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Abstract
The electromagnetic response of a resonant cavity in the presence of plasma discharges is
studied, and a model to predict the formation of microwave pulses is developed using fluid
plasma simulations and analytic microwave theory. Results for a 14 GHz rectangular cavity
partially filled with plasma are then presented from both the model and from experiment as
validation. Experimental results are shown to have good agreement with predicted values. It is
seen that microwave pulses are generated with widths and delays as short as 1 μs during the
plasma discharge decay and pulses with widths and delays as short as hundreds of ns during the
plasma discharge ionization. Lastly, comparison is made with a simplified analysis by assuming
a uniform plasma cylinder, which is shown to have reasonable agreement given enough fitting
parameters.

Keywords: gas discharges, plasma modeling, electromagnetic wave control, resonant cavities,
numerical methods

1. Introduction

There has been a resurgence of interest in the use of plasmas
as active elements in microwave and terahertz systems to
create tunable and reconfigurable devices, or for use in high
power and harsh environments not suitable for conventional
electronics. These devices can be realized in a variety of
forms; microwave waveguide components [1, 2], photonic
crystals [3–6], metamaterials [7, 8], or other forms of reso-
nator arrays [9]. Plasmas may comprise anywhere from single
elements to the entire structure of the system, but central to
utilizing the plasma elements for high frequency applications
is a requirement to understand the behavior and mechanics of
the plasma. Diagnostic experimental methods give insight
into the plasma behavior, but are generally limited to mea-
surements of indirect or bulk properties and do not give a
complete picture of the plasma system [10, 11]. What is
required instead are numerical tools to adequately simulate
the plasma behavior in space and time, which can then be
independently validated by experimental means.

It is important to be cognizant of the plasma regime of
interest, which is the low pressure glow discharge for
electromagnetic devices with wave frequencies of tens to
hundreds of GHz. This is due to the requirement that the

electrons within the plasma be allowed to respond freely to
electromagnetic waves and not be thwarted by excessive
collisions with other particles. The latter results in energy
transfer away from the electromagnetic wave and towards gas
heating, in a form of Ohmic loss and wave damping. The
simplest way of lowering the collision frequency is by low-
ering the gas pressure so that on average the electrons oscil-
late many times with the waves before encountering another
particle through a collision.

The often used Drude model for the plasma dielectric
constant, εp, is described by
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which is the fundamental parameter that determines a plasma’s
response to electromagnetic radiation. Here, ne, e, and me

represent the electron number density, charge, and mass, and ε0
is the permittivity of free space. The plasma dielectric constant is
always less than one, implying that electromagnetic wavelengths
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contract or are evanescent while within the plasma. Conversely,
within resonators defined by a fixed scale or volume, wave-
lengths conform to that scale and electromagnetic modes
increase in frequency. We exploit this plasma property to
develop tunable and reconfigurable devices.

The numerical simulations of plasmas can be categorized
in increasing stringency of continuum assumptions. Foremost
and most basic, particle in cell methods capture plasma
motion at a molecular level through direct numerical simu-
lation at a large computational cost [12, 13]. They are typi-
cally used for the study of fundamental plasma properties and
interactions with waves and instabilities, but do not scale to
physically realizable systems in the laboratory. Next, Boltz-
mann methods decrease the computational cost by assuming a
particle continuum with an arbitrary distribution function over
velocity and physical space [14, 15]. These methods are
useful for capturing the physics of non-ideal and highly non-
equilibrium plasma conditions, but at the cost of high
dimensionality. Thirdly, fluid models make simplifications by
assuming velocity distribution functions to reduce the
dimensionality and computational cost to levels appropriate
for modeling laboratory gaseous discharges [16–19]. Non-
equilibrium effects are approximated by solving the Boltz-
mann equation a priori for transport coefficients so that the
assumed distribution function is not limited to a Maxwellian
distribution [20].

A characteristic of glow discharges is that they have a
region of large space charge in the vicinity of the electrodes
(plasma sheath) with a length scale not insignificant of the
total plasma discharge length [10]. Furthermore, the particles
are accelerated within the sheath and in doing so drive the
physics and structure of the plasma [21]. Although kinetic
models are required to fully model sheath behavior [22], fluid
models are often sufficient for capturing bulk properties such
as particle density profiles for the application of electro-
magnetic wave interactions [23, 24].

Some recent numerical simulations have been carried out
to study electromagnetic control with plasmas, such as with
particle in cell simulations of nanosecond microdischarges for
optical switching [25]. Other authors have used fluid models
to study the resonant interactions of a single micro-plasma
with high frequency electromagnetic waves [24], the limita-
tions of different model approximations for plasmas in reso-
nant structures [26], and the ensemble effect of arrays of
microdischarges at controlling the propagation of microwaves
through rectangular waveguides [27].

Still, there is the tendency in the gaseous plasmonics
community to assume simplifications such as uniform plasma
properties in order to draw conclusions from experiment or
theory [5, 28–30]. While these methods might be attractive
for first order analyses, they do not have high degrees of
accuracy. Furthermore, when such assumptions are applied to
analyze experimental data, the result is a reliance on over-
fitting parameters that cannot be extrapolated for predictive
purposes. Therefore, there is a need to have modeling of high
fidelity to study complicated electromagnetic-plasma struc-
tures to make reliably predictions for the research and
development of gaseous plasmonic devices.

In this paper we present a fluid model to simulate to high
fidelity various plasma discharges suitable for electro-
magnetic control applications. We then present theory to
predict the electromagnetic response of resonant structures in
the presence of the simulated plasma discharges. Next, we
outline our experimental setup for collecting data in a
laboratory setting for validating and comparing with our
modeling efforts. We presenting numerical results of a quasi-
steady plasma discharge and pulsed plasma discharge, and
compare our transient results with experimental data. Fol-
lowing this, we compare our simulated plasma properties with
an analysis of what we would have predicted if we had
assumed uniform plasma properties. Lastly, we draw con-
clusions about the applicability of these discharges and
recommend areas for further investigation.

2. Methods

2.1. Model description

We describe here the fluid model used to simulate low
temperature plasma discharges. The charged particle densities
are governed by the continuity equation for species p

t
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where np is the particle density, Γp is the particle flux, and
Krʼs are the reaction rate coefficients which appear in the
source terms The fluxes are determined by the drift-diffusion
approximation which results from the simplification of the
momentum equation (ignoring inertia and convective terms)
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where qp is the species charge, E is the electric field, and μp
and Dp are the transport coefficients of mobility and diffusion,
respectively. When considering the electron energy evolution,
the plasma is assumed to be weakly ionized and that electrons
scatter primarily with a single dominant heavy particle species
that comprises the background gas, which is assumed to be
isothermal. Electrons are assumed to be in local thermo-
dynamic equilibrium with a local temperature Te, mean
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The source terms include, in order, Joule heating, energy
exchange through elastic scattering collisions, and energy lost
or gained through reactions. New symbols introduced are the
gas temperature and particle mass, Tg and mg, the electron
momentum transfer collision frequency νe, and the change in
energy per reaction Hr. The electron energy flux is determined
in the same manner as (4)
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Finally, we separate the electromagnetic from the elec-
trostatic response of the plasma. This is justified for the fol-
lowing of reasons: first, the time scale of the electromagnetism
for the frequencies of interest are tens to hundreds of picose-
conds, whereas the fluid response varies from tens of nanose-
conds to microseconds. Second, the electromagnetic power
used to interact with the plasma is assumed to be sufficiently
small, generally microwatts or less, and so the electromagnetic
power absorbed by the plasma is dwarfed by that of Joule
heating from electrostatic-driven currents. Therefore, the fluid
model we present treats the fields electrostatically through
Poisson’s equation with the inclusion free charges

q n
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2.1.1. Boundary conditions. The boundary condition on
electrode surfaces consist of prescribing the particle flux for
each species, similar to those used by others [31, 32]. For ions
this is

e E ea q n v nsgn
1

4
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where en is the inward wall normal vector, vp is the thermal
velocity of the species, and the coefficient a is one if

E eqsgn 0kp nm >( ) · and zero otherwise. The boundary
condition for electrons at electrodes has an additional term
for secondary electron emission from ion impact, with the
corresponding coefficient γ
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Lastly, the electron energy flux is similar to that of the
electron particle flux

e E e ea n v n
1

3
. 11n n e e e e i nm geG G= - + -e e· · · ( )

For non-electrode boundaries, such as symmetric or open
boundaries, homogeneous Neumann conditions on particle
densities are used. Boundary conditions on the electrostatic
potential are either fixed at electrode surfaces or homo-
geneous Neumann type at symmetric or open boundaries. The
typical simulation domain that we use is cylindrical with flat
electrodes partially along grid boundary and is shown with
boundary conditions specified in figure 1.

2.1.2. Transport and rate coefficients. The transport
coefficients for electrons are found a priori via collision
cross section data [33, 34] and a Boltzmann equation solver
[20] that integrates the isotropic electron velocity distribution

function F0 as
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where σ is the sum of all collision cross sections considered.
These values are fitted to exponential functions for use during
simulation for fast retrieval, and are shown in figure 2(a).

The rate coefficients for the argon excitation and
ionization are found similarly from the Boltzmann equation
solver [20] by integrating F0 and the associated reaction cross
sectional data over all electron energies as

K F d , 13r
0

r 0òg es e=
¥

( )

Figure 1. Simulation domain for pulsed experiments, consisting of
two planar electrodes, symmetry boundary, and open boundaries.

Figure 2. (a) Transport coefficients of electron particles (solid lines)
and electron energy (dashed lines), and (b) rate coefficients in an
argon plasma. Markers in (b) are for designation only, they do not
represent datum locations.
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and the remaining rate coefficients are taken from [17]. The
rate and transport coefficients used in our model for argon
discharges are shown in figure 2(b), and the argon reactions
are listed along with their associated energy in table 1.

The ion mobility is fixed at the beginning of the
simulation, determined by the pressure law pim =( )

p0.145 m V s Torr1 2 1 1 1- - - -( ), and the diffusion coefficient
is then related by the Einstein relation D k ei i Bm= [35].

2.2. Microwave response

We now describe our theoretical treatment of a microwave
system to analyze the effectiveness of our simulated plasma
discharges at controlling electromagnetic waves. As a sample
system, we consider a resonant cavity that could be realized
inside a photonic crystal or metallic waveguide, and for com-
parison with experiment we choose a rectangular cavity with
dimensions a=1.58mm, b=7.9 mm and d= 13.7 mm, in
the Cartesian x, y, and z directions, enclosed by reflective walls.
A plasma column is aligned at the center of the y–z plane and is
situated along the x-axis. A schematic of the plasma inside the
cavity is shown in figure 3. The empty cavity’s lowest order
mode corresponds to a transverse electric (TE) (m, n, p) = (1,
0, 1) mode with a resonance frequency of
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The unfilled cavity is assumed to have a quality factor
Q0=1900, the ratio of the energy stored within the cavity to
that lost per cycle, to match similar conditions seen in
experiments [2]. When the cavity is partially filled with plasma,
the local dielectric constant is determined by the Drude model,
(1), and has the effect of increasing the resonance frequency of
the cavity, ωres, with increasing plasma density. Furthermore,
losses are introduced into the cavity due to the electron col-
lision frequency and these losses will broaden the frequency
response and reduce the quality factor of the cavity. Through
perturbation theory the normalized resonance frequency shift,

res res 0 0w w w wD = -˜ ( ) , can be estimated from (appendix)
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by numerically integrating the field mode and plasma proper-
ties over the cavity volume, V. The primary assumption and

limitation in this formulation is that the electric field profile, E0,
must be known and not greatly varied by the plasma, which is
reasonable if the plasma’s dielectric constant is near one. In this
way, we make use of our simulated plasma density and col-
lision frequency data in time and calculate measurable resonant
frequency shifts. The electric field profile in the rectangular
cavity is the lowest order mode
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and is defined according to the normalization condition,
E Vd 10

2ò = (appendix). The quality factor of the filled cavity
is determined by the ratio of real to imaginary parts of the
solution to equation (15) as
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If the cavity is thought to be coupling power from an input
and output port, then the transmitted power through the cavity
is also measurable and will vary with the excitation frequency
ω. In steady state, the normalized transmitted power, T, as a
function of excitation frequency is given by [36]
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Table 1. Reactions considered in argon discharge for ionization, reactions with rate coefficients determined by f (Te) are shown in figure 2.

Reaction Hm (eV) Kr (m
3 s−1) References

e eAr Ar*+  + 11.56 K f Tex e= ( ) [20]
e eAr Ar+  ++ 15.76 Ki=f (Te) [20]
e eAr Ar 2* +  ++ 4.14 K f Tsi e= ( ) [17]
e eAr Ar* +  + −11.56 Ksc=f (Te) [17]
e eAr Arr* +  + — K 2 10r

7= ´ - [17]
eAr Ar Ar Ar* *+  + ++ — K 6.2 10mp

10= ´ - [17]
Ar Ar 2Ar* +  — K 3 102q

15= ´ - [17]
Ar 2Ar 3Ar* +  — K 1.1 103q

31= ´ - [17]

Figure 3. Schematic of a rectangular microwave cavity with a plasma
column centered inside, the presence of which shifts the resonant
frequency.
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and so by calculating Q0 and reswD ˜ , we may also calculate T(ω)
and have a complete description of the plasma microwave
system.

For slowly varying or quasi-steady systems this form of
the transmitted power may be accurate, but for fast pulsing
systems the Fourier domain response involves a frequency
convolution between the natural response of the cavity and
the dynamic response due to the pulsed plasma. In general
there is no analytic solution such as (18), so we instead rely
on treating the cavity as consisting of lumped circuit elements
including a resistor, inductor, and capacitor as
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where L is the inductance, R is the resistance, C is the
capacitance, q is the charge, P0 is an arbitrary constant, and ω

is the driving frequency. The circuit elements are related to
the cavity properties by, LC0

2 1w = -( ) and Q R L1
0

1w=- -( ) ,
which we then use to rewrite the above equation as
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If ω0 and Q were stationary in time, then (20) is readily solved
by taking the Laplace transform and finding the transfer
function as the ratio between the input power, P0, and output

power, P i q
t1

2 d

d

2
~ = ( ) , but as this is not the case we resort

to numerical integration to calculate the frequency response.
Our modeling process is as follows: we first simulate a

plasma discharge with our fluid model to retrieve the spatial
(and temporal for pulsed discharges) variation in the electron
density and collision frequency, then calculate the resonance
frequency shift and reduced quality factor from (15) and (17).
These two quantities are non-dimensional properties that are
easily comparable to other experimental and numerical
results, but perhaps are not as easily conceptualized. To
remedy this, we lastly calculate the expected transmitted
power spectrum by either using (18) directly for steady sys-
tems, or integrate (20).

2.3. Experimental setup

We have carried out experiments to validate our gas discharge
simulations and our model of the electromagnetics. The
experimental apparatus is a resonator device consisting of a
WR62 rectangular waveguide section with two square
metallic posts spaced 13.7 mm apart to create a resonant
cavity [2]. In prior studies, we used this resonator in con-
junction with an argon/mercury-filled cold cathode lamp to
demonstrate microwave tuning and pulse formation. In this
prior apparatus, interpretation of the data is difficult as the
conditions and gas composition within the lamp are not
known. In these new experiments described here, the reso-
nator is enclosed in a vacuum chamber that is pumped to low
pressures and backfilled with high purity argon gas to 2 Torr.
The vacuum line is connected via a gate valve that is left
cracked and a slow flow of argon gas is maintained through a
needle valve so that the pressure is controlled and maintained
while minimizing the effect of atmospheric air leaking into

the chamber. A schematic of the experimental setup is shown
in figure 4.

Continuous wave (CW) microwave signals are generated
using an HP 8722D signal generator and are amplified to
improve signal quality with an Hughes traveling wave tube
(TWT) amplifier. The CW signal is passed through a 2.92 mm
coaxial vacuum feedthrough into the chamber and is coupled
to the WR62 resonator via waveguide to coaxial adapters. A
100 mm straight waveguide section is used after the adapter
so that higher order waveguide modes are sufficiently damped
before the electromagnetic wave encounters the resonator.
The transmitted signal is coupled back to a coaxial cable via
an adapter and passed out of the chamber before the power is
measured using a crystal detector (Krytar 303S Zero Bias
Schottky Detector). A 1 GHz Rhode & Schwarz RTE oscil-
loscope is used for data acquisition. The plasma is driven by a
high voltage pulsed power supply, custom built by Airity
Technologies, capable of pulse widths of 150 ns to supply
high voltage pulses to flat tungsten electrodes that are 2 mm in
diameter, isolated and flush with the upper and lower surfaces
of the waveguide centered on the space between the resonator
posts. An example voltage and current waveform recorded
just outside of the vacuum chamber is shown in figure 5.

3. Results

Below we present representative results of discharge simu-
lations of both quasi-steady state and transient plasma dis-
charges suitable for controlling microwave propagation
within the resonator of interest described above. Both simu-
lations assume a background pressure of 2 Torr, a 2D
cylindrical simulation domain of 7.9 mm by 7.9 mm, and
electrodes 1 mm in radius along the centerline. The domain
with boundary conditions is that shown in figure 1.

3.1. AC plasma discharge

To simulate a quasi-steady plasma discharge, the electrodes
are supplied with a 500 kHz,±350 V voltage source and the
computations evolve through 32 AC cycles. Quasi-steady
state is reached after approximately 25 cycles. Contours of
electron particle density are shown at 64 μs in figure 6, which
corresponds to when both electrodes are at 0 V. Also shown
are the densities of electrons, ions, and metastable atoms
along the centerline of the discharge. The electrode sheaths
are clearly seen with a large region of charge separation
between the ion and electron densities. The cathode sheath
forms on alternating electrodes as the voltage oscillates, heats
electrons up to high temperatures, and results in a locally high
ionization. This accounts for the bright spots at both elec-
trodes often seen in experiments. In figure 7 we show the
current and voltage traces for several cycles during quasi-
steady state.

The plasma column has a density on the order of 1017 m−3,
which corresponds to a plasma frequency of several GHz,
and we expect this to behave as a positive epsilon dielectric
column when immersed in electromagnetic structures with
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wave frequencies of around 10 GHz. The microwave cavity
response with the presence of this AC plasma is shown along
with that of plasmas driven by similar conditions but with
voltages of±325 V, 335 V, and 350 V is shown in figure 8. At
the lower discharge voltages (325 V and 335 V), the shifts in
the transmission spectra relative to the empty resonator are less
than 50MHz and the Q of the filter is quite high ( 1900). With
the 350 V discharge condition, the microwave cavity has a
frequency shift of +125MHz and the quality factor drops from
1900 to 430. This shows quite a large tunable range in steady
state, and the transmission through the cavity with plasma is still
easily measurable with only 12 dB of loss.

3.2. Pulsed plasma discharge

We also simulate transient plasma behavior with a pulsed
plasma discharge using an experimentally measured voltage

Figure 4. Setup of the microwave resonator experiments with a pulsed plasma discharge. The resonator is contained within a vacuum
chamber and microwave signals generated by a signal generator and amplified by a TWT amplifier are coupled into and out of the chamber
through coaxial cables and feedthroughs and detected by a crystal detector. A high voltage pulsed power supply generates the micro-plasma
inside the waveguide using tungsten electrodes.

Figure 5. Typical current and voltage waveforms generated while
driving a microdischarge in 2 Torr argon with an electrode
separation distance of 7.9 mm.

Figure 6. Electron density color-map along with the particle densities
of electrons (ne), argon ions (ni), argon metastable atoms (nm), and
electron temperature (Te) along the centerline of the plasma. Discharge
is driven by a 700 Vpp at 500 kHz voltage source in 2 Torr of argon.
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waveform as input, shown in figure 5. The positive voltage
peaks at 1780 V with a width of 150 ns width, and is followed
by a negative voltage pulse peaking at −780V with a 275 ns
width. The ringing following the the two pulses has an
amplitude of less than±50V and decays rapidly in a few
cycles. The two pulses are used as the input condition for the
fluid simulation, and the voltage waveform and resulting
current waveform are shown in figure 9. The magnitude of the
simulated discharge current is much lower than the experi-
mentally measured current because they are not equivalent
measurements; in fact most of the measured current pulse
generated from the pulser unit is reflected back from the
electrodes and is not easily quantified in the experiments.

Also shown in figure 9 are three dashed black lines that
correspond to snapshots in time at which we show contours of
electron density in figure 10, along with a plot of centerline
particle densities of electron, argon ion, and argon metastable
atoms, and electron temperature. The snapshots are located at
100 ns, 200 ns, 400 ns, and 5 μs, the last of which is long past
the discharge voltage waveforms The first snapshot at 100 ns,
shown in figure 10(a), corresponds to the first current spike
and is a local ionization event at the anode that then propa-
gates as an ionization wave towards the cathode. We have
noticed that this ionization event occurs generally at the same

voltage regardless of the peak pulse voltage. Also, at the
ionization front there is a region of charge separation, which
is expected from an ambipolar drift wave.

There is a second current spike at 200 ns, with its asso-
ciated snapshot shown in figure 10(b). This event is due to the
formation of the cathode sheath (at Y=7.9 mm) while the
anode (at Y=0 mm) is still at a positive voltage, the char-
acteristic indicator of which is a region of large charge
separation, which is confirmed in our centerline density plot.
Locally high ionization accompanies the formation of the
cathode sheath, and each of the particle densities peak at the
cathode. This is seen both as a bright spot in the contour plot
and as a peak in the centerline density plot of figure 10(b).

The largest discharge current peak occurs not during the
positive voltage pulse but rather afterwards during the nega-
tive voltage pulse, shown in figure 10(c), for a couple of
reasons: first, the plasma has already formed and has many
more charge carriers, and second the negative voltage pulse is
substantially wider than the positive pulse. The opposite
polarity of the second pulse results in the cathode sheath
switching sides and the region of large charge separation and
high ionization is now seen at Y=0 mm. Interestingly, the
profile of the electron density is seen to peak along the cen-
terline rather than be a diffuse glow around the electrode.
After the two discharge voltage pulses, the plasma freely
diffuses and recombines, and the fine structures are smoothed
out over time. At 5 μs, shown in figure 10(d), there are still
two distinct plasma blobs around the electrodes, but even
these will coalesce over time as the plasma decays and
becomes more diffuse.

3.2.1. Microwave transmission. The simulated plasma
properties are used to calculate the microwave response of our
resonant cavity in the presence of a pulsed plasma discharge.
The fluid simulation advances to a time of 30 μs, after which we
extrapolate frequency shift and quality factor to 300 μs. The
predicted microwave transmission waveforms in time are shown
in figure 11(a) for various microwave transmission frequencies
given as Δf=(ω−ω0)/2π in MHz. We also conduct
experiments at similar conditions to validate our predictions

Figure 7. Discharge current and voltage waveforms of the voltage
source driving a plasma at 2 Torr of argon with an electrode
separation distance of 7.9 mm.

Figure 8.Microwave cavity transmission spectrum for the case of no
plasma or with plasma driven by AC 500 kHz at±325 V, 335 V, or
350 V.

Figure 9. Current and voltage waveforms from a simulated pulsed
plasma discharge in 2 Torr of argon with an electrode separation
distance of 7.9 mm. Dashed lines correspond to snapshots in time
shown in figure 10.
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and include these results in figure 11(b). There is reasonable
qualitative agreement between the predicted microwave pulses
and their measured counterparts; for example in both plots the
transmission curve forΔf=0MHz has full transmission before
the plasma is ignited, drops rapidly with the discharge pulse
around 20 dB, then recovers slowly over hundreds of
microseconds. This is expected as only when the cavity is
unfilled with plasma will there be transmission at the vacuum
resonance frequency, and the transient dynamics of plasma

ionization are much faster than plasma decay. The behavior of
this mode of operation is sluggish and if used as a modulation
technique would result in bandwidths of less than 10 kHz. On
the other hand, as the transmission frequency is increased there
is the formation of a microwave pulse that has a decreasing pulse
width and delay time between the discharge voltage and the
microwave pulse with further increases to the transmitting
frequency. So much so, that by +80MHz the simulated pulse
width is 3μs and the delay is 1 μs. Experimentally, we see that

Figure 10. Contours of electron density at various snapshots in time, (a) 100 ns, (b) 200 ns, (c) 400 ns, and (d) 5 μs are shown along with
particle densities of electrons (ne), argon ions (ni), metastable argon atoms (nm), and electron temperature (Te) are shown along the centerline
of the plasma discharge. The plasma is driven by a voltage pulse, shown in figure 9, in 2 Torr of argon.
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the pulse width at the same frequency was as short as 1μs,
which would allow for bandwidths approaching 1MHz. Thus
by changing the transmission frequency by under half a percent,
the maximum bandwidth is increased by two orders of
magnitude.

Microwave pulses are formed in the plasma-cavity
system when the plasma density changes in time and only
when the resonance of the plasma-cavity system intersects the
transmitting frequency will an output signal be seen. Higher
transmission frequencies generate microwave pulses at earlier
times because that is when the plasma density is also higher.
The pulse widths depend on the rate of change of the plasma
density inside the cavity, so we measure shorter microwave
pulses at earlier times when the plasma is decaying more
rapidly. On a logarithmic scale the pulse widths seem to be
constant due to the exponential nature of plasma decay.
Similar to the decaying plasma microwave pulses, we predict
that there should be microwave pulses associated with plasma
ionization, and in fact in our model results we see two sets of
ionization pulses corresponding to the positive and negative
voltage pulses of the discharge. These pulses have approxi-
mately the same pulse widths of 100 ns. However, we do not
see the distinction between the two sets of ionization pulses in
the experimental data but rather a merged microwave pulse,
with widths of around 300 ns.

In general, our model does not capture the sluggish
response of the cavity during plasma ionization, and under-
predicts the decay rate of the plasma during recombination,
resulting in an discrepancy of the microwave pulse delay

widths. We attribute this partially due to the limitations of our
analytic theory, especially the assumption that the field profile
is constant. In the presence of non-uniformity in the plasma
density, it should be the case that the electric field structure is
varied to accommodate locally high density plasma. Since our
analytic theory cannot account for this, a coupled electro-
magnetic simulation is required to fully capture the early
dynamics of the plasma-wave interaction. Discrepancies in
both pulse widths and delays are also attributed to uncertainty
in the rate and transport coefficients used in our model, and
more work on the fluid modeling is required to accurately
resolve and correct this behavior.

Another way to visualize the transmission data is to view
the reconstructed frequency response as a transmission
spectrum at various times, and is shown for simulation in
figure 12(a) and experiment in figure 12(b). As seen in both
plots, the resonance shifts from its initial location to
+80MHz, the peak amplitude drops 10–15 dB, and the
widths broaden substantially during the first 200 ns. From
there, the peak amplitude recovers and the resonance
frequency returns back to the origin. The simplified theory
is evident here in that the modeled transmission responses are
all Lorentzian in shape, whereas the experimentally measured
responses do not have similarly long tails. Furthermore, other
non-ideal features are present in the experimental data
including a secondary resonance not associated with the
cavity resonance at +100MHz that is invariant in time. We
verified the presence of this with a vector network analyzer,
and confirmed its location and peak 25 dB lower than that of

Figure 11. (a) Simulated and (b) experimentally measured micro-
wave cavity transmission waveforms for various CW probe signal
frequencies, given as Δf=(ω−ω0)/2π in MHz. The plasma was
driven by a voltage pulse shown in figure 5 in 2 Torr of argon.

Figure 12. (a) Simulated and (b) experimentally measured micro-
wave cavity transmission spectrums at various times during the
plasma pulse. The plasma was driven by a voltage pulse shown in
figure 5 in 2 Torr of argon.

9

Plasma Sources Sci. Technol. 27 (2018) 075005 D R Biggs et al



the primary cavity resonance. The secondary resonance
interferes with the transmission spectrum of the cavity when
the frequency is shifted nearby. However, we note that this is
an experimental defect and would generally not be captured
even in an electromagnetic simulation. Also, at the origin we
see a spurious resonance even after plasma ignition, which is
due to the fact that the cavity responds slowly to signals
around its primary resonance as discussed earlier. Lastly, the
predicted frequency response lags the experimentally mea-
sured response also due to earlier discussed uncertainties.

3.2.2. Comparison with a uniform plasma. As further validation
of our models, we now present a comparison of our model results
with an estimated electron density using the experimentally
measured cavity properties. Specifically, we assume an uniform
plasma cylinder centered in the cavity with various widths
ranging from 1 to 5mm in radius. We solve equations (15) and
(17) for a range of electron densities and temperatures, then use
that data to solve the inverse problem using a least-squares
method to estimate the electron density and temperature for a
given resonant frequency shift and quality factor. The resulting
electron densities for the various radii are shown in figure 13(a)
and similarly the electron temperatures in figure 13(b). Also
shown in figure 13 are spatially averaged electron densities and
temperatures from our fluid simulation in dashed lines for various
assumed radii of averaging, similarly from 1 to 5mm.

The estimated electron densities are all parallel in time
and are shifted by a constant factor, with a spread of over an
order a magnitude. This analysis also neglects the change in
the effective plasma radius that will no doubt accompany an
unconfined plasma discharge. Nevertheless, it is worth noting
that for our conditions the assumption of a 2 mm radius

uniform plasma seems to result in a reasonable representation
of the simulated discharge over all time. However, since it is
likely that such a finding is discharge condition specific, this
result should not be used for predictive purposes, and
illustrates the importance of developing and using discharge
simulations for designing systems, since the plasma radius
will not be known a priori.

The electron temperatures converged to the same curve for
each plasma radius, which is perhaps an interesting if
unexpected result. The agreement between the estimated and
simulated electron temperature is poor, but this is relatively a
less sensitive measurement due to the fact that the collision
frequency does not vary as strongly in this range of
temperatures. Furthermore, the measurement of the cavity
quality factor in time has a larger uncertainty than the
measurement of the frequency shift in time, so that the estimated
electron temperature also has an expectedly larger uncertainty.

4. Conclusion

We have developed a fluid model to simulate plasma discharges
for use in controlling electromagnetic waves and an accom-
panying analytic electromagnetic theory to evaluate the applic-
ability of the simulated plasma discharges. We present results
obtained using this model for quasi-steady state and transient
plasma discharges and compared the electromagnetic response
to experimental results obtained using similar conditions in a
laboratory setting. There is good agreement between the peak
frequency shift of 80MHz, and the generation of microwave
pulses ranging in widths of hundreds of microseconds to a few
microseconds. We showed that changing the transmission fre-
quency by less than 0.5% changes the bandwidth of such a
microwave device by two orders of magnitude. While there is
good qualitative agreement between the simulated and measured
overall response, there are discrepancies in pulse delay width
and time that are attributed to a number of limitations in the
model and uncertainties in the rate and transport coefficients.
Lastly, we compared our simulated electron density and temp-
erature to those estimated using the experimentally measured
resonant cavity properties and assuming a uniform cylindrical
plasma. We see that there is again agreement, but the variance in
the estimated densities is larger than an order of magnitude
depending on the assumed plasma radius.

Future work includes studying the coupled electro-
magnetic response of the plasma-cavity system by solving the
full set of Maxwell’s equations. Such simulations can be used
to explore other types of devices to prototype more complex
plasma integrated systems for electromagnetic wave control
such as plasma photonic crystals or plasma metasurfaces.
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Appendix. Resonant cavity theory

We now briefly show the effect of introducing plasma into a
microwave resonator, following to the analysis of [36], in
which they introduce three basis functions, two of which have
zero divergence, Ea and Ha, and one with zero curl, Fa. The
basis functions are also orthogonal and normalized over the
cavity volume, V, as
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Splitting the electric field into two terms is interpreted as
differentiating the electromagnetic component from the Ea

terms and the electrostatic component from the Fa terms It can
be shown then that by using the above expansion, (A.2), that
electromagnetic wave motion is described by the equation
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Here, J is the current density inside the volume and the last
two terms correspond to Ohmic losses from surface currents
(on surface S¢) and energy radiating away through open
boundaries (through surface S). Solutions to this equation are
given to be of the form
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where ωres is the complex resonance frequency. Furthermore,
we now consider the volume to be dominated by the lowest
order mode, E Ea 0= with resonant frequency ω0.
Equation (A.3) becomes
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where we have grouped the loss terms on the right-hand side
into Q0 and used the wave relationship k0
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we associate the currents within the cavity to electron fluxes,
for which we use a simplified electron momentum equation
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If we assume that the electron fluxes vary in time similarly to
the cavity mode, that is their time dependence is proportional
to texp i resw( ), then the electron momentum equation can be
rewritten as
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Using this form of the current density in (A.5) we have
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where we have made the approximation e res e 0n w n w» .
Equation (A.5) is a quadratic equation for the angular reso-
nance frequency of the cavity, ω, and in general can be solved
by assuming that the presence of currents within the cavity do
not greatly affect the mode shape E0. We then approximate
the expansion in (A.2) with E E E E Vd0 0ò» · , resulting in

Q
E V1

i 1

i
d 1.

A.9

V
res

0

p
2

0
2

e 0
0
2

1
2

òw
w

w n w
D = -

+
-

+
-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜

( )

Here, we have introduced a normalized frequency shift
res res 0 0w w w wD = -˜ ( ) . Equation (A.9) in general may be

solved by numerically integrating a known plasma frequency
profile and field mode profile over the cavity volume to cal-
culate a frequency shift and damping factor.
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