0.3838 0.3879 0.3276 0.1297 0.2469 0.1542 0.3796 0.3905
@48 0.3874 0.2543 0.2789 0.2164 0.4462 0.4491 0.3876 0.2550 0.3216 0.1943 0.4291 0.4399

Click
NDCG

@4 0.1481 0.0054 0.0601 0.0944 0.3201 0.3219 0.1585 0.0052 0.1084 0.0839 0.2825 0.2874
@12 0.2294 0.0213 0.1175 0.1416 0.3244 0.3256 0.2394 0.0247 0.1586 0.1367 0.2931 0.2973
@24 0.2978 0.0598 0.1973 0.1843 0.3485 0.3491 0.3103 0.0644 0.2300 0.1742 0.3383 0.3189
@48 0.3835 0.2278 0.2746 0.2288 0.4032 0.4086 0.3911 0.2306 0.3104 0.2007 0.4017 0.4072

Craft Supplies & Tools Accessories
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤 LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤

Purchase
NDCG

@4 0.1912 0.0135 0.0739 0.0741 0.3101 0.3268 0.1954 0.0251 0.0683 0.0511 0.2166 0.2178
@12 0.2735 0.0407 0.1296 0.1125 0.3673 0.3781 0.2828 0.0741 0.1431 0.0849 0.2835 0.2930
@24 0.3272 0.1208 0.1970 0.1644 0.4084 0.4188 0.3324 0.1406 0.2510 0.1222 0.3304 0.3361
@48 0.3844 0.2577 0.2820 0.2214 0.4366 0.4750 0.3869 0.2693 0.2917 0.1641 0.3962 0.4020

Click
NDCG

@4 0.1458 0.0055 0.0749 0.0994 0.3118 0.3166 0.1502 0.0105 0.0673 0.0712 0.2495 0.2605
@12 0.2262 0.0513 0.1290 0.1279 0.3241 0.3293 0.2324 0.0439 0.1358 0.1331 0.2656 0.2708
@24 0.2955 0.2042 0.1953 0.1935 0.3525 0.3521 0.3006 0.1091 0.2398 0.1800 0.3155 0.3212
@48 0.3811 0.2278 0.2815 0.2277 0.4080 0.4078 0.3848 0.2391 0.2885 0.2312 0.3548 0.4029

Electronics & Accessories Jewelry
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤 LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPAR𝑤

Purchase
NDCG

@4 0.2136 0.0501 0.0715 0.0814 0.2847 0.2995 0.1661 0.0060 0.0576 0.0718 0.3051 0.3285
@12 0.3014 0.1109 0.1546 0.1223 0.3386 0.3782 0.2534 0.0766 0.1074 0.1142 0.3484 0.3854
@24 0.3519 0.0176 0.2652 0.1674 0.4257 0.4152 0.3087 0.1470 0.1668 0.1847 0.3866 0.3973
@48 0.4060 0.2965 0.2981 0.2416 0.4516 0.4656 0.3814 0.2460 0.2663 0.2367 0.4425 0.4598

Click
NDCG

@4 0.1530 0.0267 0.0805 0.0641 0.2074 0.2051 0.0701 0.0027 0.0621 0.0614 0.3314 0.3892
@12 0.2324 0.0703 0.1580 0.0939 0.2487 0.2622 0.1314 0.0106 0.1141 0.1021 0.3783 0.3963
@24 0.3029 0.1410 0.2657 0.1345 0.3158 0.3120 0.1989 0.1276 0.1762 0.1647 0.3956 0.4162
@48 0.3880 0.2560 0.3026 0.1667 0.3978 0.4078 0.3119 0.2192 0.2700 0.2144 0.4190 0.4475

5.3.2 Baselines. We compared OPAR’s ranking performance
with 4 state-of-the-art baselines:

(1) LambdaMART [32] is the boosted tree version of Lamb-
daRank [6], which introduces the use of gradient boosted
decision trees for solving a ranking task and won Track 1 of
the 2010 Yahoo! Learning To Rank Challenge. A personalized
search re-ranker is trained based on long-term user historical
data to optimize for the user’s purchasability on an item given
the query issued and the user’s historical preference.

(2) Atr-KNN is derived from Item-KNN [11]. Each item is pre-
sented by n-hot-encoding of associated attributes with 𝑛 being
the cardinality of all attributes. That is, its 𝑖𝑡ℎ entry equals
to 1 if the referred attribute presents in the item, otherwise 0.
Items in the list 𝐼𝑡+1 are re-ranked based on their euclidean-
distance from the last engaged item(s) in 𝐼𝑡 . Note that the
items 𝑥𝑖 ∈ 𝐼𝑡 with no-action has no impact on this re-ranking.

(3) Atr-POP reranks the candidate set, 𝐼𝑡 , of items based on the at-
tributes’ popularity estimated with held-out historical records.

This baseline is one of the most common solutions derived
from [11] given its simplicity and efficacy.

(4) GRU4Rec [11] applies recurrent neural networks (RNN) on
short session-based data of clicked items to achieve session-
based next-item recommendation. Each session is encoded as
a 1-of-N vector, in which the 𝑖𝑡ℎ entry is 1 if the correspond-
ing item is clicked else 0, with N denoting the number of
items. While the user’s consecutive clicks on items are used
in the next item prediction, it is attribute-agnostic.

While it is common for each arm in the bandits to represent a
single item or product category, we skip it as a baseline here as this
would incur higher exploration cost with potential latency bottleneck
when scaling up to an inventory of hundred millions of items and
also lose interpretability of product attributes.

5.4 Experimental Results
In this section, we describe experimentation results for evaluating
three kinds of performance: (1) ranking performance, (2) impact of
differentiating between user action types, and (3) interpretability.
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Table 3: Multiple Purchase Intents within One Session
Timestamp Query Query Taxonomy Engaged Attributes

1st
Purchase

Intent

0 ’flower girl basket’ paper and party supplies (NO ACTION) Browsing

1-4 ’flower girl basket wedding’ paper and party supplies (CLICK)
’Prime Color: White’, ’Occasion: Wedding’, ’Holiday: Christmas’,
’Wedding theme: Beach & tropical’, ’Craft type: Floral arranging’

5-9 ’flower girl basket beach wedding’ paper and party supplies (CLICK)
’Prime Color: Blue’, ’Occasion: Wedding’, ’Holiday: Christmas’,
’Wedding theme: Beach & tropical’, ’Secondary color: White’, ’Craft type: Floral arranging’

10-11 ’two flower girl and one pillow’ paper and party supplies Browsing

Purchase Intent Change
2nd

Purchase
Intent

12-15 ’hat for beach wedding’ clothing.women_clothing (CLICK) ’Prime Color: Blue’, ’Occasion: Wedding’
16-22 ’turquoise petals’ accesories (CLICK) ’Prime Color: Blue’, ’occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

23 ’bride hair decoration beach theme’ clothing.women_clothing (NO ACTION) Browsing

Final Purchase 24 ’turquoise petals’ accesories (PURCHASE) ’Prime Color: Blue’, ’Occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

5.4.1 Overall Re-ranking Performance.
Table 2 shows experiment results of our model (OPARs) against
4 baselines described in Section 5.3. The results can be catego-
rized into two parts: (1) performance on the aggregated datasets
over all categories (top-left); and (2) performance on each of the 7
category-specific datasets, representing different shopping missions
and behaviors across categories (i.e, “Clothing”, ”Home & Living”).
Across all 8 datasets for the re-ranking task, OPAR𝑤 outperform
against all 4 baselines, including LambdaMART, Atr-KNN, Atr-POP,
and GRU4Rec in both purchase-NDCG and click-NDCG.

For the overall dataset (top-left), OPAR𝑤 shows over 6% lift in
click-NDCG@48 compared to the best baseline, and over 20%
increase in purchase-NDCG@48. Similar results are observed in
each category-specific re-ranking. For 𝑘, the best improvement for
OPAR𝑤 is achived at 𝑘 = 4, ordering by @4 >> @12 >> @24 >>

@48. With attribute-based bandits, interactive feedbacks from the in-
session user actions, even just fewer clicks, efficiency propagate re-
wards to associated attributes and quickly learns preferred attributes
that matter the most to the user, thus optimize user purchase intent.

5.4.2 Effectiveness of Action-aware MABs.
To explore users’ in-session activity with different types of actions
(i.e, click, add-to-cart), we run experiments with the action-aware
bandit model, with OPAR𝑤 hypertuned rewards from clicks vs add-
to-carts, to differentiate types of user actions. The results in Table 2
are reported from a tuned model that assigns larger weights to clicks
than add-to-carts, with an intuition that there is a high topical drift
observed in the user’s browsing intent after items are added to carts.
As shown in Table 2, collectively OPAR𝑤 outperforms OPAR by
1.6% and 1.1% in purchase NDCG@4 and click NDCG@4, respec-
tively. When segmenting by categories, OPAR𝑤 also outperforms
OPAR in almost all categories, except Electronics & Accessories and
Craft Supplies & Tools on purchase NDCG.

5.4.3 Interpretability of Within-Session Shopping Mission.
It is often observed that a user exhibits multiple purchase intents
with diverse preferences within a session. Table 3 presents a record
of a user’s in-session activities. Figure 4 (top) shows the sequen-
tial improvement of OPAR in session-level click-NDCG over time
compared to the baseline, and Figure 4 (bottom) shows how OPAR
captures user’s preference, \𝑎𝑡𝑟ℎ , on 5 attributes over time. The
“Engaged Attributes” column in Table 3 maps out all attributes asso-
ciated with the clicked items for the corresponding query.

As shown in Table 3, the user is interested in three categories
as his/her purchase intents: first in “paper & party supplies”, then
drift to “women clothing” and “accessories”, and lastly converted in

“accessories” with a purchase. After the browsing period from times-
tamp 𝑡 = 0 with no user actions, 𝛽𝑎𝑡𝑟 for the attributes associated
with the browsing-only items are incremented while no attributes
have been updated with positive rewards for the given user. OPAR
launches from a lower click-NDCG at the beginning, while obtains
better re-ranking performance compared with baseline by learning
that the user is interested in white prime color and is looking for the
wedding occasion theme by the end of 𝑡 = 4. From then OPAR out-
performs the baseline in click NDCG while activated more attributes
related to wedding themes in beach and tropical and expanded to
floral crafting type and blue for prime color. The re-ranking perfor-
mance continues to improve from 𝑡 = 5, .., 9 as more items related to
these attribute themes are discovered.

Starting from 𝑡 = 12, the user starts to explore the 2nd categorical
purchase intent, pivoting from “paper and party supplies” to “cloth-
ing” and “accessories”. However, the latest activated attributes based
on the engaged items on the first set of shopping queries still relevant.
The user has a consistent preference in attributes, such as “Prime
Color: Blue”, “Occasion: Wedding”, and “Wedding theme: Fairytale
& princess” as she is searching for a “hat for beach wedding” and/or
“bride hair decoration beach theme”. Thus, for the second purchase
intent starting at 𝑡 = 12, we observe a high jump start in OPAR’s
click NDCG at 𝑡 = 12 comparing to the first intent at 𝑡 = 1 and the
metric continues to stepwise improve. As demonstrated in Figure 4
(bottom), “wedding theme” and “primary color: blue" are the top two
performant attributes that OPAR learned and identified over time.

6 CONCLUSION
This paper proposes an interpretable Online Personalized Attributed-
based Re-ranker (OPAR) as a light-weight third-pass, followed by
the normal 2-stage ranking process, to personalize a buyer’s in-
session experience based on product attributes. Given the important
presence of attributes in the product category with its simplicity
in explainability, we propose attribute-based multi-armed bandits
to quickly learn the buyer’s fine-grained preferences and re-rank
items based on the recent activities within the session to achieve
in-session personalization. We then extend the reward function of
the attribute-based bandits to weight based on the type of actions
the buyer interacts with the item (i.e, click, add-to-cart, purchase).
Lastly, we train and evaluate OPAR on the real-word e-commerce
search ranking system, and show its superior performance against
the baselines across multiples datasets. For future works, we could
consider bias correction (i.e, position) in parameter updates to reduce
self reinforcing, and model interactions between query and attributes
to capture user preferences on attributes beyond engaged items.
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Figure 4: In-session OPAR re-ranking performance.
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