Keeping the Listener Engaged: a Dynamic Model of Bayesian Persuasion

Yeon-Koo Che,1 Kyungmin (Teddy) Kim,2 Konrad Mierendorff3

1Columbia University
2Emory University
3University College London

March 16, 2021
Bayesian Persuasion

- **Classical question**: How (much) can a sender persuade a rational receiver to take a particular action? (e.g., seller-buyer, media-voters, prosecutor-judge, entrepreneur-investor.....)

- **An important assumption**: Commitment, achieved by instantaneous and unrestricted experimentation. We relax the commitment power with a model that has:

 - **Main features**:
 - **Persuasion takes time and cost**: Information takes real time to generate/convey; costly for the sender to generate and for the receiver to process.
 - **No commitment to future actions**: Sender cannot commit to future experiments/persuasion.

 - **Questions**:
 - Is dynamic persuasion possible? What payoffs can be achieved?
 - Behavioral implications: Dynamic choice of information structures
Model

- **Two States:** $\omega \in \{L, R\}$

- **Receiver:**
 - chooses a binary action $a \in \{\ell, r\}$
 - prefers to “match” the state: $u_L^\ell > u_R^R$, $u_R^r > u_L^R$, where u_a^ω is payoff from a in state ω.
- **Notation:**
 \[
 U_a(p) = p u_a^R + (1 - p) u_a^L, \quad a \in \{\ell, r\}
 \]
 \[
 U(p) = \max \{ U_r(p), U_\ell(p) \} > 0
 \]

- **Sender:**
 - receives state-independent payoff $\nu \cdot 1_{\{a=r\}}$
 - performs experiments over time to “persuade” receiver.
Static Benchmark: Kamenica-Gentzkow Model (graphical)

- Sender picks an arbitrary Blackwell experiment.
- Let \hat{p} be such that $U_\ell(\hat{p}) = U_r(\hat{p})$. Suppose prior is $p_0 < \hat{p}$.
- **Solution:** Sender maximizes the prob of inducing posterior $\geq \hat{p}$ \Rightarrow two beliefs 0 and \hat{p}.

Observations

- R-signal sent excessively compared to full information.
- “Fully-revealing of L” in case of L-signal
- **The receiver enjoys no rents.**
Our Model: Dynamic Extension

- Continuous time, infinite time horizon.

Timing

At each point $t \geq 0$ in time,

1. **Sender** picks an experiment (to be described later) at flow cost $c > 0$ or “passes” (= null information).

2. **Receiver** observes the experiment and its outcome, and either takes an game-ending action $a \in \{\ell, r\}$, or waits.
 - If the receiver waits and listens to an experiment he incurs flow cost $c > 0$.
 - No cost is incurred if the sender “passes.”
Feasible Experiments: General Poisson Models

- At each point, S chooses a mix of targeted Poisson experiments $i \in I$ with (fractional) units α_i, $\sum_i \alpha_i \leq 1$.

- Each Poisson experiment i generates a signal that arrives with rates $\lambda^L := \nu^L + \mu$ and $\lambda^R := \nu^R + \mu$ in states L and R such that $\nu^L + \nu^R \leq \lambda$, for some $\lambda > 0$, $\mu \geq 0$.

- Effectively two indistinguishable signals:
 - Real signal: with arrival rates ν^L and ν^R in states L and R, where $\nu^L + \nu^R \leq \lambda$, for some $\lambda > 0$ (“info bound”)
 - Noise (“inflation”): with the same arrival rate μ in each state.

- Sender mixes across $(\nu_i^L + \mu_i, \nu_i^R + \mu_i)$ with weights $\alpha_i \Rightarrow$ arrives at rates $\alpha_i(\lambda_L + \mu, \lambda_R + \mu)$.

Illustration of a feasible experiment

Figure: Arrival rates of feasible Poisson experiments.
Posterior beliefs induced by Poisson jump

• S can choose a feasible \((\lambda^L, \lambda^R)\) so that, for any current belief \(p\), a breakthrough signal induces “any” posterior belief \(q\) arriving at rate \(\frac{p(1-p)}{|q-p|} \lambda\).

• Nests conclusive good news or conclusive bad news: Set \(q = 1\) or 0.

• Allows for any directionality (“good” news \(q > p\) or “bad” news \(q < p\)) and any degree of accuracy (\(q\) can be far from or close to \(p\)), and can mix different Poisson experiments.

• Important feature: Real information takes time; the more precise, the longer it takes.
Several experiments

L-drifting experiment (with right-jumps $q_+ > p$)

- R-signals: belief jumps to q_+ at arrival rate of $\frac{p(1-p)}{|q_+-p|} \lambda$
- L-signals: belief drifts to the left at rate $\dot{p}_t = -\lambda p(1-p)$

Sender may choose the “precision” of R-evidence.
- For example: can target $q_+ = \hat{p}$.

Tradeoff: More precise signals are slower to generate.
Several experiments

R-drifting experiment (with left-jumps to $q_- < p$):

- **L-signals:** belief jumps to q_- at rate $\frac{p(1-p)}{|q_- - p|} \lambda$
- **R-signals:** belief drifts toward right at rate $\dot{p}_t = \lambda p(1 - p)$

```
0  q_-  p_t  1
```

“Stationary” Experiment

- Splitting attention ($\alpha = 1/2$), we obtain **2 jumps and no drift**
- Jumps to q_- and q_+ at rates $\frac{\lambda p(1-p)}{2|q_- - p|}$,—no drift.

```
0  q_-  p_t  q_+  1
```
Our Model: Dynamic Extension

Equilibrium

- **Markov Perfect equilibria (MPE)**: Subgame perfect equilibrium where strategies depend only on the payoff-relevant state p, regardless of the history.

- **Additional credibility restriction**: The MPE should be a limit of discrete time game equilibria—Sender optimizes even on experiments succeeding with vanishing probability.
Literature

• **Bayesian Persuasion**: Kamenica and Gentzkow (2011,...), ..., Aumann/Maschler (1995)

Difference: Permanent state, MPE, slow learning.
Dynamic Implementation of Optimal Static Experiment

- Fix $p_0 < \hat{p}$.
- Can replicate KG: dynamic experiment that leads to beliefs 0 and \hat{p}
- For example: R-drifting experiment until belief reaches \hat{p}.

- **Problem:** Receiver does not wait if she does not get rent that compensates for flow cost.
 ⇒ KG experiment can’t persuade receiver to listen.
Fix: Dynamic Commitment

- **Solves the problem if Sender can commit to future experiments**
 - Example: Commit to R-drifting until the belief reaches $p^* > \hat{p}$.

- Similar to KG except for provision of “rents” to compensate for Receiver’s flow cost. Can approximate KG if $c \to 0$.

- **But will this work without commitment?**
Is persuasion possible without commitment?

• No
 • There is an MPE with total persuasion failure regardless of $c > 0$.

• Yes
 • For each $p_0 < \hat{p}$, some dynamic commitment can be supported as MPE if c is low enough.

 • As $c \to 0$, a KG experiment as well as full revelation (and anything in between) is dynamically credible. ⇒ **Folk Theorem**
Theorem (Persuasion Failure MPE)

For any $c > 0$, there exists a MPE in which no persuasion occurs.

Proof.

MPE strategy profile:

- Receiver never waits—he picks r if $p \geq \hat{p}$ and ℓ for $p < \hat{p}$.
- Sender “passes” if $p \geq \hat{p}$ (or if $p < \hat{p}$ is very low), and performs an L-drifting with jump to \hat{p} if $p < \hat{p}$.
Persuasion failure: illustration
More surprisingly, persuasion is possible in MPE. In fact, we can establish a folk theorem.

Theorem (Folk theorem)

Any sender payoff between KG benchmark and "full revelation" is supported in an MPE for any c sufficiently small.
as $c \to 0$.

Persuasion MPE: Folk Theorem — Sender’s Payoff Set
We construct an MPE in which: S persuades and R waits if $p \in [p_*, p^*]$.

- Dashed line: Equilibrium payoffs for fixed p^* as $c \to 0$
- Can choose $p^* \searrow \hat{p}$ as $c \to 0$
Illustration of Persuasion Equilibria

- The construction of persuasion equilibria depend on whether

\[(C1) \quad p^* < \eta, \quad \text{where} \quad \eta = .943\]

— *how demanding persuasion target* p^* *is.*

\[(C2) \quad v > U_r(p^*) - U_\ell(p^*).\]

— *relative incentive for S to persuade vs for R to listen.*
MPE under (C1) and (C2)

- Given (C1) and (C2), for $c > 0$ sufficiently small, there exists a persuasion MPE with persuasion target p^*:

Persuasion MPE

Receiver’s strategy:

Sender’s strategy:

- At p^*, R is indifferent to ℓ and “wait.”
- May approximate KG: Can choose $p^* \to \hat{\rho}$ and $p_* \to 0$ as $c \to 0$.
Intuition: *Power of Beliefs*

- Why is Sender continuing to experiment even after reaching \hat{p}? Why not stop at \hat{p}

- Suppose Sender stopped at \hat{p} (i.e., “deviated”). \Rightarrow Receiver would never choose r but rather wait.

- Why? Why is Receiver waiting even after \hat{p} is reached?
 \Rightarrow Because, if Receiver waits, Sender will continue experimenting.

Receiver Incentive

\[\pi_\ast \leftarrow \pi_0 \leftarrow p_\ast \quad \text{Receiver waits} \]

\[\text{Rec. stops, } a=\ell \]

\[0 \quad \text{“pass”} \]

\[\text{jump: } p_\ast \]

\[\text{jump: } p_\ast \]

\[p_\ast \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow p_\ast \]

\[R\text{-drift, jump: } 0 \]

\[\text{Rec. stops, } a=r \]

\[1 \quad \text{“pass”} \]

\[p_\ast \]

\[p_\ast \]

\[U(p), U_R(p) \]
Sender Incentive

Rec. stops, $a = \ell$

Rec. waits

$\pi_0 \xleftarrow{\text{jump: } p^*} \pi^*$

$\pi_0 \xleftarrow{\text{jump: } p^*} \pi^*$

Receiver waits

R-drift, jump: 0

Rec. stops, $a = r$

“pass”
Dynamics of Persuasion

- When Receiver is already interested in listening (i.e., \(p \in (p_*, p^*) \)):
 - ⇒ Confidence building; tries to rule out \(L \)
 - ⇒ Persuasion backloaded.

- When Receiver is skeptical (i.e., \(p < p_* \)):
 - ⇒ Sender throws a “Hail Mary”
 - ⇒ Persuasion almost surely fails.
The case of: \(p^* > \eta \)

- still assume \((C2): \nu > U_r(p^*) - U_\ell(p^*)\)

- For \(c > 0 \) small, an MPE looks like:

- At \(\zeta \): stationary with jumps to \(q_- = 0 \) and \(q_+ = p^* \).

- Alternative dynamic strategies lead to the same posterior distr supported on \(\{0, p^*\} \).

- But they differ in expected persuasion costs.
Approximating Full Revelation

- $p_* \to 0$ as $c \to 0$
- $\pi_{LR} \to 1$ and $\zeta \to 1/2$ as $p^* \to 1$.
The case of \(\neg (C2) : v < U_r(p^*) - U_\ell(p^*) \)

Sender’s strategies and values:

- For a low \(p > p_* \), the sender uses \(L \)-drifting—“confidence spending.” Similar to “Hail Mary,” but on path here.
- Posteriors supported on \(\{0, \pi_*, p^*\} \).
Summary: Main Contributions

1. **Introduce sequential information production** into Bayesian Persuasion model:
 - Relax **commitment power**.
 - **Power of beliefs** allows to sustain persuasion.

2. **Folk Theorem yields large set of equilibrium outcomes**:
 - No persuasion, and any outcome between KG and full revelation can arise.

3. **Characterize Persuasion Dynamics**.
 - Building confidence vs. spending confidence.
 - Persuasion dynamics depend on type of equilibrium.

4. **Tractable model** of dynamic strategic information choice.
Thank you!