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Abstract

Particulate matter (PM) is the most clinically important air pollutant. Current studies assume

that units of PM originating in di↵erent jurisdictions cause the same harm, despite widespread

understanding that di↵ering chemical and physical features of PM could generate distinct

health e↵ects. Here, we combine an atmospheric model, universal health records, and econo-

metric analysis to provide the first direct evidence that the health impacts of PM depend on its

originating jurisdiction. We simultaneously measure harm from seven categories of PM within

a single population at the nexus of the world’s most contentious transboundary air pollution

dispute. Because impacts di↵er by origin, we compute that transboundary sources contribute

only 43% of anthropogenic PM load to our study population, but generate > 70% of its asso-

ciated respiratory health costs. Our results indicate that PM should be considered a mixture

of pollutants of distinct origins, each with a unique measurable impact on human health.
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Introduction

Particulate matter (PM) pollution has significant negative e↵ects on health and well-being, altering

risks of many outcomes, including cardiovascular and respiratory illnesses, dementia, suicide, and

even crime [1–5]. Thus, to inform the public, support research, and provide a basis for regulation, PM

is now widely measured worldwide. These measurements typically classify PM by particle diameter

and are reported as a size-specific mass density for all particulates in a sample of air. However, this

aggregation obscures di↵erences in PM constituents, which include disparate species like oxidized

volatile organic compounds from industrial complexes and mineral dust from desert erosion. Prior

research has shown that di↵erences in physical and chemical characteristics can a↵ect the toxicity of

PM in a laboratory setting [6–11]. Further, observational studies have shown that health outcomes

are correlated with the average physical and chemical attributes of PM that groups are exposed

to [12–17], although it is unknown if those associations are causal. Other papers have assessed the

causal e↵ects of pulses of PM from significant natural sources, including wildfire [18, 19] and dust

storms [20, 21], but have not conclusively distinguished these e↵ects from those of background PM.

Nonetheless, taken together, this collection of facts has led researchers to hypothesize that the same

measured quantities of PM from di↵erent jurisdictions may have distinct population-level health

consequences [10, 14–17, 22]. We provide the first direct and unconfounded test of this hypothesis.

Distinguishing origin-specific health impacts can dramatically influence air quality management,

since pollution is managed at its origin but reflects the scale of impacts in downstream locations

[23, 24]. Air quality management maximizes social welfare when regulators impose shadow costs on

air pollution emissions that equate the marginal benefits and marginal costs of regulation. In the

case of sources emitting a uniform air pollutant like carbon monoxide with heterogeneity only in

exposure, the e�ciency gains from regulation that imposes di↵erentiated (as opposed to uniform)

shadow costs on emitters can be large [25, 26] but depend on the variance and uncertainty of

marginal damages and abatement costs across emitters [27]. In the case of a heterogeneous class

of air pollutants like particulate matter, the variance and uncertainty of emitter-specific marginal

damages may be higher, which would suggest a broader range of potential gains from di↵erentiation.
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When evaluating marginal damages for transboundary air pollution, regulators must draw a

causal link between emissions in one jurisdiction and realized damages in another. State-of-the-art

long-range air pollution studies approach this challenge by linking emitters to recipient locations

using atmospheric models [28–40] and then assuming PM has uniform toxicity; this leads to an

allocation of responsibility for harms that reflects only the quantity of exposure to PM from each

origin. However, if toxicity varies by jurisdiction, this approach will misallocate responsibility for

damages—possibly to a large degree. In an impossible and unethical “ideal experiment,” a researcher

would distinguish the health e↵ects of PM from di↵erent emitters by experimentally exposing a

fixed set of subjects to di↵erent, known mixtures of PM from multiple origins and observing the

resulting health outcomes. Our quasi-experimental approach approximates this “ideal experiment”

using observational data.

Specifically, we simultaneously measure the health impacts of PM from multiple origins on

the population of South Korea, which is at the nexus of the world’s largest and most contentious

transboundary air pollution disputes [34, 41–45]. We decompose the daily mixture of total PM10

(particulates less than 10 micrometers in diameter, which includes PM2.5; henceforth “PM”) ob-

served at a location into contributions from prominent emitters and measure how changes in PM

from each origin independently influence daily health costs. Crucially, by measuring the impact of

each type of PM simultaneously, health costs are not “double counted” (i.e., a new hospital visit

cannot be attributed to domestic pollution and then again to transboundary pollution), and each

estimate of origin-specific toxicity accounts for the impacts related to doses of incident PM from

all other origins. To do this, we first use an atmospheric transport model to decompose the prove-

nance of local PM every 3 hours into seven sources: nonanthropogenic sources (including sea salt,

nonanthropogenic aeolian dust [which we refer to as “dust”], and forest wildfire), anthropogenic

activity (which we group by originating jurisdiction: South Korea, China, and North Korea), and

“other sources.” Collectively, we call this set of nonanthropogenic sources and anthropogenic ju-

risdictions “origins.” We then combine these probabilistic estimates with high-resolution data on

medical spending from South Korea’s universal healthcare system, which tracks the public and

private medical spending of 97% of South Korea’s 52 million residents. The data allow us to de-
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convolve daily fluctuations of respiratory health costs within each locality into contributions from

random variation in origin-specific PM doses over time. To the best of our knowledge, this study is

the first to directly and separately measure the simultaneous health e↵ects of both domestic and

transboundary PM.

Analysis

Partitioning observed PM by origin We create a mapping that assigns PM monitor readings

on individual days and locations (i.e., one of South Korea’s 147 districts with PM monitoring;

see Supplementary Materials (SM) Figure S1) to a probability distribution over seven origins—

China, South Korea, North Korea, wildfire, mineral dust, sea salt, and “other sources.” To do this,

we first isolate the influence of dust and sea salt on PM levels using the Copernicus Atmosphere

Monitoring Service Global Reanalysis 4 (see SM section B for additional details) [46]. To apportion

the remaining PM, we then generate a 240-hour backward trajectory starting every three hours at

eight altitudes from each PM monitor (N = 264) on each day during 2005–2016 (4383 days) using

an atmospheric transport model [47, 48]. This results in 67.9 million air parcel trajectories, each

defined by 241 points (10 days of hourly observations; see Figure 1A for an example month at a

single PM monitor). These trajectories enable us to estimate the contribution of various locations

to the air arriving at a South Korean district on a given day. We combine these trajectories with

information on the spatiotemporal distribution of emissions from anthropogenic sources [49] and

fires [50–52] (applying an adjustment for chemical scavenging and deposition over time) to estimate

the probability that a unit of PM arriving at location “i” originated at location “j.” Figures 1B–

C depict examples of the distribution of these probabilities across space (all j’s) for the district

of Busan (i) on two days in April 2016. We integrate these probability distributions over hours,

altitudes, and originating jurisdictions to construct district-specific time series of PM contributions,

which are then re-scaled to partition station-measured PM into contributions from all seven origins

(e.g., Figure 1D). The resulting origin-specific PM time series (e.g., Figure 1E) thus encapsulate

what is known about the emissions, transport, and ground measurement of all PM arriving in South
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Korea during this period. See SM section B for more details.

Measuring impacts of exposure on health outcomes We jointly resolve the e↵ects of all

seven origins of PM on spending for respiratory illnesses for the entire population of South Korea.

These district-specific data are from a representative sample of individuals covered by South Korea’s

universal healthcare system (N = 4.87 million) and include expenses for outpatient and emergency

visits due to respiratory illness at all healthcare facilities in South Korea (e.g., see Figure 1F; for

more details on this data, see “Data Collection” section in SM). We empirically estimate the health

e↵ects observed for a given district’s population when it is exposed to di↵erent mixtures of PM (see

Methods). Our approach accounts for complex, nonlinear time trends in medical expenditures (i.e.,

seasonal patterns, secular trends, variations across days of the week, and the impacts of holidays),

di↵erences in time-invariant subnational characteristics that may a↵ect health spending (e.g., levels

of wealth, the quality of local public health provision, or di↵erences in data quality), non-PM

pollutants (nitrogen dioxide, carbon monoxide, ozone, and sulfur dioxide), and changes in weather

previously shown to impact human health [53]. We account for cumulative e↵ects over a period

su�ciently long (4 weeks) that we capture delayed changes in health expenditure associated with

PM exposure (see Methods). In this context, delays can result from many factors: for example,

respiratory symptoms may unfold over several days or weeks after pollution exposure, or South

Korea’s medical appointment referral system may lead to a gap between the initial and final visit

for a given health issue. Finally, our empirical specification allows us to flexibly account for the

possibility of avoidance behavior that individuals undertake autonomously to limit their total PM

exposure (e.g., staying indoors or using masks) while still preserving our ability to distinguish

between the e↵ects of subcomponents of overall PM (see SM section C). Finally, we assess the

robustness of our results to di↵erent methods for calculating uncertainty, alternative functional

forms for how we model avoidance and health responses, and whether we account for air quality

alerts; we also assess the consistency of our results over space, time, and seasons (for a detailed

explanation of these tests, see Figure S4).
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Figure 1: Example decomposition of PM by origin. (A) Example set of backtrajectories from
a single district in Busan, South Korea, during April 2016. The full analysis includes all districts
shown in Figure S1. Trajectories for April 5 and April 11 are shown in orange and purple, respec-
tively. Anthropogenic PM emissions during this month are shown as changes in the opacity of the
background map, with colors di↵ering by originating jurisdiction. (B) The estimated contribution
of each location’s emissions to anthropogenic PM exposure experienced in Busan on April 5, 2016
and the distribution of estimates contributions of di↵erent origins across the set of backtrajectories
(lower left box and whisker plot). (C) Same as (B), but for April 11, 2016. (D) Time series of
total PM (black line) measured in Busan throughout 2016, with the two dates in (B)–(C) labeled.
Stacked color areas indicate the decomposition of this measured PM by origin based on backtrajec-
tory calculations illustrated in (A)–(C). (E) Time series for each component of total PM by origin
for 2016. (F) Daily (pink) and seven-day moving average (blue) time series for respiratory health
spending per capita in Busan throughout 2016. (G) Distributions of nationwide (not just Busan)
population-weighted PM exposure over each of the seven PM origins we investigate. Distributions
include all districts and days in our sample, with the mean exposure for each PM origin shown with
a diamond shape (note nonlinear y-axis).
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Results

Exposure by PM origin

During the period of our analysis, we estimate that three anthropogenic source regions—China,

South Korea, and North Korea—account for roughly 80.9% of total population-weighted PM ex-

posure in South Korea; mineral dust accounts for an additional 11.7%; and wildfire, sea salt, and

all other sources together account for the remaining <8% of total exposure (Figure 1G). We also

estimate that seasonal and spatial di↵erences in exposure across South Korea are large. For ex-

ample, while sea salt is on average a small component of PM (about 3%), it is a large portion of

total PM in less industrial, coastal districts during summer (we estimate that sea salt accounts for

over 50% of PM on 0.2% of district–day observations). Likewise, PM from China is highest across

all districts in the winter and the spring, when prevailing winds are westerly. During this period,

some regions occasionally experience “Yellow Dust” events; when concentrations of PM in South

Korea from soil erosion in the deserts of China, Mongolia, and Kazakhstan can rise above 1000

µg/m3. These events account for a large portion of total dust exposure, as contributions of dust are

generally <5 µg/m3. Because most PM (and most of the resulting health damage) originates from

South Korea, China, and North Korea—and because these emissions can be modified by human

activities—we focus our analysis primarily on anthropogenic PM from these three origins, but note

that all analyses account for PM from all seven origins.

E↵ects of origin on properties of PM mixtures

We analyze the observed chemical and physical properties of PM to validate that our decomposi-

tion of PM origin identifies distinct components of the PM mixture incident on South Korean loca-

tions. We use the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) atmospheric

transport model [47] because it was designed for backtrajectory calculation, and its computational

e�ciency is crucial for handling the large number of trajectories we analyze. This model has been

widely validated for many applications [54–59], although it is possible, in principle, that the absence

of active chemistry calculations [60–64] or other aspects of the model could impact our estimates.
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Figure 2: Estimating the chemical
and physical signature of PM from
each origin at five locations in
South Korea. The partial correlations
between the quantity of PM from dif-
ferent origins and concentrations of ei-
ther lead, calcium, fine particulate mat-
ter (PM2.5), or visibility across five
monitors (see inset). Monitor locations
are labeled in Panel A. In each panel,
marker positions depict partial correla-
tions between aggregate properties (for
both x- and y-axes) measured at a given
monitor and PM from each origin. Cor-
relations for all origins are estimated si-
multaneously for each property at each
sensor, but colored to group measure-
ments across sensors based on PM ori-
gin. Colored regions depict the convex
hull of these partial correlations for a
single origin across the set of five moni-
tors, indicating the chemical and phys-
ical “fingerprint” for each origin. Fur-
ther explanation of this figure is shown
in Figure S2.
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We cannot directly test that hourly backtrajectories are correctly modeled; however, we validate

that PM contributions from a specific origin appear (i) chemically and physically consistent across

South Korea and (ii) chemically and physically distinct from PM attributed to other origins. We

do this by identifying the chemical and physical “fingerprint” of PM from each origin, comparing

it across sensors, and contrasting it with the “fingerprint” from other origins.

Aggregate chemical characteristics (lead and calcium levels) and physical properties (visibility

and PM2.5 concentration) of PM are monitored daily at five locations (see Figure 2 inset) and for

limited periods of time (see SM section A). This quantity of data is insu�cient for population-

scale epidemiological analysis and does not quantify many important physical and chemical aspects

of PM, but it can nonetheless validate our calculation of origin-specific contributions. If PM from

di↵erent origins has distinct chemical and physical characteristics and we have correctly decomposed

PM contributions by origin, then the observed aggregate properties of the PM mixture should be an

approximately linear combination of properties for components in the mixture—with weights that

reflect the fractional contribution from each origin (see SM section C). For example, on days when

we compute that the PM mixture over Seoul is 90% from China, based on backtrajectories, then

we would expect the chemical properties of PM on those days to be dominated by the properties

of emissions from China. Based on this idea, we estimate how an influx of PM from each origin

alters the observed aggregate chemical and physical properties of the PM mixture, accounting

for the estimated contribution and properties of all other origins simultaneously. Specifically, we

use multiple regression to decompose how PM from all origins simultaneously impacts aggregate

chemical and physical properties at each measurement site (see SM section C).

We find that our estimates of PM origin are associated with consistent and distinct changes in

lead, calcium, visibility, and the concentration of PM2.5 (Figure 2). Three features of this result are

notable. First, patterns across monitors are relatively consistent for each PM origin. For example,

the chemical/physical signature of domestic-origin or Chinese PM is broadly consistent across all

sensors in South Korea (high lead, low visibility, moderate calcium, and high PM2.5). Second, the

four-dimensional chemical/physical signature of each origin is well-separated from the signatures of

other origins (note that overlap in Figure 2 primarily results from display in only two dimensions at
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a time), implying that our approach to isolating PM by origin identifies collections of PM exposures

that are physically and chemically distinct from one another.

Third, the patterns we recover are consistent with what is previously known about PM source

characteristics. For example, we find that PM contributions from China and South Korea are

associated with higher concentrations of lead (partial correlations of 0.39 to 0.73 for China and

0.25 to 0.69 for South Korea), which originates from industrial processes [65–68], and that PM

attributed to mineral dust is strongly associated with the level of airborne calcium, consistent with

prior analysis [69–71]. We observe similarly consistent and distinct patterns for visibility, which

both is a↵ected by ambient PM particle characteristics [72–74] and a↵ects avoidance behavior [75].

We also find that PM attributable to our two main anthropogenic sources, China and South Korea,

is more strongly associated with smaller particle sizes, compared to PM originating from dust and

sea salt, also consistent with prior research [76–79]. We hypothesize that North Korean PM may

appear di↵erent from PM from China and South Korea because of its distinct industrial structure

and energy system [80–84]. Taken together, these results indicate that our decomposition of PM by

origin consistently identifies distinct sources of pollution that are normally indistinguishable.

Distinguishing health impacts by PM origin

Dose–response by PM origin We simultaneously estimate the e↵ect of PM from all seven

origins on health outcomes in each district over time, discovering that comparably sized exposures

to PM of di↵erent origins cause significantly di↵erent changes in health. To demonstrate these

di↵erences, we first replicate the standard approach of pooling all PM, estimating an average health

response that is undi↵erentiated by PM origin (Figure 3A). Ignoring origins, we find that a 1

µg/m3 increase in overall PM is associated with a nearly linear $0.002 (±0.0005) per day increase

in respiratory medical cost per person (noting that the model allows for non-linear relationships;

see SM section C). However, this undi↵erentiated model masks variation in health responses across

origins. Figure 3B presents the response of health costs from exposure to PM from di↵erent origins.

PM from North Korea (green) is the most harmful per unit at all common doses ($0.0048 per µg/m3

per person per day), with an average e↵ect per unit at the mean dose around 4⇥ larger than the per-
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Figure 3: Health-response to PM by origin. (A) The cumulative respiratory health cost for the
South Korean population from a single day of exposure to undi↵erentiated PM, aggregated across
all origins. The relationship appears linear but is estimated allowing for a potentially nonlinear
relationship. (B) Estimated e↵ects of PM from four major origins: South Korea, North Korea,
China, and dust (e↵ects from seven sources are estimated simultaneously following the specification
in SM section C). Each curve is plotted assuming the levels of other sources are zero. Panel A is
shown only for comparison and is not used in our calculations for the attribution of respiratory health
costs to PM origins. Vertical lines indicate the population-weighted mean dose for each PM origin
across all district–days in the sample; horizontal lines indicate the predicted change in respiratory
health costs per person. Dose–response relationships are shown only to the 99th percentile dose for
each PM origin if that value falls in the plotted range.

unit e↵ect of the mean dose of PM from South Korea (“domestic-origin” PM, whose dose–response

function is shown in blue; $0.0009 per µg/m3 per person per day). The average per-unit e↵ects of

PM from China (red-orange) and dust (yellow) are around 2.6⇥ and 2⇥ larger, respectively, than

domestic-origin PM ($0.0024 and $0.0018 per µg/m3 per person per day).

We note that the high harm per unit of PM originating in North Korea is not explained by

the chemical and physical properties that we were able to analyze above (recall Figure 2). On

dimensions we can observe, including particle size and lead concentrations, PM from North Korea

appears less threatening to human health. This indicates that the qualities of North Korean PM

that we do not observe are likely mediating this relationship, a topic that we believe merits further
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study.

Total harm from average PM by origin Health costs (horizontal dashed lines in Figure 3A–

B) result from the combination of dose–response relationships and dose from each origin (solid

vertical lines). If the health burden from PM is computed using the undi↵erentiated dose-response,

then the average dose of total PM (52 µg/m3) would be estimated to generate average costs of

$0.10 (±0.026) per person per day (roughly $5 million per day for the entire country), resulting

from origin-specific harms that are proportional to the PM load attributed to each origin (Fig-

ure 3A). However, the estimated contribution of harm from each origin changes dramatically if

origin-specific health responses are considered (Panel B). For example, we estimate that the small

average dose of transboundary PM from North Korea (4.3 µg/m3) is so harmful per unit that its

impact is comparable to the impact of domestic-origin PM from South Korea, which has a mean

dose almost six times higher (23.6 µg/m3). Similarly, transboundary PM from China exhibits an

intermediate mean dose (14 µg/m3) that we estimate would generate health costs almost twice as

large as domestic-origin PM. We estimate that average doses of PM from dust are small (6 µg/m3),

generating half the cost of domestic-origin PM, although Yellow Dust events, which lead to doses

above 1000 µg/m3, can generate substantial harm.

Temporal structure of health impacts by PM origin We find that cumulative respiratory

medical expenditures emerge similarly across PM origins, rising gradually until leveling out after

roughly three weeks, regardless of whether our model accounts for PM origin (Figure S3). The

cumulative health response stabilizes after 21 days. Further, we find no evidence that indicates

substantial temporal displacement of health costs (“harvesting,” see SM section C).

Computing damages by PM origin in mixtures

Analyzing the health e↵ects of PM by each origin in isolation provides a clear measure of relative

impacts but is an incomplete picture of total PM impacts because PM is experienced as a mixture,

and the presence of PM from one origin can a↵ect the health impact of PM from other origins. In
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particular, prior studies[85, 86] and our results suggest that individuals in South Korea engage in

avoidance behavior (e.g., staying indoors) to protect themselves from the health e↵ects of the entire

PM mixture incident on their community. This implies that a unit of PM from origin j may have

a health impact that depends on whether PM from origin k is high or low since higher PM from

k may induce greater avoidance, mitigating the e↵ect of PM from j (see SM section C). Stated

another way, because individuals engaged in avoidance of PM from all origins, PM from each origin

mediates the health impact of PM from all other origins. Figure 3 depicts only the partial e↵ect

of exposure to PM of each origin, holding PM from all origins at zero, thereby abstracting away

from these interactions. However, computing the actual health impact of PM from any single origin

requires accounting for the entire mixture of PM when exposure occurs.

We compute the total health impact of di↵erent PM mixtures, accounting for empirically es-

timated interactions between PM from di↵erent origins (see SM section C). Figure 4 presents a

surface that describes the expected excess nationwide respiratory health spending that would result

from exposing every person in South Korea to di↵erent mixtures of PM from South Korea, China,

and North Korea for a single day (more complex combinations are possible to compute, but di�cult

to display). “Iso-damage” curves trace out mixtures of PM from the pairs of jurisdictions that gen-

erate the same health cost. Here, a slope of �1 would indicate a mixture where a one-unit increase in

PM from either of the two originating jurisdictions would have the same incremental health impact

(i.e., there would be no change in total spending for a one-to-one exchange of the two pollutants).

However, we do not observe this for any observed mixtures (shading indicates historical frequency).

Instead, iso-damage curves in both panels are steeper than �1, implying that incremental damages

of anthropogenic PM from transboundary sources are always greater than those of domestic PM in

our setting.

The mixture-damage surface in Figure 4 can be di↵erentiated to compute the incremental harm

caused by a unit of PM from a single origin that is contained within a mixture. Based on the average

PM mixture from China and South Korea in our sample, assuming zero exposure to PM from other

origins, we estimate that the incremental nationwide health costs of exposure to +1 µg/m3 PM

from China and South Korea—relative to historical levels–are $108,808 (±$10, 896) and $32,131
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(±$7, 943), respectively. For North Korea and South Korea, these values are $182,358 (±$45, 842)

and $26,665 (±$8, 575), respectively. In terms of health costs, one additional µg/m3 of PM from

North Korea is equivalent to an increase of 6.84 µg/m3 of PM from South Korea, and one µg/m3

of PM from China is equivalent to 3.39 µg/m3 of South Korean PM.

We also note that the curvature of this surface is concave, such that (i) overall harm increases

with higher PM levels from any origin, but at a declining rate, and (ii) higher PM levels from each

origin reduce the incremental harm from other origins (see SM section C).

Figure 4: Health costs from mixtures of domestic and transboundary PM. Change in
single-day total respiratory health spending (2022$) associated with nationwide exposure to mix-
tures of PM from combinations of domestic and transboundary PM from China (left) and North
Korea (right). Estimates assume exposure to PM from all other origins are zero. Total spending
is shown by black contour lines. Bivariate densities of exposure during our data period are shown
as colored shading. Relationships are shown to the joint 99th-percentile of population-weighted
historical exposures.
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Fraction of
population exposure to
anthropogenic PM in
South Korea, % total

Estimated annual health cost,
million 2022$ ± SE

(% total, anthropogenic)

This study
Assuming undi↵erentiated

dose–response
South Korea 56.6 305 ± 92 (27.6) 615 ± 70 (58.4)
North Korea 9.9 223 ± 66 (20.1) 97 ± 11 (9.2)

China 33.5 579 ± 66 (52.0) 341 ± 38 (32.3)

Table 1: Average annual contributions to anthropogenic PM exposure and associated change in
respiratory health spending by origin.

Total damages from domestic and transboundary PM

We compute total nationwide damages traceable to each origin during our study period and find

that accounting for di↵erences in the per-unit harm by PM origin is critical for estimating the

relative harms from domestic and transboundary PM (Table 1). We compute total harm from j by

estimating the di↵erence in health outcomes that would have been expected to occur in two di↵erent

scenarios: one where PM emissions reflect actual historical emissions versus a scenario where j

unilaterally reduces its emissions to zero (and the emissions of other countries are unchanged; see

SM section C). Accounting for di↵erences in harm per unit of PM, we estimate that PM originating

in South Korea causes roughly $300 million in health costs in South Korea per year ($0.07 per

person per day), while transboundary PM from China and North Korea generate roughly $580 and

$220 million per year ($0.14 and $0.05 per person per day), respectively. (Note that health costs

in South Korea reflect the low cost of medical care in a national healthcare system where costs for

comparable treatments are roughly 6�10⇥ lower than in the United States [87].)

Prior state-of-the-art practice does not di↵erentiate per-unit harms by origin [30, 33, 34, 36, 88].

Had we used the standard undi↵erentiated approach, we would have estimated that transboundary

PM generated 41% of the costs from anthropogenic sources, rather than the 72% that we estimate

here (Table 1). We estimate that 57% of anthropogenic PM that the South Korean population is

exposed to originates domestically, but it generates only 28% of the damage from anthropogenic

PM because it is relatively less harmful than transboundary PM.
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Damages by origin over time We estimate that PM exposure and damages for major PM

origins have exhibited di↵erent trends during our study period (see Figures 5A–C). We compute

that exposure to PM from North Korea declined by roughly 12.5% per year, an e↵ect that could be

attributed to falling emissions, changes in meteorology, or other factors; over the same time, PM

from South Korea remained essentially unchanged (+0.1% per year) and PM from China declined

modestly (�1.6% per year). We estimate that the trends in estimated costs resulting from these

exposures largely mirror these trends in exposure, although the overall baseline level of costs is

relatively higher for PM from North Korea and China, reflecting the higher impact per unit of PM.

Respiratory health costs attributable to PM from North Korea fell to about half of their 2005 level

and costs related to PM from China declined slightly from 2013, reflecting emissions reductions

associated with China’s “war on pollution” [28, 89, 90]. In contrast, we estimate that health costs

traceable to domestic PM emissions have increased steadily by 3.6% per year, an e↵ect that can

be explained by avoidance behavior: throughout our study period, domestic PM concentrations

remained stable while transboundary PM concentrations declined, which on net increases the per-

unit harms of domestic PM due to reductions in avoidance.

Damages by origin across space We find that the source of PM health damages varies sub-

stantially across space, with provinces nearer to emission sources generally experiencing relatively

more damage from those sources (Figures 5D–F). In South Korea’s southern and western provinces,

we find that the largest portion of PM health damage results from emissions originating in China.

PM from China accounts for as much as 80% of the costs in Jeju (the island province in the far

southwest) and roughly 60% of the costs in other nearby provinces. PM from North Korea is re-

sponsible for relatively more damages in the north of South Korea—accounting for as much as 25%

of the costs in the Seoul Metropolitan Area. Domestic emissions are responsible for around 28% of

damages nationwide, but costs are relatively larger in South Korea’s southeastern areas, rising to

40% of PM damage, where domestic heavy industry is concentrated.
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Figure 5: Origin-specific damages from PM over time and across space. (A) Trend of
nationwide, population-weighted exposure in South Korea to PM from China (dashed lines, left
y-axis) and annual respiratory health costs associated with PM exposures from China (solid lines,
right y-axis, 95% confidence internal shown). (B)-(C) Same as (A), but for PM originating from
(B) North Korea and (C) South Korea. (D) Province-level variation in the portion of respiratory
health costs in South Korea attributable to anthropogenic PM from China. (E)-(F) same as (D),
but for PM originating in (E) North Korea and (F) South Korea.
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Discussion

Our findings show that distinguishing the health impacts of PM by its origin qualitatively changes

our assessment of where health damage from PM originates. To the best of our knowledge, this study

is the first to empirically demonstrate real-world di↵erences in the health impacts of origin-specific

contributions to a PM mixture incident on a single population. This is achieved by distinguishing

pollutants from di↵erent origins and jointly estimating di↵erences in their associated health impacts.

Although we apply this approach to transboundary PM in Northeast Asia, it can be generalized

to a broader class of pollution problems. For example, di↵erent water pollutants may similarly

a↵ect common metrics used to assess contamination, such as biochemical oxygen demand [91], but

may have distinct per-unit impacts on a population or ecosystem; likewise, summary indices used

for soil pollution [92] or ocean noise [93] may exhibit similar patterns. In settings like these, a

key challenge for governance is identifying the linkages between multiple polluters and associated

damages over large distances and long time horizons. The techniques we have developed here can

support progress in these areas by providing critical information on the relative harms attributable

to particular actors.

We have also demonstrated the quantitative implications of di↵erentiating the harm caused by

PM from di↵erent origins. Our findings suggest that when identifying sources of health damage,

major biases can result from assuming equal per-unit harm, as is standard in the literature. For

example, in our context, this assumption causes estimates of harm from multiple countries to be

incorrect by a factor of two. We believe our results suggest that this assumption should be assessed

in other contexts as well. In Southeast Asia, for example, transboundary haze is considered one of

the region’s more serious health concerns [94, 95]. In Sub-Saharan Africa, dust carried by winds

from the Sahara is a major contributor to PM levels, though its e↵ects may be distinct from the

e↵ects of PM from, for example, internal combustion engines [20, 21]. Even within a country, the

diversity of regional pollutants can lead to divergent responses to subcomponents of PM. This issue

may be especially relevant for larger countries, such as the U.S., China, Brazil, and India, where

internal interstate air pollution flows are a growing concern [30, 33, 88, 96]. In all of these cases, the
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approach we have developed here can be used to empirically test whether pollutants from di↵erent

origins exhibit similar or distinct per-unit damages.

Two points are worth noting when interpreting our findings. First, data presented here should

not be considered a complete cost-benefit analysis. The outcome of interest—health costs associ-

ated with outpatient visits due to respiratory illnesses—is an incomplete measure of total changes

in social welfare. For example, defensive investments—such as the purchase of air purifiers and face

masks—are often paid privately and are not accounted for in our analysis [97]. We also do not con-

sider mortality costs, other morbidity costs, or any potential benefits associated with transboundary

PM emissions, such as economic benefits from PM-emitting industrial activity in China [98]. We

hope future work addresses these limitations.

Second, the magnitude of PM-driven health costs we measure will di↵er in other contexts. One

reason for this is that our results are specific to South Korea: we report health e↵ects of PM by

origin, but those e↵ects are net of any chemical or physical changes that occur to PM plumes after

they are emitted. For example, because PM emitted in China must travel for many hours in the

atmosphere before reaching South Korea, larger particles may have been preferentially removed

or components of the emitted PM plume may have been oxidized into less harmful substances,

both of which would a↵ect resulting health costs. In other words, while we find that PM from

China is more harmful per unit to the South Korean population than PM originating domestically,

this does not necessarily imply that PM originating in China is more harmful in general. We also

expect that, overall, monetized damages from PM will be larger in other high-income countries

for two reasons. First, healthcare costs in South Korea are some of the lowest among developed

countries. For instance, prior analyses have estimated that in 2020, the average fee for an initial

primary care visit was about $13 (�16,140) in South Korea while it was about $109 in the U.S.

[99]. Similarly, the medical fees for hospital childbirth and appendectomy are $1,040 and $2,166 in

South Korea, respectively, while the corresponding fees in the U.S. are $11,200 and $13,020 [87].

These di↵erences in cost contribute to total annual health expenditure per capita of only $2,600 in

South Korea, compared to $10,945 in the U.S. [100]. Thus, the costs we report here would almost

certainly be higher if our study population were under an alternative healthcare system [85]. Second,
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the South Korean population is very sensitive to information about PM levels, such as air quality

warnings, and has already invested heavily in defensive adaptations, such as air filters [85, 86].

Populations that are less responsive to air quality information or that possess fewer defensive assets

would likely experience larger health damages from any given quantity of PM exposure.

Lastly, our results suggest that institutions responsible for the management of transboundary

pollution may need to consider origin-specific health responses to improve their assignment of dam-

ages and/or management of emissions. Since the Trail Smelter transboundary air pollution dispute

was settled in 1941 [101], countries have attempted to control transboundary pollution within the

frameworks of international institutions. The settlement served as the foundation for Principle 2

of the Rio Declaration, unanimously accepted by all 179 countries present at inaugural 1992 UN

Earth Summit, which states “the polluter should, in principle, bear the cost of pollution” [102, 103].

Today, despite the existence of numerous commissions and organizations—including the United Na-

tions Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air

Pollution, the Malé Declaration on Control and Prevention of Air Pollution and Its Likely Trans-

boundary E↵ects for South Asia, and the Association of Southeast Asian Nations’ Agreement on

Transboundary Haze Pollution—none, to our knowledge, has suggested a method for accounting for

origin-specific pollution health responses. Likewise, while the World Health Organization acknowl-

edges the possibility that PM from di↵erent origins may have di↵erent health impacts, it currently

does not o↵er guidelines to account for origin-specific health responses [104]. Our findings suggest

that updated guidance and policies that account for these di↵erences can improve public health.
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Supplementary Materials

A Data Collection

Air pollutants

We obtained hourly data on ambient levels of PM10, PM2.5 (this is available only starting in

2015), ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide from the Air Korea portal

(https://airkorea.or.kr/) administered by the Korea Environment Corporation (KECO), a South

Korean government agency that manages air quality monitors (for a map of monitor locations and

districts included in our sample see Figure S1). Holding the set of monitors constant, we estimated

exposure for all missing monitor–hours over our sample period by calculating the empirical CDF

for the monitor with missing data and then selecting the quantile of this CDF equal to the inverse

squared distance-weighted quantile of observations for the five nearest non-missing monitors. Daily

values for each monitor are the mean of hourly values.

Observations of airborne heavy metals

KECO also manages the observations of airborne heavy metals used in our analysis of PM chem-

istry. We requested daily observations of these measures using the o�cial information disclosure

process through the South Korean information request portal (https://open.go.kr/); use of the

data was granted on the condition that it not be shared. KECO measures airborne heavy metals

(lead and calcium) recorded by monitors of Air Pollution Monitoring Supersites every two hours.

We aggregated those observations to daily average levels. We omitted readings from the Incheon

supersite, located on Baekryeong Island, as it is far from any urban PM monitor.

Weather and atmospheric visibility

We collected hourly monitor-level readings for temperature, humidity, and precipitation using the

Korea Meteorological Administration (KMA) portal. We then performed the same procedure for

filling missing observations and assigning exposure to districts as detailed for pollutants above.
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We also obtained measures of visibility (reported as visible distance) for the small set of re-

porting monitors in the KMA’s automated synoptic observation system. We matched these hourly

observations to those for the nearest monitors reporting levels of airborne heavy metals, applying

a ceiling to all observations of 10 km to account for di↵erences across stations in their censoring

practices.

Health spending

Our health outcome of interest is the morbidity spending associated with outpatient and emergency

visits due to respiratory disease. We were granted access to this data through a restricted-use

agreement with the National Health Insurance Service (NHIS) data center, which manages the

transaction information of South Korea’s Social Health Care System. Our analysis uses a 10% (N

⇡ 5 million) sample of insured individuals. The sampling was carried out by stratifying individuals

by each pair of district and age group, the latter of which was based on five-year age groups (0 to

4, 5 to 9, and so on). Individuals who died before the end of our analysis period were excluded.

We then filtered for records associated with respiratory disease (J-category illnesses according to

the International Classification of Diseases, 10th revision [ICD-10]) that occurred during the period

2005 to 2016. We then aggregated this individual expenditure information by date and district.

To determine expenditure per capita, we used denominators reported by NHIS; to calculate total

expenditure across South Korea, we linearly interpolate estimates of the district-level population

between census years.

Some aspects of this data set are of note. First, health expenditures per capita include outpatient

and emergency visits covering all the di↵erent levels of facilities in the South Korean healthcare

system (public health centers, doctor’s o�ces, clinics, hospitals, general hospitals, and tertiary

general hospitals). We exclude costs incurred from inpatient visits, as they require several layers of

referrals and tend to involve more complex sequelae.

Second, our data set incorporates private copayments plus costs covered by the healthcare

system, allowing us to gauge the impact of air pollution on total health costs.

Third, we only include districts with ‘urban’ air pollution monitors during the analysis period.
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KECO manages several types of air quality monitors, including “urban” and “rural” locations. We

used urban monitors because they better represent the degree of air quality experienced by the

population. Indeed, due to better representation, local government agencies use urban monitors

to determine whether environmental standards are met [105]. We also exclude districts where air

quality monitors were installed too recently (2016 or later). This filtering process left us with 147

districts out of the 229 districts in South Korea, while still covering the entirety of 17 provinces

and over 91% of the population (see Figure S1).

Fourth, our data set excludes individuals who moved into or out of the districts we analyze during

our data period. Moving can lead to discontinuous changes in district-level health expenditure,

complicating interpretation of our results.

B Decomposition of PM by source

The PM observations used in this analysis come from a network of monitors located throughout

South Korea. We decompose the PM values reported by these monitors in two steps. First, we

extract the portion of PM associated with dust and sea salt using a global reanalysis product

that estimates surface concentrations. Second, we combine a probabilistic estimate of pollution

transport with high-resolution estimates of emission rates to apportion the remaining PM among

two sources: human activities (which we further subdivide into four originating jurisdictions: China,

South Korea, North Korea, and “other”) and wildfire. Finally, we assign these exposures to districts

(second-level administrative units) in South Korea.

Dust and sea salt

In the first step in our source decomposition, we partition out dust and sea salt from total observed

PM. We collect 3-hourly rasters of surface-level PM components from the European Centre for

Medium-Range Weather Forecasts (ECMWF) Atmospheric Composition Reanalysis 4, or EAC4

[46], and calculate the inverse distance weighted mean of the nine nearest raster values of each

EAC4 surface-level PM component for each monitor–day. Following the weighting scheme used in

the ECMWF Integrated Forecasting System (IFS-AER) [106], we determine the portion of total
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PM that is attributable to mineral dust, which we rescale to match total PM values reported by

each station.

In addition, we adjust for “Yellow Dust” days, as EAC4 is known to systematically underestimate

this particular source of PM [107]. Though these events are infrequent, they can produce daily

average PM values in South Korea above 1000 µg/m3 as large quantities of coarse dust are removed

by aeolian erosion from the soil and rocks of the Mongolian plateau and are carried by strong winds

across the Yellow Sea.1 This adjustment is made only on days and in provinces when the Korea

Meteorological Agency reported a Yellow Dust event, a determination made by visual inspection by

trained meteorologists in conjunction with the output of a physical model of dust erosion [108, 109].

For these observations, if we estimate that PM that is not EAC4 dust is above its 90th percentile

for that monitor’s weekday–month, all such PM above the monitor’s weekday–month median value

is attributed to Yellow Dust. Our main analysis treats EAC4 dust and this additional Yellow

Dust component jointly. In addition, to account for misreporting, we also apply this adjustment

to neighboring provinces or the same province on an adjacent day if its reported values are above

its weekday-by-month 99th percentile. This adjustment a↵ects 2.3% of province–days. We note

that this procedure follows from a similar approach developed to account for extreme PM2.5 from

wildfires in North America [110].

We perform a similar procedure for sea salt by determining the portion of non-dust PM that is

attributable to sea salt from EAC4 and scale that to match the non-dust PM value for each station.

PM from human activity and wildfire

The second step of our decomposition determines the contributions of human activities and wildfire

to the portion of observed PM that remains after removing dust and sea salt. We first generate a

large number of air parcel backtrajectories using a physical model of atmospheric dynamics, the

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [47], and the GDAS1

global atmosphere reanalysis product [48]. These backtrajectories represent the paths taken by

a hypothetical parcel of air traveling backwards in time from its observed destination, based on

1Importantly, the meteorological conditions on these days are unusual and may also carry higher- or lower-than-
usual quantities of PM from other sources, though we have no way of directly testing this.
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the timing and distribution of observed wind flows (e.g., Figure 1A). Note that wind flow in the

atmosphere is well observed and tightly constrained in this mid-latitude region by its relationship

to air temperature and pressure, both of which are also well observed.

We initialize backtrajectories at eight times of day (every 3 hours beginning at 2 a.m. local time)

and eight heights (2, 4, 8, 16, 32, 64, 128, 256, and 512 meters) at each PM monitor on each day

and track each parcel for 240 hours back in time (16.3 billion locations along 67.9 million paths).

We define trajectories that pass twice the height of the planetary boundary layer as exiting the

model and provide small vertical perturbations to particles that collide with the surface to keep

them aloft. For each hour of each trajectory that arrives at a monitor on a specific day, this results

in 16 parcel locations where emissions are potentially entrained in the air parcel before it arrives

at its destination in South Korea. We rasterize these locations into a 0.1� ⇥ 0.1� grid by counting

the number of parcel instances that occur within each grid cell and smooth these estimated counts

across space using a Gaussian kernel (� = 1 pixel) to account for uncertainty in trajectories. Finally,

we normalize the sum of each raster to one, creating a map that we interpret as the probability

(denoted ⇡) that each grid cell contributes material to that specific air parcel in that hour of its

trajectory.

To estimate the quantity of emissions that are entrained in the air parcel from each location

during a specific hour, we multiply these contribution-probability rasters by sector-specific PM

emissions (denoted q) from the Emissions Database for Global Atmospheric Research (EDGAR)

5.0 [49]. We rescale EDGAR values to account for hourly, weekly, seasonal, and secular variation in

emissions intensity using a set of scalars for high-resolution temporal profiles [111]. We follow the

same procedure for 3-hourly Global Fire Emissions Database (GFED) 4.1s [50–52], where we use

emissions rates based on estimated fuel type for burn fire location. HYSPLIT does not contain active

chemistry, so we apply the simple approximation that non-methane volatile organic compounds

(VOCs), sulfur dioxide, nitrogen oxides, and ammonia emissions estimated in EDGAR 5.0 are

converted to an equivalent mass of PM.2

2Somewhat surprisingly, we find that our results are not sensitive to this assumption; this may be because the cor-
relations between primary PM and NOx, SO2, NMVOC, and NH3 emissions are very high. Assuming zero conversion
into secondary aerosols changes our results by only a small margin. That said, seasonal variation in the conversion
e�ciency or rate may a↵ect our results, but the direction of this adjustment is not known.
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We model deposition, scavenging, and chemistry in a simplified framework that assumes net

exponential decay. We empirically calibrate a separate decay rate (denoted r) for each quarter

of the year—to account for seasonal di↵erences in atmospheric moisture, temperature, and cloud

physics—that maximizes the correlation between the observed values of non-dust and non-salt PM

(in South Korea) and the values predicted by our trajectory model (exponential decay rates of 0.004,

0.008, 0.016, and 0.006, respectively, with maximum Pearson correlations for all seasons around 0.6).

We note that the assumption of a constant decay rate/particle lifetime is a simplification made

elsewhere, such as in a trajectory analysis over the western Pacific [112], and the decay rates we

recover (implying a half-life of particles around 24 hours) are similar to those suggested elsewhere

in the literature, such as in the AMS/EPA Regulatory Model [113]. We then apply these rates to

each parcel throughout its trajectory.

We separately track PM for each non-dust, non-salt origin j, scaling the predicted relative

contributions of all origins to match the residual level of PM that arrives, and is observed, at

monitor l at time t. Our estimate for the relative quantity of PM from origin j arriving at monitor

l at time t is

p̂ljt =
TX

⌧=0

X

v2j

⇡lv(t�⌧)

| {z }
Probability that

air mass from v at t � ⌧
arrives at l at t

· sv(t�⌧)

| {z }
Emissions

from v at t � ⌧

· (1� r)⌧

| {z }
Decay factor

(1)

where ⇡lv(t�⌧) is the probability, estimated from HYSPLIT, that an air mass has arrived at location

l at time t from pixel v in origin j at time t� ⌧ , sv(t�⌧) is a measure of actual emissions at location

v and time t� ⌧ (from EDGAR and GFED), and (1� r)⌧ is the fraction of emissions that remain

at arrival following deposition/decay/scavenging. To compute p̂ljt, we sum what remains of the

emissions sv(t�⌧) over all locations v in origin j (e.g., over all grid cells in China) and over all

emission times (i.e., for emissions that have traveled to our exposed population for 0 hours [⌧ = 0],

1 hour [⌧ = 1], 2 hours [⌧ = 2], and so on).
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Partitioning observed PM

The estimate p̂ljt represents only the relative contribution of origin j to non-dust and non-salt

PM observed at monitor l at time t. To apportion this PM to an origin, we begin with p̈lt, the PM

observed at l at time t that remains after accounting for dust and sea salt using the method described

above in “Dust and sea salt” (i.e., p̈lt ⌘ plt � plt,dust � plt,sea salt). This residual is apportioned

proportionately as

pljt = p̈lt ·
p̂ljtP
j p̂ljt

(2)

where pljt is the amount of observed PM at monitor l and time t from origin j, where j includes

South Korea, North Korea, China, wildfires, and “other sources.” The procedure above, in “Dust and

sea salt,” provides a similar value for j 2 {dust, sea salt}. Figures 1D–E illustrate this partition. We

then aggregate these seven estimates by district: for each district i, we interpolate based on values of

pljt, calculating an inverse squared distance-weighted average to each district i’s center of population

(calculated using Meta’s High Resolution Population Density Maps [114]). This procedure yields

600,119 observations, pijt, for all seven origins j.

C Econometric analysis

The main text contains two separate econometric analyses. The first analysis validates our decom-

position of PM by origin by evaluating how the contribution of PM from di↵erent origins a↵ects

the chemical and physical properties of PM observed at a small number of South Korean monitors

that collect these data. The second analysis estimates the impact of PM from each origin on health

costs in districts across South Korea.

Decomposing properties of PM mixtures by origin

We estimate the extent to which PM from each origin is associated with di↵erences in the chemical

and physical characteristics of the PM mixture that arrives at each destination. To do this, we

empirically decompose the chemical and physical properties of PM (concentrations of lead and
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calcium, PM2.5, and visibility) observed at a limited number of advanced monitors into contributions

from each origin, based on the amount of PM that we attribute to origin j on each day t in districts

containing these advanced monitors. The chemical or physical property cit (e.g., lead concentration)

observed in district i (treating the district’s advanced monitor and the district as synonymous) on

day t is an additive mixture of contributions from di↵erent origins

cit = ci,South Korea,t + ci,China,t + . . . + ci,wildfire,t + ✏it (3)

where cijt is the contribution from j that arrives at monitor i on day t and ✏it is unmodeled

error. For these chemical or physical proprieties, the contribution from location j is the product

of the total PM from origin j (pijt) and the change in c per additional unit of origin j PM (�ij ;

e.g., the change in ambient lead observed at location i for a given increase in PM from origin j).

Specifically:

cit = pi,South Korea,t ·�i,South Korea + pi,China,t ·�i,China+ . . . + pi,wildfire,t ·�i,wildfire + ✏it (4)

which we solve via multiple linear regression. Here, we allow � to di↵er by location i precisely

so we are able to test its consistency over space, but we assume it is stable over our sample period.

To aid comparison, we present in Figure 2 the set of �ij ’s as partial correlation coe�cients. The

specific construction of this figure is illustrated in Figure S2: (1) Multiple correlation coe�cients

for all origins j but only a single destination site i (and a pair of chemical/physical variables)

are plotted (Figure S2A). (2) We repeat this process for all destinations i. Then, coe�cients are

regrouped based on their origin, pooling across destinations to define a convex hull for each origin

(Figure S2B). This allows us to assess patterns in the chemical/physical features of air that arrives

at a set of destinations from each origin (Figure S2C).
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Estimating the health response to undi↵erentiated total PM

Our objective is to develop a statistical framework that can be used to directly measure the relation-

ship between exposure to PM from a specific origin and changes in health costs. In prior analyses,

researchers have focused on modeling the health e↵ects of total PM without distinguishing between

contributing origins. Thus, we first analyze the health response to undi↵erentiated PM as in the

previous literature. Then, we extend this framework to include the impacts of PM from di↵erent

origins.

Conceptually, our model for respiratory health costs, hit, from undi↵erentiated PM occurring

in district i on day t is:

hit = D̄(pit, Ā(pit))| {z }
damage from PM

+ f̄(Qit, Wit, ⇣̄it, ✓̄t)| {z }
other causes

+ ēit (5)

where D̄(·) is the damage from PM (p), accounting for avoidance (Ā). Other patterns in health

costs that can be netted out by covariates are captured in f̄(·), including the e↵ects of other

pollutants (Q), meteorological conditions (W), and a rich set of non-parametric fixed e↵ects (⇣̄)

and trends (✓̄). We discuss each of these model elements below. Unmodeled variation in health

spending is captured by ē. We use a bar above estimated model elements to denote that they

describe components of the model for undi↵erentiated PM, in contrast to an alternative model that

di↵erentiates contributions by origin, in which bars are omitted (presented below). We discuss each

of the arguments of Equation 5 in turn and then describe how we estimate the model.

Total particulate matter The term pit describes the levels of total PM daily from the time

t �K to t, where K is the number of daily lags over which impacts accrue. We set K = 28 days

to ensure potential delayed health e↵ects are accounted for. As discussed in the main text, delays

sometimes occur because lower-level referrals are required to visit a specialty hospital in the South

Korean healthcare system. Thus, pit = (pit, · · · , pi(t�28)).
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Accounting for avoidance behavior Ā is a summary measure of avoidance behavior. As am-

bient PM increases, individuals may recognize higher levels of air pollution based on changes in

atmospheric visibility or information provided by governments and take defensive action (e.g., wear-

ing face masks) or avoid certain activities (e.g., by staying at home). These actions may then in

turn reduce the average damages incurred per additional unit of PM [53, 85, 97, 115, 116]; thus, it

is usually thought that @Ā
@p > 0 and @h̄

@Ā
< 0. We thus design a function for the net damages caused

by PM (D̄) capable of incorporating this potential mechanism. Conceptually, we assume health

damages are generated by a process:

D̄(pit, Ā(pit)) =
28X

k=0

ḡk(pi(t�k))| {z }
biological response

· (1� Āt�k(pi(t�k)))| {z }
attenuation from avoidance

(6)

where we have explicitly expanded the number of terms in the summation to account for the 28

lagged days of pollution exposure that might contribute to harm on day t. Here, ḡk is the biological

impact of pi(t�k) on the health response in the absence of avoidance, where k indexes the damage

from sequential lags. Āt�k measures the level of avoidance triggered by the PM level at time t� k,

and can take on a value between zero (no avoidance) and one (total avoidance), inclusive. Thus, the

e↵ects of ḡk can be partially mitigated by avoidance behavior, captured by the multiplicative term

(1�Āt�k) which drives damages to zero as Āt�k ! 1. This expression for D̄ describes, conceptually,

how the data are assumed to be generated, however we do not observe avoidance behavior directly

and thus cannot rely on explicit measurements of avoidance in our estimation. To overcome this

challenge, we draw on techniques developed in the study of climate change damages [53, 117] and

note that estimation can be simplified because avoidance behavior is an explicit response to the

level of pollution; that is, Āt�k can be written as a function of pi(t�k) (i.e., pollution levels are a

“su�cient statistic” for avoidance [118]). Thus, under the simplifying assumption that both ḡk and

Āk are approximately linear in pi(t�k), the expression for damages in Eq. 6 reduces to a quadratic

function with two parameters for each lag:

D̄(pit, Ā(pit)) =
28X

k=0

↵̄k · pi(t�k) + �̄k · p2i(t�k) (7)
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which can be directly estimated from data. Consequently, the shape of our response function is non-

linear in pollution, consistent with prior analyses [119], and this non-linearity embeds information

about the degree of unobserved avoidance undertaken by individuals.

Covariates We also account for a matrix of potential confounding variables related to our health

outcomes of interest and pollutant levels, which are included as covariates in our regression anal-

ysis. We account for the levels of other air pollutants (nitrogen dioxide, carbon monoxide, ozone,

and sulfur dioxide), denoted by the matrix Qit = {qnit} = {q1it, q2it, q3it, q4it}, and meteo-

rological conditions (temperature, humidity, and precipitation), denoted as Wit == {qmit} =

{w1it, w2it, w3it}. Similar to our notation describing PM, these matrices include the contempora-

neous and lagged values of each variable, capturing e↵ects within the 28-day window for exposure

that we are studying.

Non-parametric controls and trends To account for a wide variety of time-dependent and

time-invariant unobserved determinants of both pollution levels and health spending [120–123], we

include district-by-year-by-month-by-weekday (⇣̄it) and holiday (✓̄t) intercepts (also referred to as

“fixed e↵ects” [124]), which absorb these groups’ mean values. Our identification of the e↵ect of PM

on health relies on the ability of this adjustment to account for potentially confounding variations

in both pollution and health outcomes that are correlated with the day of the week (e.g., weekdays

and weekends), season (e.g., flu season from December to February), year (e.g., the outbreak of

swine flu pandemic in 2009), or district (e.g., di↵erences in industrial infrastructure, health system,

demographics, and socioeconomic conditions). With this approach, we assess the relationship be-

tween PM and health outcomes by comparing only observations within the same weekday, month,

year, and district group; in other words, our estimates describe how health outcomes change as

a function of pollution by comparing outcomes on the set of, for example, non-holiday Mondays

within March 2012 within a single district of South Korea [125].
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Estimation Combining Eqs. 5 and 7 with model components described above, we empirically

estimate how health costs respond to undi↵erentiated PM by solving the panel regression:

hit =
28X

k=0

h
↵̄k · pi(t�k) + �̄k · p2i(t�k)

i

| {z }
D̄(p)

+
4X

n=1

�̄n(qnit) +
3X

m=1

�̄m(wmit) + ⇣̄it + ✓̄t

| {z }
f̄(·)

+ēit (8)

where hit is a health outcome of interest in district i in time t and pi,t�k is the level of the total

undi↵erentiated PM in district i at time t � k. Other model variables are as described above. �̄n

and �̄m are flexible nonlinear functions of pollution and meteorological covariates, respectively, that

account for the potentially nonlinear impact of these variables on health. For temperature, we use

a cross-basis function that models the dose–response function as a three-knot natural cubic spline

with knots placed at the 10th, 50th, and 90th percentiles of the temperature distribution and with

the lag–response function modeled as a piecewise zero-order spline with knots at lags 1, 2, 4, 7,

and 14. For humidity and all non-PM pollutants, we adopt the same lag–response specification

but choose an equally-spaced two-knot natural cubic spline for the dose–response function. For

precipitation, we also adopt the same lag–response specification but adopt a zero-order spline dose–

response function with knots spaced in logs throughout the range of historically observed of daily

total precipitation (3.13, 11, 23, 38, 56, 78.5, 101.5, and 129 mm). This structure for the dose–lag–

response specifications we adopt for our covariates are motivated by prior findings in the literature

[53, 126] and e�cient computation for a high-dimensional model. We also include a rich set of

district-by-year-by-month-by-weekday fixed e↵ects described above and indicated by ⇣̄; ✓̄ is a holiday

fixed e↵ect. The error term, ēit, accounts for variation in the outcome not explained by PM and

the other covariates. We cluster standard errors at the province level, which accounts for arbitrary

forms of temporal auto-correlation in health outcomes within a province between all days in our

sample, as well as arbitrary spatial auto-correlation across all districts within a province [127–129].

Computing damages by origin assuming undi↵erentiated PM To compute partial dam-

ages for PM from specific origins using the undi↵erentiated PM model, we estimate Eq. 8 and

isolate the estimated terms in the damage component D̄(·). We then compute the damages that
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would be experienced if the entire South Korean population were exposed to a constant specific

PM level ⇢̄. We thus compute damages D̄(p = ⇢̄) where the vector ⇢̄ is defined such that all 29

elements (representing lags) are set to the same value—i.e., ⇢̄ := (⇢̄, ..., ⇢̄). Fig. 3A illustrates the

function D̄(⇢̄) evaluated across di↵erent values of ⇢̄. We then compute the damages that would be

attributed to a specific origin j by evaluating D̄(·) at p = ⇢̄j , the average level of PM originating

from j that is incident on the South Korean population.

Estimating the health response to PM from di↵erent origins

Simultaneously estimating damages for PM from multiple origins (both transboundary and domes-

tic) is the central contribution of this analysis. To do this, we extend the framework and approach

described in Eqs. 5-8 to di↵erentiate impacts of PM from di↵erent origins, rather than estimating a

undi↵erentiated pooled e↵ect. Conceptually, when accounting for multiple PM sources, we continue

to consider health impact that originate from PM damage and other factors:

hit = D(Pit, A(Pit)) + f(Qit, Wit, ⇣it, ✓t) + eit (9)

where terms correspond to analogs in Eq. 5 but with the bar notation removed (to indicated that

these are no longer from the undi↵erentiated model) and with one key substantive di↵erence. In Eq.

9, PM is represented by the matrix Pit, which contains PM values from di↵erent origins observed

in location i and time from t � 28 to t, which contrasts with the vector of undi↵erentiated PM in

Eq. 5. Pit consists of seven vectors describing PM from each origin: South Korea, China, North

Korea, dust, wildfire, sea salt, and other sources. Each of the seven vectors is composed of the PM

values from their respective origin for the period from t � 28 to t; hence, Pit is composed of 203

elements.

Accounting for avoidance with multiple PM sources Accounting for avoidance in a model

with multiple sources of PM is more complex than in the undi↵erentiated PM model, since indi-

viduals may exhibit a di↵erent avoidance response to each type of PM and each type of avoidance

can alter the health response to PM from each origin. Individuals likely respond di↵erently to PM
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from di↵erent origins because they have di↵erent chemical and physical properties (e.g., they may

smell di↵erent or alter visibility in a distinct way). However, it is likely that the total level of PM

that is incident on a population, from all sources, also a↵ects their avoidance behavior.

Thus, we adjust the approach in Eq. 6 to allow for these possible di↵erent avoidance responses,

one for PM from each origin and for total PM. Further, each type of avoidance can alter the health

response for PM from each origin. Replacing the terms that include the undi↵erentiated PM with

those that include the PM levels from heterogeneous origins and adding avoidance terms yields:

D(Pit, A(Pit)) =
28X

k=0

0

@
7X

j=1

gjk(pij(t�k))

1

A

| {z }
biological response

·

0

BBBBB@
1� A0k(pi(t�k))| {z }

total PM avoidance

�
7X

j=1

Ajk(pij(t�k))

| {z }
origin-specific avoidance

1

CCCCCA
(10)

In this di↵erentiated framework, there are seven gjk for each lag k, corresponding to the biological

responses from the seven origins indexed by j. The second set of parentheses contains multiple

avoidance terms. A0 is similar to Ā in Eq. 6 in the sense that it captures the degree of avoidance

behavior triggered by the total level of the undi↵erentiated PM. This is important because govern-

ment agencies provide information on the total level of PM (pi(t�k) =
P7

j=1 pij(t�k)) and distribute

advisory information based on it. In the case of South Korea, ambient air quality is classified by

PM level into four categories: good (0–30 µg/m3), moderate (31–80 µg/m3), unhealthy (81–150

µg/m3), and very unhealthy (151–600 µg/m3), and air pollution advisories and alerts are issued

based on the hourly PM level in extreme cases [85]. Avoidance via this channel is reflected in the

term A0k(pi(t�k)).

Eq. 10 also accounts for the impact of any form of avoidance specifically associated with each

origin, since the the extent of induced avoidance likely di↵ers for PM from each origin. For example,

as demonstrated in Fig. 2, the physical properites of PM di↵er across origins, resulting in di↵erent

degrees of salience and coresponding defensive behaviors. For example, sea salt, wildfire smoke, and

industrial-origin PM have di↵erent optical qualities and thus likely induce di↵erent responses. This

potential heterogeneity is reflected by independent and separate functions Ajk for each PM origin
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j. As a result, an increase of pij(t�k) induces the avoidance behavior through both a component of

avoidance that is origin-specific (Ajk) and also a component that reflects total PM (A0k).

Expansion of the product in Eq. 10 yields numerous terms. Some terms are a function of PM

from a single origin (e.g., gjk(pij(t�k)) and gjk(pij(t�k)) · Aj(pij(t�k))). In addition, there are non-

linear cross-terms that describe interactions between PM from di↵ering origins (e.g., gjk(pij(t�k)) ·

A0(pi(t�k)) and gjk(pij(t�k)) ·Aj0(pij0(t�k)), j 6= j0). Thus, under the parsimonious assumption that

gjk and Aj are each approximately linear (similar to the approach for undi↵erentiated PM) expan-

sion of Eq. 10 yields a model that reduces to containing first and second-order terms for PM from

each origin (similar to Eq. 7) as well as second-order terms that interact PM from di↵erent origins

(pij(t�k) · pij0(t�k)). Both sets of terms appear in the estimating equation below.

Estimation Combining Eqs. 9–10, expanding and simplifying the expression, and including the

non-parametric trends and controls contained in f(·) from Eq. 8 yields our complete preferred model

specification:

hit =
7X

j=1

28X

k=0

⇣
↵jk · pij(t�k) + �jk · p2ij(t�k)

⌘
+

7X

j=1

X

j0 6=j

28X

k=0

µjj0k · pij(t�k) · pij0(t�k)

| {z }
D(Pit)

+
4X

n=1

�n(qnit) +
3X

m=1

�m(wmit) + ⇣it + ✓t

| {z }
f(·)

+eit

(11)

where hit is health costs and all terms correspond to their analogs in Eq. 8. Bar notation is removed

to indicate where estimated values for parameters will di↵er from values in the undi↵erentiated

model in Eq. 8 (since the model is estimated jointly, many parameters will be a↵ected by allowing

the e↵ect of PM to be di↵erentiated by origin, even if the specification for these terms does not

change).

Analogous to the derivation of Eq. 7 for undi↵erentiated PM, ↵jk · pij(t�k) and �jk · p2ij(t�k)

terms in the first summation correspond to the estimated values that represent gjk(pij(t�k)) ·
�
1�A0k(pij(t�k))�Ajk(pij(t�k))

�
in Eq. 10. However, there are now seven terms per lag, re-
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flecting the seven origins (j) of di↵erentiated PM. Consistent with the model for undi↵erentiated

PM, there are 28 lags. The second summation of Eq. 11 contains many cross-terms that inter-

act PM from di↵erent origins (j and j0 6= j). Each µjj0k corresponds to values for gjk(pij(t�k)) ·
�
A0k(pij0(t�k)) +Aj0k(pij0(t�k))

�
terms in Eq. 10. Here, negative coe�cient estimates would imply

that the impact of PM from j on hit is partially mitigated by avoidance behavior in response from

simultaneously incident PM from j0. Other variables are the same as in Eq. 8.

Computing partial damages by origin To compute partial damage for PM from specific

origins accounting for di↵erent simultaneous health impacts for each, we estimate parameters in

Eq. 11 and isolate D(Pit), the component describing heath damages from simultaneous incidence

of PM from multiple di↵erent origins. We then estimate what health impacts would be if incident

PM from a single origin were ⇢ and incidence from all other origins were zero. This approach is

analogous to the calculations presented for the undi↵erentiated PM model, however in that case

it was not necessary to be explicit about the level of PM from j0 when calculating impacts from

j; that said, the implicit assumption is identical, enabling a comparison between the two sets of

results in Fig. 3.

Specifically, to compute partial damages from origin j, we compute D(Pit = %j) where we define

%j := (0, · · · ,0,⇢j ,0, · · · ,0) and ⇢j := (⇢j , · · · , ⇢j)0. Thus, we set all 29 terms describing incidence

from j to have the constant value ⇢j (i.e., pijt = ⇢j) and all elements in other vectors describing

PM from non-j origins are set at zero (i.e., pij0t = 0, 8 j0 6= j). We then vary the value of ⇢j for

each j independently to trace out a partial damage function for that origin. Fig. 3B presents D(%j)

for the top four origins that contribute the most to the observed total PM in South Korea.

Damages from mixtures of PM To compute damages from mixtures of PM from di↵erent

sources we use an approach that is similar to computing partial damages by origin, but we relax

the assumption that PM from all non-j origins is zero. Instead, we continuously vary the quantity

of PM incident from two di↵erent origins at a time and compute the resulting health damages,

setting incidence from other origins to zero. Our calculation of the di↵erentiated PM health damage

function D(Pit) enables us to compute damages from arbitrary mixtures of origin-specific PM,
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however we restrict our presentation to two origins at a time for interpretability, since it is visually

complex to present more dimensions simultaneously. Nonetheless, in our calculations of total health

burden (described below), we compute impacts from observed mixtures of PM from all seven origins

simultaneously.

Specifically, we estimate Eq. 11 and compute damages D(Pit = %jj0) where we define %jj0 :=

(0, · · · ,0,⇢j ,0, · · · ,0,⇢j00, · · · ,0), where the jth vector is ⇢j = (⇢j , · · · , ⇢j) (i.e., pijt = ⇢j) and

the j0 th vector is ⇢j0 = (⇢j0 , · · · , ⇢j0) (i.e., pij0t = ⇢j0). All other vectors are set at zero (i.e.,

pij00t = 0, 8j00 /2 {j, j0}). We compute the value for D(·) while continuously varying values for ⇢j

and ⇢j0 to generate surfaces that describe damages from mixtures of PM from these two di↵erent

origins.

Fig. 4 illustrates the surface of health responses that result from di↵erent mixtures of PM from

distinct origins. For example, in the left panel of Fig. 4, we demonstrate the healthcare expenditure

response to the mixtures of PM from South Korea and that from China, the first and second largest

contributing origins to PM observed in South Korea, while setting PM from the other origins at

zero. Fig. 4 visualizes the curvature of the surface D(%jj0) with contours (“iso-damage” curves) on

the ⇢j ⇥ ⇢j0 plane. Each contour traces the combinations of (⇢j , ⇢j0) that results in a fixed quantity

of health expenditure.

Substitutability of components in a PM mixture We evaluate the behavior of health dam-

ages as a PM mixture is incrementally altered by considering the “substitutability” of PM con-

stituents in the mixture. The slope of each contour in Fig. 4 enables us to evaluate the degree of

substitutability for PM from the two origins in the mixture, given a specific baseline level of PM

incidence from each (⇢j , ⇢j0). Substitutability is the degree to which PM from origin j would need

to be reduced in order to o↵set the health damage resulting from an incremental increase in PM

from origin j0. Note that due to the of the nonlinear structure of the damage surface D(·), the

substitutability of PM from each origin is a function of the PM load.

Substitutability is equal to the slope of a contour associated with health expenditure G in Fig. 4

(or a similar surface). The slope d⇢j

d⇢j0

���
D(%jj0 )=G

= �
⇣

@D(%jj0 )

@⇢j0

⌘
/
⇣

@D(%jj0 )

@⇢j

⌘
will be �1 if a one-unit
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increase (decrease) in PM from origin j could be substituted with a one-unit decrease (increase) in

PM from origin j0 with no change in the health response (holding PM from other origins at zero).

A steeper or more negative slope would imply that the health impact of one unit of PM from the

origin on the x-axis (PM from origin j) is larger than the impact of one unit of PM on the y-axis

(PM from origin j0) since a one-unit increase (decrease) of PM from origin j necessitates a larger

decrease (increase) of PM from origin j0 to achieve the same health response. For example, in the

left panel of Fig. 4, across the contour corresponding to one million USD, the slope is approximately

�2.6, implying that exposure to one additional µg/m3 of PM from China has the same incremental

impact on health costs in South Korea as exposure to an additional 2.6 µg/m3 of PM from South

Korea.

Estimation of total PM-specific health damages by origin We use our empirical measure-

ments of PM-specific damages to estimate the total health costs experienced by the South Korean

population due to PM emissions from each origin. We do this by computing health costs due to

actual incidence of PM by origin (estimated by partitioning observed PM, described above) relative

to the health costs that would be expected if emissions from a single origin j were eliminated. This

approach holds the emissions of all non-j at their observed level in both cases, so all that is changed

is the PM from j. For example, we compute health costs in South Korea with all origins contributing

PM and with contributions of PM from China shut o↵—with the di↵erence representing the net

health impact of PM from China. Specifying the emissions of all non-j origins in both scenarios is

important because D(·) is nonlinear in PM from all origins. We believe this approach provides the

most accurate estimate for the overall total impact that individual origins have on health in South

Korea.

To estimate total harm by origin, we estimate Eq. 11 and compute damages D(·) for our study

period in two scenarios: one with PM equal to actual incidence (Pit) and a counterfactual scenario

with emissions from origin j set to zero (P0
ijt). The di↵erence in damage between these two is the
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harm traceable to PM from origin j. Specifically, we compute

\total damagej =
X

i2I

X

t2T

�it ·
⇥
D(Pit)�D(P0

ijt)
⇤

(12)

where Pit is the matrix of PM values that are actually incident on poulations (the same values

used in estimation) and P0
ijt is the same, except that the PM values corresponding to origin j are

set at zero (i.e., pijt = (pijt, · · · , pij(t�28)) = 0). For example, for the origin with index j = 1,

P0
i1t = (0,pi2t, · · · ,pi7t). Therefore, the di↵erence D(Pit) � D(P0

ijt) is the average per capita

damages in district i on day t attributable to origin j. This value is then scaled by �it, the population

in district i at time t, and aggregated across days t 2 T and regions i 2 I. The bounds of aggregation

vary, with values in Fig. 5A–C aggregating over specific years (and all districts) and Fig. 5D–F

aggregating across districts within a province (and all years). Table 1 aggregates across all districts

and all years in the sample.
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D Supplementary Figures

In sample

Not in sample

Figure S1: Boundaries of districts and provinces; locations of air pollution monitors Dis-
tricts in our main model (those meeting minimum data length and monitor coverage requirements)
are shown in green. Borders between districts within a province are shown in white, and borders
between provinces are shown in black. Pollution monitors used in the main analysis are shown as
blue points.
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Figure S2: Extended explanation of
Figure 2. (A) Partial correlations be-
tween PM of each origin and the concen-
trations of atmospheric lead (x-axis) and
calcium (y-axis) using only data from the
chemistry monitor in Ulsan. (B) Partial
correlations between PM from a single ori-
gin (China) and atmospheric lead (x-axis)
and calcium (y-axis) using data from all
five chemistry monitors; a convex hull is
drawn around these points to aid pattern
recognition. (C) depicts these convex hulls
for PM of each origin and is the form
shown in Figure 2.
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Figure S3: Lag–response relationships. (A) The undi↵erentiated lag–response relationship, cal-
culated with levels of all sources at their mean values (is shown only for comparison and is not used
in our calculations for the attribution of respiratory health spending to PM origins). For full model
specification, see Methods. (B) The cumulative lag–response relationships for PM by origin.
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Figure S4: Model robustness checks. For ease of comparison, the model is estimated using
alternate specifications and model results are combined with estimated exposures to determine
di↵erences in average annual attributed health costs by origin. Line ranges indicate 95% confidence
intervals. Results for the main model, which follows Eq. 11 with standard errors clustered at the
province level, are shown fourth from the left. The three estimates to the left of the main estimates
show sensitivity to changing the method used for calculating standard errors: for the first set of
estimates, standard errors are clustered at the district level; for the second set of estimates, standard
errors are clustered at the day level; for the third set, standard errors are calculated using a spatial
heteroskedasticity and autocorrelation robust (Conley-HAC) method [128]. Estimates 5 through 8
present variants of Eq. 11, but with a modified functional form that is progressively less flexible:
for the fifth set of estimates, the model includes linear and quadratic terms for each origin of PM
and interactions between each origin of PM and the total quantity of PM from every other origin
(interactions with other PM are not di↵erentiated); for the sixth set of estimates, the model includes
only linear and quadratic terms for PM of each origin (no cross-origin interactions); for the seventh
set, the model includes only a linear term for each origin of PM and an interaction of that term
with the total level of PM (the curvature of each origin’s dose–response function is dependent only
on the total level of ambient PM); for the eighth set, the model includes only a linear term for
each origin of PM. Estimates 9 through 12 separately estimate Eq. 11 by four year bins, for the
eastern and western half of South Korea, for each quarter of the calendar year, and for days when
air quality alerts were and were not issued, respectively.
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