
Optimal Queue Design1

Yeon-Koo Che2 Olivier Tercieux3

August 14, 2021

Abstract

We study the optimal design of a queueing system when agents’ arrival and servicing
are governed by a general Markov process. The designer chooses entry and exit rules
for agents, their service priority—or queueing discipline—as well as their information,
while ensuring they have incentives to follow recommendations to join the queue and,
importantly, to stay in the queue. Under a mild condition, at the optimal mechanism,
agents are induced to enter up to a certain queue length and no agents are to exit
the queue; agents are served according to a first-come-first-served (FCFS) rule; and
they are given no information throughout the process beyond the recommendations
they receive from the designer. FCFS is also necessary for optimality in a rich domain.
We identify a novel role for queueing disciplines in regulating agents’ beliefs, and their
dynamic incentives, thus uncovering a hitherto unrecognized virtue of FCFS in this
regard.
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1 Introduction

Consider the problem faced by someone, called a designer, who designs a queueing system

for agents seeking to receive a service or product. Agents arrive stochastically according to

some Markov process, and are served according to another Markov process, both depending
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on the number of agents in the queue. Aside from these two processes, which are exogenous

and thus beyond her control, the designer can choose many aspects of the queue design. She

can let an arriving agent enter the queue or turn him away. She can remove an agent from the

queue. She can also decide which agent will be served at each point, or more generally, how

available service capacity is allocated among agents in the queue at each instant. Finally,

the designer can control how much information an agent has about the queue or his expected

waiting time throughout the process, both when he arrives at the queue and at any point

after he has joined.

Casual observation of real-world queues suggests a wide range of choices available along

these different dimensions of queue design. Service call centers sometimes encourage cus-

tomers to wait in line (i.e., to be put on hold); other times, presumably in the face of high call

volume, they tell customers to try another time. Some call centers ask customers to leave the

queue and return later. Queue disciplines—the service priorities for agents in the queue—also

take a variety of forms: first-come-first-served (FCFS) is the oldest and by far the most com-

mon queue discipline, but service-in-random-order (SIRO) which assigns priority at random,

has been also used. Some authors have proposed other rules such as last-come-first-served

(LCFS) (e.g., Hassin (1985), Su and Zenios (2004), and Platz and Østerdal (2017)). Finally,

a range of different information policies are commonly observed. Some queueing systems

keep customers completely in the dark about the queue length, their relative positions, or

their estimated waiting times. For instance, many offices for social housing do not disclose

any information on positions on waiting lists.1 Other systems provide customers with their

estimated waiting time or the number of customers ahead of them. For instance, popular

ride-hailing apps provide a customer with not only the estimated arrival time of a vehicle

but also its current location on a map.

A queue design, together with the primitive process, induces a Markov chain on the

length of the queue, and we focus on the steady state where the chain is at its invariant

distribution. This in turn determines an agent’s expected waiting time and the service rate

in steady state. For these quantities to be feasible, they must be incentive compatible for

agents. While our designer can keep an agent from joining the queue or remove one from

the queue, she cannot coerce an agent to enter the queue or to stay in the queue against his

will. In other words, when recommended to either join or stay in a queue, an agent must

have an incentive to obey this recommendation given the information that he has. Subject

to this feasibility requirement, the designer maximizes a weighted sum of agents’ welfare

1This is the case, for instance, for several housing choice voucher programs in California, e.g., PCCDS
Housing Service or HACA among others.
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and service provider’s profit. Since the weight is arbitrary, the designer could be a service

provider who maximizes the profit, a consumer advocate who maximizes agents’ welfare, or

a regulator who values both.

The question is: how should the designer choose all different aspects of the queue design?

Under a very mild regularity condition on the process, our answer is strikingly simple and

consistent with many observed practices of queue design. (i) The optimal queue design has

a cutoff policy: namely, there exists a maximal queue length K ≥ 0 such that agents are

recommended to enter the queue if and only if its length is less than K.2 (ii) Those who join

the queue are then prioritized to receive a service according to FCFS. (iii) No information is

provided to agents beyond the recommendations they receive to join or to stay in the queue.3

Result (i) (shown in Section 4) means that one can achieve an optimal queue design,

without removing agents or incentivizing them to leave the queue once they join the queue.

Removal of agents can only be consistent with optimality if it occurs when the queue is full

or near full.4 In other words, reneging—or abandonment of the queue—is never part of the

optimal queue behavior, again except possibly when the queue is (near) full. Results (ii)

and (iii) (both shown in Section 5) mean that, at least in the canonical model we consider,

the most tried-and-true queueing norm is (at least weakly) better than any others, provided

that agents receive no information beyond the recommendations from the designer.

The intuition behind the information policy—no information beyond recommendation—

is explained as follows. It is well known and intuitive that incentive constraints are relaxed

most when agents are given as little information as possible. If an agent has the incentive

to join or to stay in a queue for a set of signals, he must also have the same incentives

when all these signals are pooled into one, regardless of the queueing discipline. Since this

“pooled” signal is precisely what the agent will have given “no information” beyond the

recommendation, the no information policy is optimal.

To explain why FCFS is optimal, fix an optimal entry and exit policy—i.e., a cutoff policy

2When the queue length is K − 1, an agent is recommended to enter with positive probability possibly
equal to one. If this probability is less than one, the entry is “rationed” at K − 1. Such a rationed entry
can be equivalently implemented by an agent exiting at a positive rate when the queue is full or simply by
removing an agent already in the queue with positive probability when the queue length is K − 1 and a new
agent joins the queue. We “normalize” the policy throughout so that no agents is removed from the queue
after joining.

3Since recommendations contain information about the state, this policy should not be confused with
“no information” authors often use, which refers to “no communication” what so ever. Agents can make
Bayesian inferences on their expected waiting times, based on the recommendation they receive, the queue
design that the designer commits to, and the elapsed time after joining the queue.

4As noted in Footnote 2, the optimal policy can be equivalently implemented by having agents removed
from the queue when its length is K or K − 1. However, removal is not needed at the optimal policy.
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with some maximal length K. Assuming agents obey the recommendation, this induces a

distribution of queue length in the steady state. Since our agents are homogeneous, the

expected waiting time when averaged across possible initial queue lengths is the same for each

agent, and does not depend on the queueing discipline in use. Then, given no information,

the incentive for joining the queue will be the same across all queueing disciplines, and on

this account, FCFS is not particularly necessary or desirable.

However, the dynamic incentives that agents face—their incentive to “continue” queueing

once they join the queue—differ across queueing disciplines, assuming the no information

policy. The reason is that the distribution of waiting times differs across queueing disciplines,

so one updates beliefs about the remaining waiting times differently as time passes under

different queueing disciplines. Our main insight is that, under the regularity condition on the

primitive process, the evolution of these beliefs become progressively more favorable under

FCFS. Consequently, under the condition, agents are willing to stay in the queue under

FCFS with no information, thus implementing the optimal queueing outcome.

The progressively improving beliefs under FCFS stem from its fundamental property:

namely, that one’s service priority can only improve over time under FCFS. Hence, starting

with any initial queue length, the elapse of time is indeed good news about the remaining

waiting time. But there is also a countervailing force. Since an agent is not told about the

queue length k when he joins the queue (recall that agents get no information beyond the

designer’s recommendations), his belief about this will be also updated as time progresses.

On this account, the elapse of time is actually bad news, since it indicates that the agent

likely underestimated the initial length of the queue when he joined it. We show that the

good news dominates the bad news under the regularity condition. As noted above, this

means that incentive compatibility is maintained throughout once an agent is willing to join

the queue under FCFS.

The belief evolution is not as favorable for other queueing disciplines, however. Consider

SIRO. Since priority is assigned randomly, one’s queue position does not matter; instead,

his belief about the current queue length is what matters for his incentives: the more agents

there are in the queue, the less likely it is for an agent to receive service. This belief is not

updated favorably over time. Indeed, the elapse of time (without being served) indicates that

there are more agents in the queue than he initially thought. But, contrary to FCFS, there

is no “good news” since his priority does not improve over time. So, the agent becomes

more pessimistic as time passes. Indeed, we can find simple cases such as the standard

M/M/1 queue in which the belief worsens over time to such a degree that an agent leaves

the queue after entering it, thus failing the incentive requirement necessary for implementing
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the optimal cutoff policy.

In fact, there is a sense in which the FCFS is uniquely best in dealing with the dynamic

incentives problem. In Section 6, we show that for any queueing discipline differing from

FCFS, there exists an environment under which it is strictly suboptimal no matter the

information policy adopted. In this sense, FCFS is not only optimal under the no information

policy, it is also necessary for optimality in a rich domain.

Related Literature. The current paper follows the long line of queueing theory research,

in particular, the rational queueing literature. This literature, which has developed into a

significant body of work since the seminal work by Naor (1969), studies the strategic behavior

of rational Bayesian agents in a variety of queueing scenarios.5 While sharing their focus

and approach, the current paper is distinguished from standard works in this literature in

several respects.

First, our Markovian model is general and flexible enough to encompass many settings

of interest. A typical queueing model tends to focus on a specific process such as M/M/1

or M/M/c. Similarly, a standard dynamic matching model in economics considers a specific

match technology. By contrast, our model allows the arrival and servicing of agents to follow

general Markov processes that may depend on the current queue length, which nests M/M/c

(which in turn subsumes M/M/1) queueing models as well as recent economic models of

dynamic matching as special cases.6

Second, we consider agents’ incentives not only to join but more importantly to stay in

the queue when recommended by the designer to do so. Addressing these latter dynamic

incentives distinguishes the current paper from most of the existing ones. There are a few

papers that consider incentives by agents to abandon a queue, or to “renege”; see Hassin

and Haviv (1995), Haviv and Ritov (2001), Mandelbaum and Shimkin (2000), Sherzer and

Kerner (2018), and Cripps and Thomas (2019). However, these papers approach the issue

as a positive theory, trying to explain reneging as a rational strategic response to various

features such as nonlinear waiting costs or aggregate uncertainty. Our approach is instead

to treat the issue from a normative perspective, and more systematically as part of incentive

design, following the tradition of mechanism design, as we note next.

Third, the current paper is distinguished in its comprehensive treatment of many as-

pects of queueing system design. Most of the existing papers do not consider the optimal

5See Hassin and Haviv (2003) and Hassin (2016), for an excellent survey of the literature.
6As we mention in Section 3, the models in this literature consider agents who can only be matched

with “compatible” agents (or objects) in the queue. Assuming that each pair is compatible with some fixed
probability, the effective arrival rate (i.e., the rate at which an agent joins the queue) and the effective service
rate (i.e., the rate at which an agent leaves the queue) depends on the number of agents in the queue.
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entry/exit policies explicitly, but rather focus on some, typically unregulated, exogenously

given queueing environment. Likewise, queueing disciplines are often assumed in the lit-

erature to be FCFS or, less frequently, SIRO. Agents’ information is also typically fixed;

authors often assume that agents have either full information about the queue or no infor-

mation whatsoever.7

A few papers study the optimal design of queueing disciplines while taking other aspects

of queueing system as given. Following Naor (1969)’s seminal observation that FCFS causes

agents to queue excessively, ignoring the “congestion” externality they inflict on later agents,

Hassin (1985) and Su and Zenios (2004) argue that LCFS can “cure” this externality and is

optimal for agents.8 Excessive incentives for queuing are not a problem for our designer since

she can control entry by withholding service. The opposite may be the problem, however,

if the designer maximizes (or close to maximizing) service provider’s profit or his service

utilization, or there is excessive supply of agents as in the case of Leshno (2019). In these

cases, FCFS creates too few incentives and other mechanisms such as SIRO could perform

better by providing greater incentives for queueing. But this conclusion rests crucially on

agents having full information about the queue length. We show that FCFS is always optimal

regardless of the agents’ incentives if the designer can also choose an optimal information

policy—namely, no information (beyond recommendations). Further, its optimality is strict

if one also considers agents’ dynamic incentive to stay in the queue after joining it, which

the above papers do not consider.9

Despite its practical relevance, information design has received attention only recently

in the queueing literature; see Simhon, Hayel, Starobinski, and Zhu (2016), Hassin and

Koshman (2017), Lingenbrink and Iyer (2019), and Anunrojwong, Iyer, and Manshadi

7Here no information means that agents truly do not have any information, including a recommendation
from the designer. In fact, this assumption is typically made in the context of an unregulated environment,
where there is no designer or supervisory entity overseeing or managing the queue. See Hassin and Haviv
(2003) for the canonical description of the unregulated environment.

8Platz and Østerdal (2017) find a similar result when there are a continuum of agents who enter at
their endogenously chosen times. See also Haviv and Oz (2016) for alternative schemes in the observable
environment and Haviv and Oz (2018) for extensions to the unobservable queue environment.

9Several papers study alternative queueing disciplines in environments that are less related or comparable
to ours. FCFS is shown to be optimal in Bloch and Cantala (2017) and a part of the optimal design
in Margaria (2020) in models where, unlike the standard queueing model, the lengths of queues are non-
stochastic, either because arrival occurs only when an agent exits (the former) or because there are a
continuum of agents (the latter). Further, they do not consider information design, so the reason for the
optimality of FCFS is completely different in these models than in our model. Kittsteiner and Moldovanu
(2005) consider the allocation of priority in queues via bidding mechanisms where processing time is private
information. The crucial difference is the use of transfers implicit in bidding mechanisms, which is not
allowed in our model.
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(2020).10 While the last three identify the same optimal information design as the current

paper, they do not compare alternative queue designs and they do not consider dynamic

incentives. By contrast, we allow all these dimensions of design—entry, exit, queueing dis-

ciplines, and information design—to be chosen optimally by the designer in the face of the

dynamic incentive problem.

In terms of style, the current paper is closest in spirit to the mechanism design liter-

ature, pioneered by Myerson (1981), which takes the underlying physical character of the

environment as given but otherwise allows the designer to optimally choose all other aspects

of the system.11 Interestingly, our main findings are also similar in flavor to those of Myerson

(1981): the optimal mechanism is both simple and resembles commonly observed practices.

As mentioned, the cutoff policy conforms to the standard practice of capping the queue

length at some level. The optimality of FCFS accords well with its prevalent use in practice,

and is reassuring in light of its perceived fairness (see Larson (1987)). The no information

beyond recommendation policy also conforms to standard practice in call centers which put

customers on hold, often with no information on their waiting times, unless they are explicitly

discouraged from waiting in line.12

2 Model and Preliminaries

We consider a generalization of a canonical queueing model in which agents arrive sequen-

tially at a queue to receive a service. Time indexed by t ∈ R+ is continuous.

Agents’ payoffs. There are three parties: a designer, who organizes resource allocation

including the queueing policy, a service provider who services agents, and agents who receive

service. As will be seen, the designer may be the service provider, a representative of the

agents, or a planner who reflects the welfare of both parties.

10In a less related model, Ashlagi, Faidra, and Nikzad (2020) study optimal dynamic matching with
information design, showing that FCFS, together with an information disclosure scheme, can be used to
implement the optimal outcome. Although similar at first glance, their model is quite different from, and
not easily comparable to, ours. There are a continuum of agents in their model, and their information policy
pertains to the quality of good rather than to agents’ queue position. In particular, the virtue of FCFS in
regulating agents’ beliefs on where they stand in the queue is orthogonal to Ashlagi, Faidra, and Nikzad
(2020)’s insights.

11Within the queueing literature, the optimal design or control literature focuses on the ex ante choice of
the service and arrival process, which we take as given (see Shaler Stidham (2009) for a survey). Hence, one
can view the current work as complementing this literature.

12As we already pointed out, offices for social housing often provide applicants with very limited infor-
mation on their position in the list. In addition, these offices often cap waiting lists when they are too
long.
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The agents are homogeneous in their preferences. Each agent enjoys a payoff of

U(t) , V − C · t,

if she receives service after waiting t ≥ 0 time period, where V > 0 is the net surplus from

service (possibly after paying a service fee to the designer) and C > 0 is a per-period cost of

waiting. The service provider earns profit R > 0 from each agent she services. In a customer

service context, the profit may not take the form of monetary fees collected from customers

but rather the shadow value of fulfilling a warranty service or more generally addressing

any customer needs. The designer’s objective, which will be specified more fully below, is a

weighted sum of the service provider’s and agents’ payoffs. An agent’s outside option, which

she collects when not joining the queue or from exiting one, yields zero payoff.

Primitive process. At each instant, given the number of agents in the queue, or queue

length, k ∈ Z+, an agent arrives at a Poisson rate of λk > 0 and an agent in a queue is served

at a Poisson rate of µk > 0. Hence, a pair (λ, µ), where λ , {λk} and µ , {µk}, specifies a

primitive process. We view (λ, µ) as arrival and service rates that arise in many queueing

environments of interest, including M/M/c queue models and dynamic matching models, as

illustrated in Section 3; for instance, the possibility of arrival and service rates depending on

the current queue length k emerges naturally from a dynamic matching context.

We interpret µj as the maximal service rate that any set of j or fewer agents may receive

in any queue of length k ≥ j. It is then without loss to assume that µk is nondecreasing in

k.13 We also assume that µk is bounded uniformly in k. In addition, our results invoke one

or both of the following conditions:

Definition 1. (i) The service process µ = {µk} is regular if µk − µk−1 is nonincreasing

in k. (ii) The primitive process (λ, µ) is regular if the service process µ is regular and

λk − λk−1 ≤ µk − µk−1 for each k ≥ 2.

These two regularity conditions are extremely mild. In fact, we are not aware of any

queueing model where the regularity is violated; Section 3 shows all the canonical queueing

models as well as dynamic matching models satisfy these two conditions.14

Designer’s policy. The designer has at her disposal a number of instruments. We focus on

an anonymous stationary Markovian policy that treats all agents identically based on two

state variables: the queue length k and the queue position `, namely the arrival order of an

13See Section S.1 in the online appendix for details.
14In particular, as shown in the online appendix Section S.1, the regularity of the service process, namely,

(i), has a desirable axiomatic foundation.
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agent among those in a queue. The stationarity restriction means that the policy does not

depend on the calendar time. The designer chooses the following set of policies.

• Entry and exit rule: The entry and exit rules specify how the designer regulates entry

of agents who arrive to a queue and exit of those who are already in the queue. Formally, an

entry rule is given by x = (xk), where xk ∈ [0, 1] denotes the probability that an arriving

agent is asked to join a queue of length k. An exit rule is given by (y, z) = (yk,`, zk,`)k,`. The

designer removes the agent with queue position ` from the queue of length k ≥ ` at a Poisson

rate yk,` ≥ 0. In addition, upon a new arrival in the queue, the designer can maintain the

queue length constant by removing an agent currently in the queue: zk,` ∈ [0, 1] denotes the

probability that an agent with queue position ` is removed from a queue of length k when

another agent joining the queue.15 The entry rule could reflect an (involuntary) disallowance

for an agent from joining a queue as well as a voluntary decision by him to enter the queue.

Similarly, the exit rules y and z capture both the explicit policy of diverting some agent away

from a service pool (e.g., Mandelbaum and Shimkin (2000)) as well as the abandonment

induced by a queueing policy (to be described below). The main difference between y and z

pertains to whether the removal is conditional on the entry of another agent. In particular, z

captures the possibility of an agent being preempted to leave a queue by a new arrival, under

a LCFS rule (see Hassin (1985)). We let (X ,Y ,Z) denote the set of all feasible (x, y, z)’s.

• Queueing rule: A queueing rule specifies the allocation of an available service rate

among agents in the queue based on its length and the agents’ queue positions.16 Formally,

a queueing rule is given by q = (qk,`), where qk,` ≥ 0 is the Poisson rate at which an agent

receives service when the queue length is k and her position in the queue is `. Feasibility

requires that, ∀S ⊂ {1, ..., k}, ∀k,
∑

`∈S qk,` ≤ µ|S|; that is, the total queueing priority

assigned to a subset of agents in the queue cannot exceed the service rate for the number of

those agents. As is standard, we also require a feasible queueing rule to be work conserving :∑k
`=1 qk,` = µk, for all queue length k. This means that the allocation of service is “non-

wasteful,” or exhausts the available service capacity. We let Q denote the set of all work-

conserving queueing rules. The set Q encompasses all standard queueing disciplines. For

instance, assuming the service process is regular, first-come-first-served (FCFS) satisfies

qk,` , µ` − µ`−1. Namely, the agent in position 1 enjoys the highest possible service rate

µ1 for any single agent; given this, the agent in position 2 receives the highest possible

15By definition, if an agent ` is removed, no other agent `′ 6= ` is removed.
16In fact, we can allow queueing rules to be fully general, i.e., without limiting ourselves to those that

depend only on (k, `); examples include rules that allow service probabilities to vary with time and to depend
on the history leading up to the current queue length and positions. However, our class entails no loss since
the optimal rule in this fully general class belongs to the current class that we focus on.
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service rate, µ2 − µ1 ≥ 0, and so on. The regularity condition guarantees the service rate

falls as one’s position gets worse. (We will see in Section 3 how this corresponds to more

familiar expressions in the canonical matching models such as M/M/1, M/M/c or dynamic

matching models.) Similarly, last-come-first-served (LCFS) satisfies qk,` , µk−`+1−µk−`,
and service-in-random-order (SIRO) satisfies qk,` , µk/k, for all k ∈ N, ` ≤ k.17

• Information rule: An information rule specifies the payoff relevant-information available

to the agents who are recommended to stay in the queue after each time t ≥ 0 he has spent in

the queue, including t = 0 when he has just arrived at the queue. Since an agent has a linear

waiting cost, the only payoff-relevant information at each t ≥ 0 is the probability σt ∈ [0, 1]

that he will be eventually served and the expected remaining waiting time τ t ∈ [0,∞] he

spent in the queue (before exiting the queue either because he received service or was removed

from the queue).18 Given the memoryless nature of the process (λ, µ, x, y, z, q), these two

variables depend only on the current queue length k and one’s queue position ` ≤ k and are

independent of the time t one has spent in the queue, so we write (σk,`, τ k,`) ∈ [0, 1]× [0,∞]

for each (k, `). An agent’s (payoff-relevant) information then boils down to his information

regarding (k, `) at each time t ≥ 0. As is well-known, say from Kamenica and Gentzkow

(2011), this information can be represented as a distribution of “posterior beliefs” about

(k, `), which does in general depend on the elapse of time t ≥ 0. Formally, an information

rule is given by I = (It)t∈R+ , where It ∈ ∆(∆(Z+ × N)) specifies a distribution of posterior

beliefs on (kt, `t) at time t. Feasibility requires that posterior beliefs at each t must be

adapted to the filtration generated by the process (λ, µ, x, y, z, q) and must satisfy Bayes

rule given his prior beliefs and knowledge of the process (λ, µ, x, y, z, q). Let I denote the

set of all feasible information rules. (We suppress the dependence both of (σk,`, τ k,`) and

I on (λ, µ, x, y, z, q) for notational ease.) The set I is large enough to include all realistic

information rules that are feasible.19 Special cases include full information, in which case

It coincides with the true distribution of (kt, `t), and no information, in which case the

posterior It is degenerate on the belief obtained by Bayes updating via (x, y, z, q) from the

prior beliefs I0.

17The regularity of the service process ensures that these standard queueing disciplines are work conserving.
Conversely, the regularity property is necessary if one requires FCFS and LCFS to be work conserving. See
Section S.1 in the online appendix.

18The waiting time refers to the duration of time an agent spends in the queue, including the service time.
In the queueing literature, this is sometimes referred to as sojourn time.

19Just like the queueing rule, we can allow for a more general information design, one that may allow the
information to vary depending on the rich history of the process beyond (k, `). This additional generality is
irrelevant since our optimal information rule (which is Markovian) attains the upper bound in the designer’s
objective regardless of such unrestricted information.
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Given the primitive process (λ, µ), a Markov policy (x, y, z, q) generates a Markov chain—

more specifically, a birth-and-death process—on the queue length k. Given (λ, µ), we only

consider a Markov policy that induces an invariant distribution p , (p0, p1, .....p∞) on the

queue length. Specifically, this means that the distribution p must satisfy the following

balance equation:

λkxk(1−
∑̀
zk,`)pk = (µk+1 +

∑̀
yk+1,`)pk+1, ∀k ∈ supp(p) (B)

The LHS of the equation is the rate with which the queue length transits from k to k + 1:

with probability pk the queue length is k, in which case an agent arrives at rate λk, is

recommended to join the queue with probability xk, and no agent is removed from the queue

with probability 1 −
∑

` zk,`. The balance equation (B) requires this rate to equal the rate

with which the queue length transits from k+ 1 to k, namely its RHS: with probability pk+1

the queue length is k+1, in which case an agent is served at rate µk+1 or is removed with rate∑
` yk+1,` from the queue. We say that an entry/exit policy (x, y, z) ∈ X ×Y×Z generates

an invariant distribution p if (x, y, z, p) satisfies (B), and call the associated tuple (x, y, z, p)

an outcome.

Incentives. We assume that the designer may prohibit an agent from joining the queue and

may also remove an agent from a queue, but that the designer cannot coerce an agent to join

or stay in the queue against her preference. Consequently, when recommended to enter the

queue or to stay in the queue, an agent must have an incentive to obey that recommendation,

given the information available to her.

Formally, this obedience constraint is specified in terms of an agent’s beliefs about the

queue length and position (kt, `t) at each time, which in turn determines the conditional ser-

vice probability and expected residual waiting times (σk,`, τ k,`). We evaluate these variables

when the system is at its invariant distribution p. Obedience then requires:∑
k,`

γtk,` [V · σk,` − C · τ k,`] ≥ 0,∀γt ∈ supp(It),∀t ≥ 0, (IC)

where (σk,`, τ k,`) is induced by the policy (x, y, z, q) and where (γtk,`)—which stand for the

posterior beliefs about state (kt, `t)—are induced by a feasible information rule It for each t,

given the initial beliefs which satisfy:∫
γ0∈supp(I0)

γ0
k,kI0(dγ0) =

λk−1xk−1pk−1∑
j∈N λj−1xj−1pj−1

,∀k ∈ N.
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In words, (IC) states that each agent must find the prospect of being served to be high

enough to justify the waiting cost, given each possible belief (γtk,`) at each t ≥ 0, when

recommended to join or stay in the queue. The last condition simply means that the belief

one has on each (k, k) at the time of entry—the probability of being the k-th entrant to the

queue at t = 0—must on average equal the true ex ante probability of joining the queue of

length k − 1, λk−1xk−1pk−1∑
j∈N λj−1xj−1pj−1

, at the invariant distribution p given the entry policy x.

In the sequel, we refer to the incentive constraint for t by (ICt). We say that a queue-

ing/information policy (q, I) ∈ Q × I implements an outcome (x, y, z, p) if (IC) holds.

Even though we interpret an implemented outcome as resulting from the designer’s policy

choice, this is without loss, due to the revelation principle. Our model can capture any

equilibrium outcome, both regulated and unregulated. For instance, consider the textbook

unregulated and unobservable M/M/1 queue governed by FCFS, in which agents make their

entry decisions without any recommendation or any information about the queue length,

which is unobserved (see Hassin and Haviv (2003) for instance). There is an equilibrium

of such a model in which each agent enters the queue with some probability e ∈ (0, 1] and

stay in the queue until he is served.20 In our model, this corresponds to our entry policy of

xk,` = e and yk,` = zk,` = 0, for all k, ` (along with FCFS and no information).

Problem statement. The designer’s objective is evaluated at the invariant distribution

p = (pk) of the Markov chain. It can be written as follows:

W (p) , (1− α)R
∞∑
k=1

pkµk + α
∞∑
k=1

pk(µkV − kC),

where α ∈ [0, 1]. The first term is the flow expected profit for the service provider: with

probability pk, the queue has k agents, and an agent is served at rate µk, generating a profit

(or shadow value) of R for a fulfilled service. The second term is the flow expected utility for

agents: again with probability pk, the queue has k agents, each of whom pays holding/waiting

cost of C per unit time (the second term), and an agent is served, and realizes a surplus of

V , at rate µk. The objective is a weighted sum of these two terms, with weight α ∈ [0, 1].

The designer’s problem is to choose (p, x, y, z, q, I) ∈ ∆(Z+)×X × Y × Z ×Q× I to

[P ] Maximize W (p) subject to (B) and (IC),

20 More specifically, one can show that, if λ is sufficiently low (more precisely, if (µ − λ)V > C), then
agents enter with probability e = 1. If not, then there exists a random entry probability e ∈ (0, 1) such that
if all agents adopt this mixing strategy, each agent becomes indifferent to entry, making it an equilibrium
behavior.
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where the conditional service probabilities and residual waiting times (σk,`, τ k,`) in (IC) are

induced by (p, x, y, z, q).21 In words, the designer picks the outcome that maximizes her

objective among those that are implementable by some queueing/information policy. LetW
denote the supremum of the value of program [P ].

3 Scope of Applications

Our model encompasses a variety of queueing and dynamic matching models considered by

the existing literature.

• M/M/1 queue model: This is the most canonical queueing model in which the arrival

rate λk and service rate µk do not depend on the queue length k. Hence, regularity is

trivially satisfied. Our queueing formula simplifies to qk,` = 1{`=1} · µ under FCFS, qk,` =

1{`=k} ·µ under LCFS, and qk,` = µ/k under SIRO, for some µ > 0. Naor (1969) and Hassin

(1985) investigate agents’ incentives to join the queue under FCFS and LCFS, respectively.

Hassin and Haviv (1995) consider “reneging,” or agents’ dynamic incentives to leave the

queue, when they face nonlinear holding costs in an unobservable and unregulated system

operated by FCFS. More recently, Simhon, Hayel, Starobinski, and Zhu (2016), Hassin and

Koshman (2017), and Lingenbrink and Iyer (2019) study information design to manage

agents’ incentive to join the queue, both under FCFS queueing rule. While similar to these

latter papers in considering information design, our model is more general in several respects:

the queueing environment (we allow for state-dependent arrival and service rates), agents’

incentives (we consider their incentives to stay in, not just to join, a queue), and queueing

rules (we allow for fully general queueing rules, not just FCFS).

• M/M/c queue model: This generalizes the M/M/1 queue model to allow for multiple

c ≥ 2 servers, each with exponential service time. As with M/M/1, the arrival rate is

independent of the queue length k, but the service rate is linear up to the number of available

servers, so µk = min{k, c}µ, where µ > 0 is a service rate by a single server. One can see

that regularity is satisfied. Our queueing formula simplifies to qk,` = 1{`≤c} · µ under FCFS,

qk,` = 1{k−`+1≤c} · µ under LCFS, and qk,` = min{k, c}µ/k under SIRO. Haviv and Ritov

(2001) extend Hassin and Haviv (1995)’s inquiry about reneging incentives to the M/M/c

setup.

• Team servicing model: Suppose there are m customers (or machines) each having

a service need arising at an independent Poisson rate while operating (see Gnedenko and

21While the entry/exit policy (x, y, z) uniquely pins down the invariant distribution, we include p as part
of the designer’s choice.
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Kovalenko (1989), p. 42). There are c servers who can serve a customer at rate µ. When

there are k agents in the queue, the new arrival rate is λk = (m− k)λ and the service occurs

at rate µk = min{k, c}µ. Again, our regularity condition holds. (The standard queueing

rules are the same as above.)

• Dynamic one-sided matching with stochastic compatibility: Suppose each agent

is compatible with another agent with probability θ ∈ (0, 1]. In this model, an agent joins a

queue only when he arrives at some rate η and is incompatible with the agents already in the

queue (or else he matches and leaves the queue), which occurs with probability (1− θ)k, and

an agent leaves the queue when he matches, which occurs with probability η(1− (1− θ)k).
This is a special case of our model in which λk = η(1 − θ)k and µk = η(1 − (1 − θ)k).

Observe that µk is increasing at a decreasing rate, and λk is decreasing, in k, so the process

is regular. Our queueing formula for FCFS, for instance, yields the service rate for `-th

positioned agent to be q` = µ` − µ`−1 = η(1 − θ)`−1θ, the probability that all agents ahead

of him are incompatible, and he is compatible, with an incoming agent. Likewise, LCFS

and SIRO formula have intuitive interpretations. Doval and Szentes (2018) consider such a

model with θ = 1 and study agents’ incentive to join a queue under FCFS. Akbarpour, Li,

and Gharan (2020) study the limit as θ ∈ (0, 1) tends to 0 but the arrival rate increases.

Their focus differs from ours; for instance, they do not consider the incentive to join or stay

in a queue, the queueing rule, or information design. Instead, they study the benefit from

thickening the market, which we do not consider. One can see that the regularity condition

holds for all θ. Note also that, if θ ∈ (0, 1), even under FCFS a low-priority agent may be

“served” (or matched) if all higher-priority agents are incompatible with the newly arriving

agent.

• Dynamic two-sided matching with stochastic compatibility: Heterogeneous agents

on one side match with heterogeneous agents or objects (e.g., housing) on the other side. If

the types of the matched pair are compatible, then high surplus is realized; if not, a low sur-

plus is realized. The designer operates buffer queues for different types of agents or objects

to keep the agents waiting until a compatible match is found. Leshno (2019) and Baccara,

Lee, and Yariv (2020) consider such models. In these models, if one buffer queue is active,

the other is empty. Hence, the system can be analyzed as a one-dimensional Markov chain.

Some of our results below rely on the system induced by a given policy to exhibit birth and

death processes. Indeed, this feature is satisfied under the optimal policy under Baccara,

Lee, and Yariv (2020) but not under Leshno (2019). Nevertheless, our central results ap-

ply to the latter setup, as we show in Section S.7 of the online appendix. Baccara, Lee,

and Yariv (2020) consider optimal matching policy under both FCFS and LCFS, whereas
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Leshno (2019) considers a general class of queueing rules, and finds FCFS to be suboptimal.

Both papers assume complete information, i.e., neither considers information design. Again,

the current paper is differentiated by its consideration of broad incentive issues (i.e., the

incentive to stay in, not just to join, a queue) and a general class of queueing rules as well

as information design. The fact that we draw a different conclusion on the optimal queue-

ing rule—namely, FCFS—relative to Leshno (2019) is attributed to our ability to combine

information design with the choice of a queueing rule (see Section 7 for further discussion).

4 Optimality of the Cutoff Policy

The designer’s problem [P ] is in general difficult to solve. Instead, we consider the following
relaxed problem:

[P ′] max
p∈∆(Z+)

W (p)

subject to
∞∑
k=1

pk(µkV − kC) ≥ 0; (IR)

λkpk − µk+1pk+1 ≥ 0,∀k. (B′)

Here, the planner maximizes the designer’s objective subject only to individual rationality

(IR) and a weakening (B′) of the balance equation (B). The problem constitutes a linear

program (LP) involving an infinite-dimensional measure p.

It is clear that [P ′] is a relaxation of [P ]. First, (IR) must be implied by (IC). If the

former condition fails, the agents do not collectively break even. Then, there must exist some

agent and some belief induced by that mechanism such that the agent with that belief would

not wish to join a queue when called upon to do so. Hence, (IC) would fail.22 Next, since

the yk,` are nonnegative and zk,`, xk,` are all in [0, 1], (B) implies (B′). Let W∗ denote the

22This can be shown more precisely. Fix any (x, y, z, p, q, I) that satisfies (IC0). Aggregating (IC0) across
all beliefs γ0 ∈ supp(I0), we get∫

γ0∈supp(I0)

∑
k,`

γ0k,`[V σk,` − Cτk,`]I0(dγ0) ≥ 0.

Clearly, the ex ante probability of receiving service,
∫
γ0∈supp(I0)

∑
k,` γ

0
k,` · σk,`I0(dγ0), equals∑

k pkµk/[
∑
k pkλkxk]—the average rate of receiving service divided by the average rate of entering the

queue at p. Next, by Little’s law, the ex ante expected waiting time,
∫
γ0∈supp(I0)

∑
k,` γ

0
k,`τk,`I0(dγ0), equals∑

k pkk/[
∑
k pkλkxk]—the average queue length divided by the average entry rate. Substituting these two

expressions and simplifying the terms, the above inequality implies (IR).

15



supremum of the value of program [P ′]. Then, whenever W∗ <∞, we must have W∗ ≥ W .

The program [P ′] is interesting in its own right: it can be interpreted as the problem facing

a planner who chooses the invariant distribution p directly to maximize her objective, simply

facing the primitive process (λ, µ), but disregarding agents’ incentives altogether, except for

guaranteeing some minimal payoff for them. Ultimately, however, we are interested in [P ′] as

an analytical tool for characterizing an optimal queue design that solves [P ], since a solution

to this relaxed program [P ′] may be attained by a mix of policy tools (x, y, z, q, I).

Indeed, our ultimate goal is to prove such a policy mix exists, which will then imply that

it optimally solves [P ], the real object of interest. The analysis will involve demonstrating

three claims: (i) an optimal solution p∗ to [P ′] exists, (ii) there exists an entry/exit policy

(x∗, y∗, z∗) that generates p∗; namely, the associated outcome (x∗, y∗, z∗, p∗) satisfies (B); and

(iii) there exists a queueing/information policy (q∗, I∗) that implements the optimal outcome

(x∗, y∗, z∗, p∗), meaning (x∗, y∗, z∗, p∗, q∗, I∗) satisfies (IC). Since W∗ ≥ W , it would then

follow that (x∗, y∗, z∗, p∗, q∗, I∗) solves [P ]. The remainder of this section will address (i) and

(ii), while claim (iii) will be taken up in the next section.

With respect to (ii), we establish not only that the optimal p∗ is well-defined and can be

implemented by some entry/exit policy (x∗, y∗, z∗), but also that, under a very mild condition

on (λ, µ), (x∗, y∗, z∗) takes a particularly intuitive form:

Definition 2. An entry/exit policy (x, y, z) is a cutoff policy if there exists K ∈ Z+∪{+∞}
such that xk = 1 for all k = 0, 1, ..., K − 2, xK−1 ∈ (0, 1], and xk = 0 for all k ≥ K and that

yk,` = zk,` = 0 for all k, `.

In words, under a cutoff policy p, the designer sets a maximum queue length K and

recommends that an arriving agent join a queue as long as k ≤ K − 1 and that those who

join the queue stay in the queue until they are served. Thus, no agent is diverted away or

induced to abandon his queue, once he has joined it. It is possible that xK−1 ∈ (0, 1), in

which case the K-th entrant may be randomly rationed.23 Although a cutoff policy seems

natural, it may not arise without policy intervention. For instance, the aforementioned un-

regulated/unobservable M/M/1 queue (governed by FCFS) will not exhibit a cutoff structure

if agents randomize on entry with an interior probability e ∈ (0, 1). (Recall from Footnote 20

23While we assume yk,` = zk,` = 0 for all k, `, this is just a convenient normalization. If xK−1 ∈ (0, 1) in

a cutoff policy, the same p∗ can be implemented by any (x′, y′, z′) such that x′K−1 =
µK+

∑
` y
′
K,`

µK(1−
∑

` z
′
K−1,`)

xK−1;

see (B). In this sense, the reader should interpret the cutoff policy as an equivalence class involving a set of
such pairs. This means that while it is unnecessary to induce an agent to exit from a queue after he joins
it, doing so when the queue length is K − 1 (and xK−1 ∈ (0, 1)) or K is consistent with a cutoff policy. In
other words, encouraging a customer to come back later is not at odds with a cutoff policy.
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that such a mixing is an equilibrium if (µ− λ)V < C.)

Observe that an invariant distribution p is generated by a cutoff policy (x, y, z) with

maximal length K (potentially infinite) if and only if supp(p) = {0, ..., K} and (B′) binds

for all k = 0, ..., K − 2 and holds for k = K − 1 (with weak inequality).24 Our cutoff

characterization, which we present next, will focus on establishing this latter feature. All

proofs of the paper are relegated to the Appendix.

Theorem 1. An optimal solution of [P ′] exists. If µ is regular, there is an optimal solution

of [P ′] implemented by a cutoff policy with maximal queue length K∗ ≥ arg maxk µkV −kC.

The intuition behind the result is most clear when the coefficient of pk in the objective

as well as in (IR) is decreasing in k ≥ 1—this occurs, for instance, if µk is constant in k

as in the M/M/1 queue model.25 In this case, one can increase the value of the objective

and relax (IR) by shifting probability mass pk toward lower values of k in the sense of

first-order stochastic dominance while keeping constant the mass at state 0.26 This suggests

that, for some K ∈ Z+, (B′) must bind for all k = 0, ..., K − 2 and pk = 0 for all k > K,

as required by the cutoff policy. The simple intuition is that adding an agent entails more

wait (for agents collectively), and is thus more costly, when the queue is long than when

the queue is short. This logic suggests that the mixing equilibrium in the aforementioned

unregulated/unobserved M/M/1 queue is suboptimal for any welfare weight α. The agents

will be collectively better off if agents are encouraged to enter fully if k < K∗ but never if

k ≥ K∗, for some K∗. In short, a cutoff policy is optimal.

To show this for a general “regular” service process, we use the fact that the coefficient

of pk in the Lagrangian function—f(k) , µk((1−α)R+ (α+ ξ)V )− (α+ ξ)ck, where ξ ≥ 0

is the Lagrangian multiplier for (IR),—is single-peaked when µk is regular: namely, f is

increasing when k < k∗, is constant when k∗ ≤ k ≤ k∗∗, and is decreasing when k > k∗∗,

where k∗ and k∗∗ are possibly zero or infinite.27 The single peakedness of f means that on

the increasing region, one would like to put the largest possible mass on a higher k within

24The characterization follows from the following observation. Assuming pk+1 > 0, (B′) binds at k if and
only if (B) is satisfied for xk = 1, zk,` = 0 for all ` = 1, ..., k and yk+1,` = 0 for all ` = 1, ..., k + 1.

25The coefficient zero at k = 0, so it is undesirable to reduce the queue length all the way down to zero.
Maintaining a nonzero queue length is desirable from the pure efficiency standpoint. If the queue length is
too low, there is a risk of server(s) going idle and wasted. The decreasing value of objective simply means
that the benefit from reducing the risk of an empty queue falls as more agents are added to the queue.

26The only remaining issue then is that the LP, which is infinite dimensional, admits an optimal solution.
The space of p’s satisfying (IR) and with a cutoff structure is “tight” and is thus sequentially compact by
the Prokhorov’s theorem. Lingenbrink and Iyer (2019) uses this method to arrive at a similar conclusion.
However, this simple approach does not work for our theorem due to the greater generality.

27In either case, f is monotonic.
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that region—a goal that is accomplished by binding (B′) for k in that region. For k in the

decreasing region, the intuition provided above applies.

The proof requires some care since the Lagrangian characterization of optima may not

be valid in an infinite dimensional LP. Our approach follows several steps. First, we consider

a finite K-dimensional LP—one in which pk = 0 for all k > K—and prove by using the

Lagrangian method that its optimal solution pK = (pK0 , ..., p
K
K) exhibits a cutoff policy. Sec-

ond, we show that an optimal solution p = (p0, ..., p∞) to [P ′] exists. This follows from the

observation that the set of p’s satisfying (IR) is closed and its elements have a vanishing tail

sum so that the feasible set of solutions forms a “tight” set of measures and is therefore se-

quentially compact, by Prokhorov’s theorem. This, together with the upper semi-continuity

of the objective, gives us the existence of an optimal solution. Third, the same observation

means that the value of the (normalized) K-truncation of p, pK , ( p0∑K
i=0 pi

, ..., pK∑K
i=0 pi

), which

is feasible for [P ′], converges to W∗ as K → ∞. Fourth, by definition, pK attains a weakly

higher value than pK for each K, so its limit p∗ as K → ∞ attains W∗. Finally, the set of

feasible p’s exhibiting a cutoff policy is closed, so the limit p∗, which is optimal, retains the

cutoff structure.

5 Optimality of FCFS with No Information

In this section, we establish the general optimality of FCFS with no information. From now

on, we assume that the service process is regular (i.e., part (i) of Definition 1). Then, by

Theorem 1, the optimal solution p∗ to [P ′] is implemented by a cutoff policy (x∗, y∗, z∗) with

a maximal queue length K∗ ∈ Z+∪{+∞}. Recall that the optimal cutoff policy may involve

random entry at k = K∗− 1; recall that x∗K∗−1 ∈ (0, 1] stands for the optimal randomization

at k = K∗ − 1. To avoid the trivial case, we assume that K∗ > 1. Further, recall that the

optimal cutoff policy has y∗k,`, z
∗
k,` all equal to 0. To ease on notations, we sometimes simply

write this optimal cutoff policy as x∗, and similarly, write the optimal outcome (x∗, y∗, z∗, p∗)

as (x∗, p∗).

In what follows, we fix the optimal outcome x∗ and the maximal queue length K∗ > 1.

We will show that FCFS, together with an optimal information design, implements (x∗, p∗);

namely, (IC) holds under that policy. Since [P ′] is a relaxation of [P ], this will prove that

the identified policy mix solves [P ].

We denote the first-come-first-served (FCFS) rule by q∗, where, as defined before, the

service rate is given by q∗k,` = µ` − µ`−1 , q∗` for each (k, `) with k ≥ `. Not surprisingly,

under FCFS the expected waiting time depends only on one’s queue position `, so we use τ ∗`
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to denote the expected waiting time for an agent with queue position `. Given the primitives,

this can be pinned down exactly.

Lemma 1. For any ` = 1, ..., K∗, τ ∗` = `/µ`. τ
∗
` is nondecreasing in `. If 2µ1 > µ2, then τ ∗`

is strictly increasing in `.

We next introduce the information rule. We call an information rule I∗ ∈ I no infor-

mation if no information is provided to each agent both at the time of joining the queue and

after joining the queue, beyond what he can infer from the recommendations to join or stay

in the queue. This means that when he joins the queue, he forms a belief about his position

`, or the length of queue, based on the invariant distribution and the recommendation to

join the queue. From then on, he updates the belief about his queue position at each t > 0

according to Bayes rule without any further information (given that he is recommended to

stay from then on).

Given the cutoff policy x∗, the queueing and information rules (q∗, I∗), the incentive

constraint at time t is given by

(ICt) V − C
K∗∑
`=1

γ̃t` · τ ∗` ≥ 0,

where γ̃t = (γ̃t1, ...., γ̃
t
K∗) ∈ ∆({1, ..., K∗}) is the belief on his position in the queue after

spending time t on the queue.28 Since the expected waiting time depends only on one’s

position, the belief on other variables such as the queue length k does not affect the agent’s

incentive to join or stay in the queue.

Given the information rule I∗, the belief at the time of joining the queue must be:

γ̃0
` =


p∗`−1λ̃`−1∑K∗−1
i=0 p∗i λ̃i

if ` = 1, ..., K∗

0 if ` > K∗,
(1)

where λ̃k is an “effective” arrival rate given by: λ̃k , λk for k = 0, ..., K∗ − 2, and λ̃K∗−1 ,

x∗K∗−1λK∗−1. This formulation rests on the consistency of an agent’s belief about the rule

in place—namely, (x∗, q∗, I∗)—, as well as the invariant distribution p∗. Specifically, (1)

computes the probability of an agent occupying position ` conditional on entering the queue.

Its numerator is the probability that an agent joins the queue in state `−1, which equals the

probability of there being `− 1 agents already in the queue multiplied by the probability of

28Note that σk,` = 1 for all k, ` since, by definition of the cutoff policy, the designer never removes agents
from the queue.
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entry per unit time in that state λ̃`−1.29 Its denominator is the total probability of entering

the queue per unit time.

It is easy to show (see online appendix S.4) that the candidate policy (q∗, I∗) provides the

agents with incentives to enter the queue, i.e., it satisfies (IC0). As noted in the Introduction,

(IC0) is not particularly demanding, for all other queueing rules also satisfy the condition

under no information I∗. It will prove much more challenging to satisfy (ICt) for t > 0. To

examine whether this condition holds under (q∗, I∗), we need to study how an agent’s belief

evolves once he joins the queue. Since no agent is recommended to abandon the queue, (ICt)

for t > 0 boils down to whether agents’ beliefs about their queue positions become (at least

weakly) more favorable—or put more probability at lower `’s—as time passes.

Suppose that an agent has belief γ̃t after spending time t ≥ 0 in the queue. By Bayes

rule, after time t+ dt, his belief is updated to:

γ̃t+dt` =
γ̃t`(1−

∑`
i=1 q

∗
i dt) + γ̃t`+1

∑`
i=1 q

∗
i dt∑K∗

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt).

The numerator is the probability that his queue position is ` after staying in the queue

for length t + dt of time. This event occurs if either (i) the agent already has position `

in the queue at time t and none of them, including himself, have been served during time

increment dt; or (ii) if he has position ` + 1 at t and one agent ahead of him is served by

t+dt.30 The denominator in turn gives the probability that the agent has not been served by

time t. Hence, given that an agent has not been served by t, the above expression gives the

conditional belief that his position in the queue is ` at time t+dt. We can use the feasibility

requirement
∑`

i=1 q
∗
i = µ` to rewrite the belief updating rule as follows:

γ̃t+dt` =
(1− µ`dt)γ̃t` + µ`dtγ̃

t
`+1∑K∗

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt). (2)

We now study how the belief updates dynamically over time under (q∗, I∗). The statistic

we focus on is the likelihood ratio rt` ,
γ̃t`
γ̃t`−1

in beliefs of being in queue position ` to being

in queue position ` − 1 after spending time t on the queue. One can use (2) to derive a

system of ordinary differential equations (ODEs) on the likelihood ratios:

ṙt` = rt`
(
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

)
, (3)

29The use of the invariant distribution for evaluating this probability is justified by PASTA: the distribution
as seen by a Poisson arriver coincides with the invariant distribution in the long-run steady state.

30The probability of multiple agents ahead of him being served during [t, t + dt) has a lower order of
magnitude denoted by o(dt).
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Figure 1: Belief about position ` = 1

Note: M/M/1 with K∗ = 2; λ = µ = 1.

where ` = 2, ..., K∗. Further, the invariant distribution p∗ can be used to obtain the boundary

conditions, r0
` = λ̃`−1

µ`−1
, for ` = 2, ..., K∗, where we recall that λ̃k is the effective arrival rate.

Appendix B.2 derives this system of ODEs and establishes existence of a unique solution.

We will argue that regularity of the primitive process (in particular part (ii) of Defini-

tion 1) is sufficient for these likelihood ratios—the solution to the above ODEs—to decline

over time, meaning one’s belief about his position becomes progressively favorable under

(q∗, I∗). At first glance, this seems obvious under FCFS: conditional on starting at any

position ` at t = 0, an agent’s queue position can only improve as time passes. Since the

agent begins with no information, however, this is not the only event about which the agent

updates his beliefs. The agent is also updating his belief about his initial position `. The

elapse of time without being served is “bad” news in this regard, as it suggests that he may

have been too optimistic about his position initially, causing him to revise his initial queue

position pessimistically.

Figure 1 displays these two competing effects in an M/M/1 queue with K∗ = 2. Its

top graph depicts the good news effect: an agent’s belief about being at the top position

(` = 1) is improving over time when the belief about his initial queue position is held fixed at

the prior. The bottom graph depicts the bad news effect: the belief about his initial queue

position being ` = 1 falls over time. The middle graph displays the overall evolution of the

belief—namely about ` = 1 conditional on not being served by t. Its increase means that the
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former “position-improvement” effect dominates the worsening posterior about the initial

position.

The regularity of the primitive process is sufficient for the good news effect to dominate

the bad news effect:

Lemma 2. Assume that the primitive process (λ, µ) is regular. Then, for all ` ∈ {2, ..., K∗},
rt` is nonincreasing in t for all t ≥ 0.

Intuitively, regularity ensures that the arrival rate does not rise faster than the service

rate as the queue length increases. This keeps the adverse inference about initial position

from worsening one’s belief about the residual waiting time.31 We are now in a position to

state our main theorem.

Theorem 2. Assume that the primitive process is regular. Then, FCFS with no information

(q∗, I∗) implements the optimal outcome (x∗, p∗). Consequently, (x∗, q∗, I∗) is an optimal

solution of [P ].

Proof. This theorem is a consequence of Lemma 2. Indeed, it suffices to prove that, under

FCFS with no information, (ICt) holds for all t ≥ 0. Note first that, as we already stated

(see Lemma S4 in the online appendix), (IC0) holds. Next consider (ICt) for any t > 0.

Lemma 2 proves that rt` ≤ r0
` for each `. Since τ ∗` is nondecreasing in ` (Lemma 1), this

means that
K∗∑
`=1

γ̃t` · τ ∗` ≤
K∗∑
`=1

γ̃0
` · τ ∗` ,

so we have

V − C
K∗∑
`=1

γ̃t` · τ ∗` ≥ V − C
K∗∑
`=1

γ̃0
` · τ ∗` ≥ 0,

where the last inequality follows from (IC0) being satisfied. Hence, (ICt) holds for any

t > 0.

31Hassin and Haviv (1995) and Haviv and Ritov (2001) establish that, given FCFS, an agent’s waiting
time exhibits an increasing failure rate (so his waiting is increasingly likely to stop) over time under the
unregulated M/M/1 and M/M/c queue models, respectively. This result arises primarily from agents’
employing a strategy of queueing only for a finite time in these models, which is in turn a rational response
to the nonlinear waiting cost (i.e., “a deadline” effect). No such nonlinear waiting costs are assumed in
our model. Instead, our current result arises under the optimal cutoff strategy, and under a general birth-
death process, not just M/M/1 or M/M/c. Our proof method also differs from the standard argument,
which focuses on establishing an increasing hazard rate of the service commencement. Our argument instead
focuses on how agents’ beliefs evolve over time, given a general birth-and-death process.
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To the extent that regularity is extremely mild, one may view this theorem as suggesting

that the combination of FCFS and No Information is optimal in a broad set of circumstances.

Nevertheless, the dynamic incentives provided by FCFS, or the role played by regularity

conditions, should not be taken for granted. Intuitively, with the failure of regularity, delay

is more of a signal about the initial queue length being long than about predecessors having

been served, and thus one’s belief, and therefore one’s incentive to stay in the queue, may

get worse over time. One can indeed build somewhat artificial examples where regularity

fails and where the optimal solution to [P ′] is not implementable under (q∗, I∗).

6 Necessity of FCFS for Optimality in a Rich Domain

We have shown that FCFS with no information is optimal in all regular environments.

This result raises a question of whether a different queueing/information policy may be also

optimal in some environments. Indeed, one can show that, when α = 1, FCFS is optimal

under full information. In appendix Section S.6, we generalize Naor (1969) to show that

FCFS can provide sufficient incentives for queueing under full information if α = 1, so the

optimum can be achieved with the entry controlled appropriately.32 Other rules such as

LCFS and LIEW (Load Independent Expected Waiting) are known to perform well in some

situations. For instance, Hassin (1985) and Su and Zenios (2004)) have shown that versions

of LCFS, possibly with preemption (i.e., where a newly arriving agent replaces one under

service), are optimal under full information when α = 1. In LCFS with preemption, once

the maximal queue length K∗ is reached, new agents still enter the queue, but old agents

(currently being served) are removed. In a different model with overloaded queues, again

with α = 1 and full information, and absent dynamic incentive issue, Leshno (2019) has

shown LIEW to be optimal in a class of buffer-queue mechanism. One may wonder how

these mechanisms perform more generally with α < 1 in the presence of dynamic incentive

constraints.

We show below that none of these queueing rules can be optimal in all regular environ-

ments. Instead of studying these queueing rules separately, we consider all feasible queueing

rules and show that FCFS is the only queueing rule that is optimal for all (regular) queue-

ing environments. Or equivalently, for any queueing rule differing from FCFS, we exhibit

a (regular) environment in which this rule is suboptimal under any information rule. For

this purpose, we focus on the most canonical and simplest environment: the M/M/1 envi-

32In particular, as proved in Section S.6, a dynamic incentive is not a problem under complete information
with FCFS, as long as agents have sufficient incentives for queueing, which is the case when α = 1.
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ronment in which a uniquely optimal solution to [P ′] involves (i) K∗ = 2, (ii) no rationing

when k = K∗ − 1 = 1, and (iii) a binding (IR). Specifically, we fix any service rate µ > 0.

We then consider a sufficiently small arrival rate λ by letting it approach zero. When we do

this, we simultaneously adjust the values of (V,C, α) to ensure that properties (i), (ii), and

(iii) continue to hold.33

Since K∗ = 2, there are only three relevant “states,” (k, `) = (1, 1), (2, 1), (2, 2), based

on the queue length k and one’s queue position `. Hence, we can denote a queueing rule

by q = (q1,1, q2,1, q2,2). Recall that FCFS corresponds to q∗ = (µ, µ, 0). For any feasible

work-conserving queueing rule, we must have q1,1 = µ and q2,1 + q2,2 = µ. Hence, a queueing

rule q ∈ Q can differ from FCFS q∗ if and only if q2,1 < µ, or equivalently, q2,2 > 0. While

most standard queueing rules—such as LCFS or SIRO—do not depend on the arrival rate

λ,34 LIEW as defined in Leshno (2019) does. In an attempt to maximize queueing incentives

for incoming agents, LIEW equalizes their expected waiting times across all possible queue

lengths they may encounter upon arrival—in our context between an empty queue and a

queue with one agent. To equalize waiting time across queue lengths, an agent who enters

an empty queue must be later “penalized” in service priority when another agent joins, to

counterbalance the fast service she initially receives when there is no other agent. The extent

of this penalization must then depend on the arrival rate, generating the dependence of q

on λ.35 Even under LIEW, however, q2,2 is bounded away from 0 for all values of λ. This

motivates the following definition. We say that a queueing rule differs from FCFS if q2,2

is bounded away from 0 for all possible values of λ.36 All queueing rules studied in the

literature such as SIRO, LCFS or LIEW differ from FCFS in this sense. We are now in a

position to state the main result of this section:

Theorem 3. Fix any queuing rule q that differs from FCFS. Then, there exists an M/M/1

queue with values (V,C, α, λ, µ) such that the queueing rule q fails (ICt) for some t > 0

under any information policy. Hence, q cannot implement the optimal cutoff policy under

33 These requirements can be met by choosing V/C = 2λ+µ
(λ+µ)µ and α = 0. In that case, there is a unique

optimal solution p to [P ′] and any outcome (x, y, z) implementing p satisfies (i), (ii) and (iii). Note that
assumption (iii) precludes α = 1 under which (IR) is non-binding at the optimal policy as long as the value
of the objective may be strictly positive.

34Naturally, a queueing rule will change as the value of µ changes, but recall we have fixed the value of µ.
35Indeed, as the arrival rate λ increases, the agent will move to state (2, 1) more quickly and so the

“penalty” can be smaller (i.e., q2,1 can be larger). More precisely, assuming that agents can never join the

queue when the queue length is equal to 2, LIEW has q2,1 = λ
2λ+µµ and q2,2 = λ+µ

2λ+µµ. Note that q2,2 ≥ 1
2µ.

36Formally, a queueing rule q assigns, to each of our M/M/1 environments, characterized by (µ, λ), a vector
q(µ, λ) = {q1,1(µ, λ), q2,1(µ, λ), q2,2(µ, λ)} of service rates. Our assumption is as follows: for any given µ,
there is some η > 0 such that q2,2(µ, λ) > η for all λ > 0.
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any information policy.

The intuition for this result is most clear under LCFS. Under this rule, an agent loses

his service priority when another agent enters. So, if an agent were initially indifferent to

queueing (as implied by a binding (IR)), he will definitely wish to abandon the queue once

a new agent enters. Consequently, (ICt) fails at time t when new entry occurs if he had full

information. Even under no information, as time passes without getting served, an agent will

suspect that a new entry is increasingly likely and he will lose his priority as a consequence.

This feature destroys his dynamic incentive. A similar problem arises with LIEW. Recall

that equalization of waiting time across queue lengths means that an agent who enters an

empty queue must be “penalized” in service priority later when a new agent enters. This

very feature destroys the dynamic incentive of an agent. The root cause of the problem

under these rules is: q2,1 < q1,1 = µ—namely, the loss of priority an agent suffers when a new

agent arrives. Although LCFS and LIEW are extreme in this regard, any rule that assigns

q2,1 < µ = q1,1, including SIRO, suffers from the same fundamental issue.

To illustrate, Figure 2 plots the expected waiting times against time elapsed on the queue

under five queueing disciplines: FCFS, SIRO, LIEW, LCFS, and LCFS-PR, where LCFS-

PR is the LCFS with preemption that Hassin (1985) argued to be optimal when α = 1.

As is clearly seen, and consistent with Theorem 3, as time passes, an agent in the queue

expects to wait increasingly longer under all these disciplines, except for FCFS under which

his expected wait decreases.

7 Concluding Remarks

We have focused on a canonical queueing model involving a single queue. But the insights

we obtain appear general and apply beyond our model. Here we discuss how one may extend

our analysis to other settings of potential interest.

Dynamic two-sided matching. A topic closely related to queueing is dynamic matching;

see Akbarpour, Li, and Gharan (2020), Akbarpour, Combe, Hiller, Shimer, and Tercieux

(2020), Baccara, Lee, and Yariv (2020), Leshno (2019), Doval and Szentes (2018), and

Ashlagi, Nikzad, and Strack (2019), among others. The primary focus of this literature is

the optimal timing of matching and assignment, rather than queueing incentives. Exceptions

are Leshno (2019) and Baccara, Lee, and Yariv (2020), who study incentives by two different

types of agents for queueing to match with either two different types of objects (e.g., housing)

or agents. In such a model, efficiency calls for accumulating agents in a queue until a right
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Figure 2: Expected waiting times under alternative values of q.

Note: M/M/1 with K∗ = 2; λ = µ = 1.

type of object or agent arrives, to avoid mismatching. Leshno (2019) assumes overloaded

demand so that the planner wishes to incentivize the agents to queue as much as possible,

and demonstrates in the full information model that SIRO outperforms FCFS in this regard,

and LIEW, by equalizing the waiting time regardless of the queue length, outperforms all

other mechanisms. Despite the ostensible difference relative to our model, Section S.7 in the

online appendix shows that our analysis applies without much modification to this model,

and points out that the main results from Leshno (2019) rest crucially on his full information

assumption. With optimal information design, the FCFS could do just as well as any other

mechanism, including LIEW, in incentivizing agents to enter a queue. If one includes the

dynamic incentive problem, which Leshno (2019) does not consider,37 then FCFS does strictly

better than other queueing disciplines. Baccara, Lee, and Yariv (2020)’s model is similar to

that of Leshno (2019), except that there are agents on both sides. Hence, our main insight

in Theorem 2 applies, except for one difference. Unlike Leshno (2019), agents’ incentives to

37The dynamic incentive issue does not arise in SIRO or FCFS under complete information: any agent
who joins the queue will have the incentive to stay in the queue. Recall, however, that neither discipline
would implement the optimum under complete information. Under no information (which is optimal),
dynamic incentives will be an issue. Although an agent may not leave the queue and unilaterally “claim” a
mismatched object, which is presumably under the designer’s control, he/she may leave the queue without
claiming any object. If the value of outright exit is not very low (e.g., in comparison with the value of a
mismatched object), then the dynamic incentives will matter just as they do in our model. Specifically,
both SIRO (under no information) and LIEW (under any information) would be vulnerable to reneging, and
cannot implement the optimal outcome, as stated in our Theorem 3.
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enter a queue may be excessive under FCFS with full information. While this is an issue

in their decentralized matching, in our setting the designer can easily solve the problem

by preventing an agent from entering a queue, as is often done in practice. Meanwhile,

they also show that a queueing discipline admits insufficient entry under LCFS. In that

case, information design can be useful even with their assumption. In addition, they too do

not consider dynamic incentives, for which our analysis will prove useful. Moving forward,

both information design and dynamic incentives, largely missing in this literature, will add

interesting new elements to incorporate for the dynamic matching research.

Time preferences. The current model follows the standard convention of the queueing

literature in assuming linear waiting cost. This convention has the usual benefit in admitting

analytical tractability and easy comparability with existing queueing models. Another, more

important, benefit in the current model is that it isolates the effect of dynamic incentives

generated by alternative queueing rules. Given linear waiting costs, differences in waiting

time distributions across alternative queueing rules do not matter when one focuses, as

existing queueing models do, on static incentives for queueing (i.e., incentives to join a

queue), but they do matter when one considers, as we do, dynamic incentives for queueing.

In this regard, what helps FCFS is its feature that its waiting time involves least amount

of dispersion in comparison with other queueing rules;38 this helps to minimize the adverse

updating from a “missing” an early service. For this reason, introducing nonlinear time

preferences will confound this effect of dynamic incentives, since it will make the waiting-

time distribution under alternative queueing rules payoff relevant. A reasonable conjecture

is, though, that risk averse time preferences will reinforce the optimality of FCFS whereas

risk-loving time preferences (such as exponential discounting) will counteract it.

Heterogenous preferences. Following the standard queueing models, we have assumed

that agents have homogeneous preferences. For added realism, however, it is important to

allow agents to differ in their waiting costs, value of service, or in their service requirements.

Such heterogeneities will introduce the need by the designer to treat agents differently based

on their types, for instance prioritizing service toward those agents with high waiting costs,

high value of service and small service requirements.39 This will again confound the analysis

by making allocation of service priority directly payoff-relevant, above and beyond making it

relevant from the perspective of dynamic incentives—the central focus of the current study.

38This feature reflects the fairness property of FCFS that an agent who arrives first gets served first (see
Shanthikumar and Sumita (1987)).

39See Anunrojwong, Iyer, and Manshadi (2020) for a simple model of heterogenous waiting costs—i.e.,
zero cost and positive costs.
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In particular, if the agents’ characteristics are unobservable, one must deal with additional

incentive issues with screening agents based on this additional informational asymmetry.

Such an extension is therefore beyond the scope of the current paper. Nevertheless, one may

conjecture that the main logic and thrust of the current paper will extend to a model with

heterogeneous preferences. At least within each type of agents, allocating service according

to FCFS contributes to their dynamic incentives for queueing, and will be desirable.

We leave these and other worthy extensions of the current model for future research.
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Appendix

A Proof of Theorem 1

Rewrite problem [P ′] as:

[P ′] max
p∈M

∞∑
k=0

pk [µk((1− α)R + αV )− αCk] s.t.
∞∑
k=0

pk [µkV − Ck] ≥ 0,

where M , {p ∈ ∆(Z+) : p satisfies (B′)}. (Recall our convention that, µ0 = 0).

Recall that an invariant distribution p is generated by a cutoff policy (x, y, z) with max-

imal length K if and only if supp(p) = {0, ..., K} and (B′) binds for all k = 0, ..., K − 2 and

holds for k = K − 1 (with weak inequality). In the sequel, if a distribution p satisfies the

latter feature, we will simply say that it exhibits a cutoff policy. Our goal in this section is

to show that the above LP problem has an optimal solution which exhibits a cutoff policy.

Below we use a Langrangian characterization of the LP problem. Unlike finite dimen-

sional LP problems, this characterization is not automatically valid in infinite dimensional

LP problems.A.40 In order to overcome the difficulty, we first study a finite dimensional

truncation of [P ′] where the state space contains finitely many states, say K, where K can

potentially be “large”. In this environment, we will show that an optimal solution pK ex-

hibits a cutoff policy (Appendix A.1). In a second step, we show that as K gets large, a limit

point of {pK} is an optimal solution of [P ′] and exhibits a cutoff policy. The proof of this

second step, in essence, uses a continuity argument—and so uses fairly routine arguments.

Hence it is sketched in Appendix A.2 but the formal argument is relegated to the online

appendix Section S.3.

A.40Countably infinite linear programs (CILPs) are linear optimization problems with a countably infinite
number of variables and a countably infinite number of constraints. It is well-known that many of the nice
properties of finite dimensional linear programming may fail to hold in these problems. Indeed, while in
finite dimensional LP problems, zero duality gap is ensured provided that the primal problem is feasible,
necessary conditions for zero duality gap for CILPs are much more demanding and may often fail. See Kipp,
Ryan, and Matt (2016) and references therein.
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A.1 Finite dimensional analysis

In the sequel, we fix an integer K ≥ 0. We consider the following “truncated” version of

[P ′], say [P ′K ]

[P ′K ] max
p∈MK

K∑
k=0

pk [µk((1− α)R + αV )− αCk] s.t.
K∑
k=0

pk [µkV − Ck] ≥ 0,

where MK , {p ∈ ∆({0, 1, ..., K}) : p satisfies (B′)}.
Let us fix ξ ≥ 0 and consider the problem [Lξ]

[Lξ] max
p∈MK

L(p, ξ)

where

L(p, ξ) ,
K∑
k=0

pk [µk((1− α)R + αV )− αCk] + ξ
K∑
k=0

pk [µkV − Ck]

=
K∑
k=0

pkf(k; ξ),

where f(k; ξ) , µk((1− α)R + (α + ξ)V )− (α + ξ)Ck.

The Lagrangian dual of problem [P ′K ] is taking the inf over ξ ≥ 0 of the value of [Lξ].
Since MK is a convex set, the problem constitutes a finite dimensional linear program, so

strong duality applies. Hence, p∗ is an optimal solution if and only if there is (a Lagrange

multiplier) ξ∗ ≥ 0 such that (p∗, ξ∗) is a saddle point of the function L(·, ·), i.e.,

L(p, ξ∗) ≤ L(p∗, ξ∗) ≤ L(p∗, ξ)

for any ξ ≥ 0 and p ∈ MK . We fix a saddle point (p∗, ξ∗) of function L(·, ·) and show that

it exhibits a cutoff policy.

In this section, we will show a finite-dimensional version of Theorem 1 stated below.

Proposition A.1. If µ is regular, then there is an optimal solution for [P ′K ] which exhibits a

cutoff policy. In addition, p∗k > 0 for each k ≤ min{k∗, K} where k∗ , min arg max f(k; ξ∗).

In order to prove this proposition, we need to first establish several lemmas. To be-

gin, we say a function f : Z+ → R is single-peaked if f(k − 1) < f(k) for all k ≤
min arg maxk∈Z+ f(k) while f(k) > f(k + 1) for all k ≥ max arg maxk∈Z+ f(k). Our con-
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vention is that if arg maxk∈Z+ f(k) is empty, then min arg maxk∈Z+ f(k) is set to +∞. We

now show that the regularity of µ implies that f(·; ξ) is single-peaked.

Lemma A.3. If µ is regular, then for any ξ ≥ 0, function f(·; ξ) is single-peaked.

Proof. Fix any ξ ≥ 0. It is easily checked that f(·; ξ) is single-peaked if and only if f(k; ξ) ≥
(>)f(k+1; ξ) then f(k′; ξ) ≥ (>)f(k′+1; ξ) for any k′ ≥ k. Assume that f(k; ξ) ≥ f(k+1; ξ),

i.e.,

µk((1− α)R + (α + ξ)V )− (α + ξ)Ck ≥ µk+1((1− α)R + (α + ξ)V )− (α + ξ)C(k + 1).

Simple algebra shows that this is equivalent to

µk+1 − µk ≤
(α + ξ)C

(1− α)R + (α + ξ)V
.

Since µ is regular, µk+1 − µk is nonincreasing and so, for k′ ≥ k, we must have

µk′+1 − µk′ ≤ µk+1 − µk ≤
(α + ξ)C

(1− α)R + (α + ξ)V
.

Hence, f(k′; ξ) ≥ f(k′ + 1; ξ). The same argument holds to show that f(k; ξ) > f(k + 1; ξ)

implies f(k′; ξ) > f(k′ + 1; ξ) for any k′ ≥ k.

We will also use the following lemma.

Lemma A.4. Suppose

f(`; ξ∗) < f(`+ 1; ξ∗)

for some ` ≤ K − 1. Then, λ`p
∗
` = µ`+1p

∗
`+1.

Proof. Fix ` satisfying the properties of the lemma. Since p∗ is an optimal solution of [P ′K ]—

and so satisfies (B′)—we know that µ`+1p
∗
`+1 ≤ λ`p

∗
` . Toward a contradiction, assume that

µ`+1p
∗
`+1 < λ`p

∗
` . Now, simply consider p̂ defined as

p̂k =


p∗k + ε if k = `+ 1

p∗k − ε if k = `

p∗k otherwise

and note that we can choose ε > 0 so that µ`+1p̂`+1 = λ`p̂` while ensuring p̂`, p̂`+1 ∈ (0, 1).A.41

Clearly,
∑K

k=0 p̂k = 1. Now, let us show that µk+1p̂k+1 ≤ λkp̂k,∀k = 0, ...K − 1. Since these

A.41Indeed, at ε = 0, we have µ`+1p̂`+1 < λ`p̂`. In addition, for ε = p` > 0 we have p̂`+1 = p`+1 + ε =
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inequalities holds at p∗ (because p∗ is an optimal solution of [P ′K ] and so satisfies (B′)), by

construction of p̂, we only need to check this constraint for k = ` + 1 and k = ` − 1. For

k = `+ 1, we have

µ`+2p̂`+2 = µ`+2p
∗
`+2 ≤ λ`+1p

∗
`+1 ≤ λ`+1p̂`+1.

Similarly, for k = `− 1,

µ`p̂` ≤ µ`p
∗
` ≤ λ`−1p

∗
`−1 = λ`−1p̂`−1.

Now, we show that the value of the objective of [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. We have

K∑
k=0

p̂kf(k; ξ∗)−
K∑
k=0

p∗kf(k; ξ∗) = p̂`f(`; ξ∗)− p∗`f(`; ξ∗) + p̂`+1f(`+ 1; ξ∗)− p∗`+1f(`+ 1; ξ∗)

= −εf(`; ξ∗) + εf(`+ 1; ξ∗) = ε (f(`+ 1; ξ∗)− f(`; ξ∗)) > 0

where the inequality comes from the assumption in the lemma. To conclude, we must have

that L(p̂, ξ∗) > L(p∗, ξ∗) which contradicts the fact that (p∗, ξ∗) is a saddle point of the

function L(·, ·).

Finally, in the proof of Proposition A.1, we will need the following simple lemma which

proof is relegated to Section S.2 of the online appendix.

Lemma A.5. Assume that p′ stochastically dominates p. Let ϕ be a nondecreasing function.

If there is κ such that
K∑
k=κ

p′k >
K∑
k=κ

pk

and ϕ(κ) > ϕ(κ− 1) then
K∑
k=0

p′kϕ(k) >
K∑
k=0

pkϕ(k).

Proof. See Section S.2 in the online appendix.

Proof of Proposition A.1. Before proceeding, we make the following straightforward obser-

vations (1) p∗0 > 0 (or else p∗k = 0 for all k because, by construction of MK , p satisfies (B′);

this contradicts the assumption that p is a probability measure); (2) for all ξ, f(0; ξ) = 0.

Using these two facts, we claim that Proposition A.1 holds whenever f(k; ξ∗) = f(k′; ξ∗)

for all k, k′ in the support of p∗. Indeed, since p∗0 > 0, f(k; ξ∗) = 0 for all states k in the

p`+1 + p` ≤ 1 and µ`+1p̂`+1 > λ`p̂` = 0. Hence, by the Intermediate Value Theorem, there must exist
ε ∈ (0, p`) so that µ`+1p̂`+1 = λ`p̂` and p̂`, p̂`+1 are in (0, 1).
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support of p∗. In that case, supp L(p, ξ∗) = 0. Thus, the value of the problem [P ′K ] is 0.

Clearly, the distribution p corresponding to the Dirac measure on state 0 yields the same

value and is a cutoff policy. Hence, in this very special case, Theorem 1 holds true. Thus, in

the sequel, we assume that there is a pair of states k and k′ in the support of p∗ satisfying

f(k; ξ∗) 6= f(k′; ξ∗).

Let k∗ be min arg maxk f(k; ξ∗) and k∗∗ be max arg maxk f(k; ξ∗). Recall that k∗ can be

equal to +∞. By Lemma A.3, we know that f(k; ξ∗) is strictly increasing up to k∗. Hence,

Lemma A.4 implies that µkp
∗
k = λk−1p

∗
k−1 for each k ≤ min{k∗, K}. Note that (since p∗0 > 0)

this also implies that p∗k > 0 for each k ≤ min{k∗, K}, as stated in Proposition A.1. If

K ≤ k∗, we are done. So assume from now on that K > k∗; note that this implies that

k∗ < +∞. By means of contradiction, let us assume that p∗ does not exhibit a cutoff policy.

This means that there is k0 > k∗ such that µk0p
∗
k0
< λk0−1p

∗
k0−1 and p∗k0+1 > 0 (hence,

p∗k0 > 0).A.42 Without loss, assume that for any k < k0, we have µkp
∗
k = λk−1p

∗
k−1. We

consider two cases.

Case 1 : p∗k > 0 for some k > k∗∗. Toward a contradiction, we construct a p̂ that would

achieve a strictly higher value than p∗ in [Lξ∗ ]. Let p̂k = p∗k for k ≤ k0 − 1. For each k ≥ k0,

build p̂ inductively so that µk0 p̂k0 = λk0−1p̂k0−1, µk0+1p̂k0+1 = λk0 p̂k0 ... Since the total mass

of p̂ must be 1, this may be possible only up to a point K̂ where, by construction, we will

have µK̂ p̂K̂ ≤ λK̂−1p̂K̂−1. Finally, we set p̂k = 0 for all k > K̂. In order to show that p̂ lies

in ∆({0, 1, ..., K}), we need to show that K̂ ≤ K. By a simple induction argument, p̂k ≥ p∗k
for all k ≤ K̂ − 1 and so we must have that K̂ ≤ K. To recap, there is K̂ ≥ k0 (potentially

equal to K) such that µkp̂k = λk−1p̂k−1 for k = 0, ..., K̂ − 1, and p̂k = 0 for k > K̂. One can

show inductively that p̂k > p∗k for all k = k0, ..., K̂ − 1 while, by construction, p̂k = p∗k for all

k ≤ k0 − 1. We claim that distribution p∗ stochastically dominates distribution p̂. To see

this, fix any κ > K̂. Clearly,
∑K

k=κ p̂k = 0 ≤
∑K

k=κ p
∗
k. Now, fix κ ≤ K̂.

K∑
k=κ

p̂k = 1−
κ−1∑
k=0

p̂k ≤ 1−
κ−1∑
k=0

p∗k =
K∑
k=κ

p∗k (A.4)

where the inequality uses the fact that p̂k ≥ p∗k for all k = 0, ..., κ − 1. Importantly, the

above inequality is strict for all κ ∈ {k0 + 1, ..., K̂} since p̂k > p∗k for all k = k0, ..., K̂ − 1.A.43

It is also strict for any κ ≥ K̂ + 1 as long as p∗κ > 0 since in that case the LHS is simply 0

while the RHS is strictly positive. In particular, given our assumption that p∗k > 0 for some

A.42Indeed, given the above, by definition, p∗ exhibits a cutoff policy if and only if µk0p
∗
k0

= λk0−1p
∗
k0−1 for

all k0 = k∗ + 1, · · ·K − 1, i.e., (B′) binds for all k = 0, ...,K − 2.
A.43Recall that, by construction, k0 + 1 ≤ K̂.

35



k > k∗∗, it must be that p∗k∗∗+1 > 0. Consequently,

K∑
k=κ

p̂k <
K∑
k=κ

p∗k (A.5)

for κ = max{k0 + 1, k∗∗ + 1}.
Now, we show that the value of the objective in [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. We have to show that

K∑
k=0

p̂kf(k; ξ∗) >
K∑
k=0

p∗kf(k; ξ∗).

Since p̂k = p∗k for all k ≤ k0 − 1, this is equivalent to showing

K∑
k=k0

p̂kf(k; ξ∗) >
K∑

k=k0

p∗kf(k; ξ∗) (A.6)

Now, define a function ϕ : Z+ → R as follows

ϕ(k) =

{
f(k0; ξ∗) if k ≤ k0 − 1

f(k; ξ∗) if k ≥ k0.

Since k0 > k∗, by Lemma A.3, this function is weakly decreasing and it is strictly decreasing

from k to k + 1 for any k ≥ max{k0, k
∗∗}. Thus, ϕ(κ − 1) > ϕ(κ) for κ = max{k0 +

1, k∗∗+ 1}. Now, we know that p∗ stochastically dominates p̂, that inequality (A.5) holds at

κ = max{k0 + 1, k∗∗ + 1}. and that ϕ(κ− 1) > ϕ(κ). Applying Lemma A.5,

K∑
k=0

(p̂k − p∗k)ϕ(k) > 0.

Since p̂k = p∗k for all k ≤ k0−1, this is equivalent to Equation (A.6). To conclude, L(p̂, ξ∗) >

L(p∗, ξ∗) which contradicts the fact that (p∗, ξ∗) is a saddle point of L(·, ·).

Case 2 : p∗k = 0 for all k > k∗∗. Recall our assumption that there is a pair of states k and

k′ in the support of p∗ satisfying f(k; ξ∗) 6= f(k′; ξ∗). Hence, because f(·; ξ∗) is single-peaked,

f must be weakly increasing on the support of p∗ and strictly increasing from k to k + 1

for all k < k∗. In particular, this holds at k = 0, and so we have f(0; ξ∗) < f(1; ξ∗) and

p∗0 > 0. Recall that k0 is the smallest k in {k∗ + 1, ..., k∗∗ − 1} such that µkp
∗
k < λk−1p

∗
k−1
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and p∗k+1 > 0. We now construct a measure p̂ as follows

p̂k =


p∗k/Z1 if k ≤ k0 − 1

p∗k + Z2 if k = k0

p∗k if k ≥ k0 + 1,

where Z1 > 1 and Z2 ,
∑k0−1

k=0 (p∗k − p̂k) so that p̂ sums up to 1. We pick Z1 small enough

so that p̂k0 remains between 0 and 1 for each k. We show that, for Z1 > 1 small enough, for

each k ≤ K, µkp̂k ≤ λk−1p̂k−1. To see this, first fix k ≤ k0 − 1 and note that

µkp̂k = µkp
∗
k/Z1 ≤ λk−1p

∗
k−1/Z1 = λk−1p̂k−1

where the inequality follows from the fact that p∗ is a feasible solution of [P ′K ]. Next,

µk0 p̂k0 = µk0
(
p∗k0 + Z2

)
≤ λk0−1p

∗
k0−1/Z1 = λk0−1p̂k0−1

where the inequality holds if Z1 is small enough since, by assumption, µk0p
∗
k0
< λk0−1p

∗
k0−1

(and Z2 vanishes as Z1 goes to 1).A.44 Now, for k = k0 + 1, we have

µk0+1p̂k0+1 = µk0+1p
∗
k0+1 ≤ λk0p

∗
k0
≤ λk0(p

∗
k0

+ Z2) = λk0 p̂k0 .

Finally, by construction, for any k > k0 + 1, µkp̂k ≤ λk−1p̂k−1 must hold since p∗ and p̂

coincide.

Now, we show that the value of the objective in [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. To see this, observe first that p̂ must stochastically dominate p∗. Indeed,

fix any κ > k0. Clearly, since p̂k = p∗k for all k ≥ k0 + 1,
∑K

k=κ p̂k =
∑K

k=κ p
∗
k. Now, fix

κ ≤ k0.
K∑
k=κ

p̂k = 1−
κ−1∑
k=0

p̂k > 1−
κ−1∑
k=0

p∗k =
K∑
k=κ

p∗k (A.7)

where the inequality uses the fact that p̂k = p∗k/Z1 < p∗k for all k = 0, ..., κ− 1 (since Z1 > 1

and p∗k > 0 for such k). Now, we show that the value of the objective in [Lξ∗ ] strictly

increases when we replace solution p∗ by p̂, i.e.,

K∑
k=0

p̂kf(k; ξ∗) >
K∑
k=0

p∗kf(k; ξ∗).

A.44Indeed, by construction, for each k ≤ k0 − 1, p̂k → p∗k as Z1 → 1. Since Z2 =
∑k0−1
k=0 (p∗k − p̂k), Z2

converges to 0 as Z1 → 1.
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We know that p̂ stochastically dominates p∗, that inequality (A.7) holds at κ = 1 and that

f(0; ξ∗) < f(1; ξ∗). In addition, f(·; ξ∗) is nondecreasing on the support of p∗ and p̂. Hence,

this follows from Lemma A.5.

A.2 Infinite dimensional analysis

Let us consider the sequence {pK}K where for each K, pK is an optimal solution of problem

[P ′K ]. If µ is regular, we assume each pK exhibits a cutoff policy which is well-defined by

Proposition A.1. For each K, we see pK as a point in RZ+ with value 0 on states weakly

greater than K + 1. We will be interested in the limit points of sequence {pK}K . Together

with the result showing that [P ′] has an optimal solution, the following statement implies

Theorem 1.

Proposition A.2. Assume µ is regular. Sequence {pK}K has a subsequence which converges

to a distribution p∗ which is an optimal solution to [P ′] and exhibits a cutoff policy. Further,

it satisfies p∗k > 0 for each k ≤ min arg maxk µkV − Ck.

This result is shown in the online appendix Section S.3 through the following steps. First,

we show that the infinite-dimensional problem [P ′] admits an optimal solution (Proposi-

tion S1). Then, we show that the set of feasible distributions of [P ′] exhibiting a cutoff-

policy is sequentially compact, which in turn implies that (when µ is regular) {pK}K has a

subsequence converging to a point which exhibits a cutoff policy (Proposition S4). Finally,

we argue that any limit point of {pK}K must be an optimal solution of [P ′] (Proposition S5).

B Proofs from Section 5: FCFS with No Information

B.1 Proof of Lemma 1

The expected waiting time satisfies the following recursion. The agent in the first position

has expected waiting time

τ ∗1 = (q∗1dt)dt+ [1− q∗1dt](τ ∗1 + dt) + o(dt),

since he waits for dt period with probability q∗1dt and for τ ∗1 + dt periods with the remaining

probability. Letting dt→ 0, we get

τ ∗1 = 1/q∗1 = 1/µ1.
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More generally, the agent in queue position ` waits for

τ ∗` = (q∗`dt)dt+

[
1−

∑̀
j=1

q∗jdt

]
(τ ∗` + dt) +

(
`−1∑
j=1

q∗jdt

)
(τ ∗`−1 + dt) + o(dt),

since he is served in dt period with probability q∗`dt, in τ ∗` + dt periods with probability

1−
∑`

j=1 q
∗
jdt (when nobody before him is served), and in τ ∗`−1 + dt periods with probability∑`−1

j=1 q
∗
jdt (when somebody before him is served).B.45

The recursion equations yield a unique solution:

τ ∗` =
`∑`
j=1 q

∗
j

=
`

µ`
,

where the last equality follows from feasibility.

Part (ii) of regularity implies that q∗` is nonincreasing in `. Therefore, for each `

τ ∗`+1 − τ ∗` =

∑`
j=1 q

∗
j − `q∗`+1

(
∑`

j=1 q
∗
j )(
∑`+1

j=1 q
∗
j )
≥ 0.

Hence, it follows that τ ∗` is nonincreasing in `. Further, if 2µ1 > µ2, then q∗1 > q∗2 ≥ q∗` for all

` ≥ 2. Then, the above inequality becomes strict for all `, which proves the last statement.

B.2 Proof of Lemma 2

We let K̄ be the largest state in the support of p∗ (which can potentially be infinite). We

first study the dynamics for the case with K̄ <∞. For K̄ =∞, we show that the dynamics

can be approximated by the dynamics for K̄ <∞ when K̄ goes to infinity. While it requires

some care, the argument for K̄ = ∞ essentially relies on the case with K̄ < ∞. Hence, we

defer the proof to online appendix Section S.5. In the sequel, we assume that K̄ <∞.

Using (2), we write for each such ` ≥ 2,

rt+dt` =
γ̃t+dt`

γ̃t+dt`−1

=
(1− µ`dt)γ̃t` + µ`dtγ̃

t
`+1

(1− µ`−1dt)γ̃
t
`−1 + µ`−1dtγ̃

t
`

+ o(dt) =
1− µ`dt+ µ`dtr

t
`+1

(1− µ`−1dt)
1
rt`

+ µ`−1dt
+ o(dt).

B.45Again, the probability that multiple agents are served during [t, t+ dt) has a lower order of magnitude
denoted by o(dt).
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Rearranging, we get

rt+dt` − rt`
dt

=
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

(1− µ`−1dt)
1
rt`

+ µ`−1dt
+ o(dt)/dt.

Letting dt→ 0, we obtain

ṙt` = rt`
(
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

)
. (B.8)

(B.8) forms a system of ordinary differential equations. The boundary condition is defined

as follows. Recall that the effective arrival rate be λ̃k , λkx
∗
k for each k. For ` ≤ K̄,

r0
` =

γ̃0
`

γ̃0
`−1

=
p∗`µ`

p∗`−1µ`−1

=
λ̃`−1

µ`−1

, (B.9)

where the second equality uses the fact that γ̃0
` = p∗`µ` \

∑∞
i=1 p

∗
iµi for each `, while the third

one uses (B) whereby
p∗`
p∗`−1

= λ̃`−1

µ`
.B.46 It is routine to see that the system of ODEs (B.8)

together with the boundary condition (B.9) admits a unique solution (rt`)` for all t ≥ 0.B.47

We first claim that ṙ0
` ≤ 0 for all ` = 2, ..., K̄. It follows from (B.8) that, for ` = 2, ..., K̄,

ṙ0
` ≤ 0 if and only if

µ`−1 − µ` ≤ µ`−1r
0
` − µ`r0

`+1. (B.10)

Consider any ` = 2, ..., K̄. Substituting (B.9) into (B.10), the condition simplifies to:

µ`−1 − µ` ≤ λ̃`−1 − λ̃`,

which holds by regularity of (λ, µ) and the fact that x∗k is nonincreasing in k.

Having established that ṙ0
` ≤ 0 for each ` = 2, ..., K̄, we next prove that ṙt` ≤ 0 for all

t > 0. To this end, suppose this is not the case. Then, there exists

` ∈ arg min
`′=2,...,K̄

T`′ ,

where

T`′ , inf{t′ : ṙt′`′ > 0}
B.46One can obtain the expression for γ̃0` as follows. The optimality of the cutoff policy means x∗k = 1 for
all k = 0, ...,K∗− 2, x∗k = 0 for all k > K∗− 1, and y∗k,` = z∗k,` = 0 for all (k, `). Substituting these into (B),
one obtains the expression by rewriting (1).
B.47This follows from the observation that the RHS of (B.8) is locally Lipschitzian in r (a fact implied by
the continuous differentiability of RHS in rt`’s). See Hale p. 18, Theorem 3.1, for instance.
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if the infimum is well defined, or else T`′ , ∞. Let t = T` < ∞, by the hypothesis. Then,

we must have

r̈t` > 0; ṙt`′ ≤ 0,∀`′ 6= `; and ṙt` = 0.

Differentiating (B.8) on both sides, we obtain

0 < r̈t` = ṙt`
(
µ`−1 − µ` − µ`−1r

t
` + µ`r

t
`+1

)
− rt`(µ`−1ṙ

t
` − µ`ṙt`+1) = rt`µ`ṙ

t
`+1 ≤ 0,

a contradiction. We thus conclude that ṙt` ≤ 0, for all ` = 2, ..., K̄, for all t ≥ 0.

C Proof of Theorem 3

Fix a queuing rule q which differs from FCFS. We consider the information policy that

provides no information (beyond the recommendations) for all t ≥ 0. This is without loss

since, if a queueing rule q fails (ICt), for some t ≥ 0, under no information, it would fail

(ICt) under any information policy.

Recall that we have fixed the service rate µ. While arrival rate λ is yet to be fixed, for each

λ, we can choose parameters V,C and α to ensure that the optimal outcome (x∗, y∗, z∗, p∗)

(i) involves a maximal length K∗ = 2 (i.e., x∗2 = 0 or z∗2,1 + z∗2,2 = 1), (ii) no rationing at

k = 1 (i.e., x∗1 = 1 and z∗1,1 = 0), and (iii) (IR) is binding at p∗.C.48 Importantly, assumption

(ii) implies that y∗k,` are all zeros.C.49 In the sequel, we fix such an outcome (x∗, y∗, z∗, p∗).

Note that x∗2 > 0 implies that z∗2,1 +z∗2,2 = 1 and since the values of z∗2,1 and z∗2,2 are irrelevant

when x∗2 = 0, without loss, we will assume that z∗2,1 + z∗2,2 = 1. While the variables we study

below do depend on µ and λ, for simplicity, we omit the dependence in notations.

We then study an agent’s expected utility with elapse of time t ≥ 0 on the queue:

U(t) , S(t)V −W (t)C. (C.11)

C.48If V/C = 2λ+µ
(λ+µ)µ and α = 0, one can easily show that there is a unique optimal solution p to [P ′] and

any outcome (x, y, z) implementing p satisfies (i), (ii) and (iii).
C.49Indeed, in that case, x∗0 = x∗1 = 1 and

∑0
`=1 z

∗
0,` =

∑1
`=1 z

∗
1,` = 0. Further, (x∗, y∗, z∗, p∗) satisfies (B),

i.e., for each k

p∗kλkx
∗
k(1−

k∑
`=1

z∗k,`) = p∗k+1(

k+1∑
`=1

y∗k+1,` + µk+1).

From the above equation, it is easily checked that if x∗k = 1 and
∑k
`=1 z

∗
k,` = 0, given that p∗kλk ≤ p∗k+1µk+1

since p∗ satisfies (B′), we must have that y∗k+1,` = 0 for each `. Thus, we must have that y∗1,` = y∗2,` = 0 for
each `.
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W (t) stands for the residual waiting time, conditional on having spent time t ≥ 0 on the

queue, i.e.,

W (t) , γt1,1τ 1,1 + γt2,1τ 2,1 + γt2,2τ 2,2

where γt = (γt1,1, γ
t
2,1, γ

t
2,2) is the belief an agent has about alternative states (k, `) and

τ = (τ 1,1, τ 2,1, τ 2,2) are his expected waiting times at alternative states, both under the

queueing rule q. Similarly, S(t) is the probability of eventually getting served and writes as:

S(t) , γt1,1σ1,1 + γt2,1σ2,1 + γt2,2σ2,2

where σ = (σ1,1, σ2,1, σ2,2) are the probabilities of an agent getting eventually served at

alternative states (k, `), again under the queueing rule q. (Throughout, we suppress the

dependence on q for notational ease.)

Since U(0) = 0 (as implied by a binding (IR)), it suffices to show that U(t) decreases

strictly in the neighborhood of t = 0 which will then prove that q fails (ICt) for some small

t > 0. We establish this for a sufficiently small value λ > 0.C.50 Specifically, we focus on

U̇(0)—the change in utility “right after joining the queue”—as λ → 0. As it turns out,

U̇(0) → 0 as λ → 0. Hence, one must consider how “slowly” U̇(0) converges to 0, or more

precisely, the limit behavior of U̇(0)/λ as λ→ 0.

Hence, we will show that U̇(0)/λ converges to a strictly negative number as λ → 0.

For our purpose, it is enough to show that, as λ vanishes, S ′(0)/λ converges to 0 while

W ′(0)/λ converges to a strictly positive number. To this end, it is necessary to characterize

the limit behaviors of (τ k,`), (σk,`) and (γ̇0
k,`). We do this first.

Limit behavior of (τ k,`). The expected waiting time τ 1,1 must satisfy:

τ 1,1 = (µdt) dt+ λdt (dt+ τ 2,1) + (1− µdt− λdt) (dt+ τ 1,1) + o(dt),

since, for a small time increment dt, the sole agent in the queue waits for time dt if he is

served during [t, t + dt) (which occurs with probability µdt), for dt + τ 2,1 if another agent

arrives during [t, t+dt) (which occurs with probability λdt), and for dt+ τ 1,1 if neither event

arises (which occurs with probability 1− µdt− λdt). By a similar reasoning, we have:

τ 2,1 =
(
q2,1dt+ λx∗2z

∗
2,1dt

)
dt+ q2,2dt(dt+ τ 1,1) +

(
1− µdt− λx∗2z∗2,1dt

)
(dt+ τ 2,1) + o(dt)

C.50Recall we adjust the values of C, V and α so as to ensure that (IR) is binding at the optimal cutoff
policy that solves [P ′].
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and

τ 2,2 =
(
q2,2dt+ λx∗2z

∗
2,2dt

)
dt+q2,1dt(dt+τ 1,1)+λx∗2z

∗
2,1dt (dt+ τ 2,1)+(1− µdt− λx∗2dt) (dt+τ 2,2)+o(dt).

Letting dt→ 0 and simplifying, we obtain:

(µ+ λ) τ 1,1 = λτ 2,1+1,
(
µ+ λx∗2z

∗
2,1

)
τ 2,1 = q2,2τ 1,1+1 and (µ+ λx∗2) τ 2,2 = λx∗2z

∗
2,1τ 2,1+q2,1τ 1,1+1.

Thus, we have that, as λ→ 0,

τ 1,1 →
1

µ
, τ 2,1 →

q2,2

µ

1

µ
+

1

µ
and τ 2,2 →

q2,1

µ

1

µ
+

1

µ
(C.12)

where we abuse notations and simply note q2,2 for the limit as λ vanishes of q2,2 (and similarly

for q2,1). We assume here that this limit is well-defined and take a subsequence of our

vanishing sequence of λ if necessary.

Limit behavior of (σk,`). We have

σ1,1 = µdt+ λdtσ2,1 + (1− µdt− λdt)σ1,1 + o(dt)

since, for a small time increment dt, the sole agent in the queue is served with probability

µdt; the agent is eventually served with probability σ2,1 if another agent arrives (which

occurs with probability λdt), and the agent is served with probability σ1,1 if neither event

arises (which occurs with probability 1− µdt− λdt). Similar reasoning yields the following

expressions for σ2,1 and σ2,2

σ2,1 = q2,1dt+ (1− µdt− λx∗2dt)σ2,1 + q2,2dtσ1,1 + λx∗2dtz
∗
2,2σ2,1 + o(dt),

and

σ2,2 = q2,2dt+ (1− µdt− λx∗2dt)σ2,2 + q2,1dtσ1,1 + λx∗2dtz
∗
2,1σ2,1 + o(dt).

We obtain

(µ+ λ)σ1,1 = µ+ λσ2,1

(µ+ λx∗2(1− z∗2,2))σ2,1 = q2,1 + q2,2σ1,1

(µ+ λx∗2)σ2,2 = q2,2 + q2,1σ1,1 + λx∗2z
∗
2,1σ2,1.
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Hence, we obtain that

σ1,1, σ2,1, σ2,2 → 1 as λ→ 0. (C.13)

Limit behavior of (γ̇0
k,`). We study the dynamics of beliefs. An agents’ beliefs evolve

during [t, t+ dt) according to Bayes rule. For instance, for state (k, `) = (1, 1), we obtain

γt+dt1,1 =
γt1,1 [1− µdt− λdt] + γt2,2 [q2,1dt] + γt2,1 [q2,2dt]

γt1,1 [1− µdt] + γt2,1
[
1− q2,1dt− λx∗2z∗2,1dt

]
+ γt2,2

[
1− q2,2dt− λx∗2z∗2,2dt

] + o(dt)

where the numerator is the probability that the agent’s state is (k, `) = (1, 1) after staying

in the queue for length t+ dt of time. This event occurs if either (i) the agent is already in

state (1, 1) in the queue at time t, the agent is not served and no agent arrives in the queue

during time increment dt; or (ii) his state is (2, 2) or (2, 1) at t and the other agent in the

queue is served by t+ dt. The denominator in turn gives the probability that the agent has

not been served or removed from the queue by time t + dt. Hence, given that an agent has

not been served or removed from the queue by t, the above expression gives the conditional

belief that his state is (1, 1) at time t+ dt.

Similar reasoning yields the following expressions for the evolution of beliefs for state

(2, 1) and (2, 2)

γt+dt2,1 =
γt2,1

[
λx∗2z

∗
2,2dt+ 1− µdt− λx∗2dt

]
+ γt2,2

[
λx∗2z

∗
2,1dt

]
+ γt1,1 [λdt]

γt1,1 [1− µdt] + γt2,1
[
1− q2,1dt− λx∗2z∗2,1dt

]
+ γt2,2

[
1− q2,2dt− λx∗2z∗2,2dt

] + o(dt)

and

γt+dt2,2 =
γt2,2 [1− µdt− λx∗2dt]

γt1,1 [1− µdt] + γt2,1
[
1− q2,1dt− λx∗2z∗2,1dt

]
+ γt2,2

[
1− q2,2dt− λx∗2z∗2,2dt

] + o(dt).

From these, we can derive ODEs that describe belief evolutions:

γ̇t1,1 = −γt1,1 [µ+ λ] + γt2,2 [q2,1] + γt2,1 [q2,2] +
(
γt1,1
)2

[µ]

+γt1,1γ
t
2,1

[
q2,1 + λx∗2z

∗
2,1

]
+ γt1,1γ

t
2,2

[
q2,2 + λx∗2z

∗
2,2

]
,

γ̇t2,1 = −γt2,1
[
µ+ λx∗2(1− z∗2,2)

]
+ γt2,2

[
λx∗2z

∗
2,1

]
+ γt1,1 [λ]

+γt2,1γ
t
1,1 [µ] +

(
γt2,1
)2 [

q2,1 + λx∗2z
∗
2,1

]
+ γt2,1γ

t
2,2

[
q2,2 + λx∗2z

∗
2,2

]
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and

γ̇t2,2 = −γt2,2 [µ+ λx∗2] + γt2,2γ
t
1,1 [µ]

+γt2,2γ
t
2,1

[
q2,1 + λx∗2z

∗
2,1

]
+
(
γt2,2
)2 [

q2,2 + λx∗2z
∗
2,2

]
with a boundary condition at t = 0 satisfying γ0

2,1 = 0 and

γ0
1,1 =

λp0

λp0 + λp1 + λx∗2p2

(
z∗2,1 + z∗2,2

) =
1

1 + λ
µ

+ x∗2

(
λ
µ

)2 ,

and

γ0
2,2 =

λp1 + λx∗2p2

(
z∗2,1 + z∗2,2

)
λp0 + λp1 + λx∗2p2

(
z∗2,1 + z∗2,2

) =

λ
µ

+ x∗2

(
λ
µ

)2

1 + λ
µ

+ x∗2

(
λ
µ

)2 ,

where we used the fact that p1µ = λp0 and p2µ = λp1 = λλ
µ
p0 at the invariant distribution

together with z∗2,1 + z∗2,2 = 1 since state k ≥ 3 have mass 0 at the invariant distribution.

(Recall that we assumed, wlog, that z∗2,1 + z∗2,2 = 1).

Observe that
γ0

1,1

λ
− 1

λ
→ − 1

µ
,
γ0

2,2

λ
→ 1

µ
and

γ0
2,1

λ
= 0

In addition,
γ̇0

1,1

λ
→ −1 < 0,

γ̇0
2,1

λ
→ 1 > 0 and

γ̇0
2,2

λ
→ 0. (C.14)

Completion of the proof of Theorem 3. As we already mentioned, for our purpose, it is enough

to show that as λ vanishes, S ′(0)/λ converges to 0 while W ′(0)/λ converges to a strictly pos-

itive number. We have that

W ′(0)

λ
=
γ̇t1,1
λ
τ 1,1 +

γ̇0
2,1

λ
τ 2,1 +

γ̇0
2,2

λ
τ 2,2 → −

1

µ
+

(
q2,2

µ

1

µ
+

1

µ

)
=

(
q2,2

µ

)
1

µ
> 0

where the limit result comes from (C.12) and (C.14) while the strict inequality holds given

our assumption that q differs from FCFS and so q2,2 > 0. Further, we have

S ′(0)

λ
=
γ̇t1,1
λ
σ1,1 +

γ̇0
2,1

λ
σ2,1 +

γ̇0
2,2

λ
σ2,2 → 0

where the limit result comes from (C.13) and (C.14). Thus, as claimed, U̇(0)/λ converges

to a strictly negative number as λ→ 0.
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