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S.1 Axiomatic Foundation for Regular Service Rates

As defined in the text, for each k ∈ N, µk represents the maximal service rate that any set
of k agents may receive. By definition, µk is nondecreasing in k since if µk > µm for k < m,
we can simply redefine µm , µk. In this sense, we view µ = (µk)k∈N as “effective” maximal
service rates.A.1

Below we provide a more primitive definition of FCFS based on the concept that the
priority must be assigned greedily to maximize the service rates for earlier arriving agents.
Under regularity of µ, this definition will then produce the formula we presented in the main
paper as the definition of FCFS.
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A.1Indeed, we can characterize µ as arising from more primitive service constraints. Say there are upper
bound constraints (ck)k for each group of k agents. We do not impose any condition on (ck)k, except that
there exists B > 0 such that ck ≤ B for all k and it is nondecreasing. The effective service rate µn for n
agents can be defined as the value:

[Cn] sup
q∈Rn

+

∑
i∈[n]

qi

subject to ∑
i∈S

qi ≤ ck,∀k ∈ N,∀S ⊂ [n] s.t. |S| = k.
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FCFS: Specifically, for each k ∈ N, we define the service rates (q∗k,1, ..., q
∗
k,k) ∈ Rk

+ that
agents in the queue of k length receive under FCFS.

To begin, let Q0 , Rk
+, and consider a sequence of the following problems:

In step j ∈ [k] , {1, ..., k}, we choose

[C∗j ] Qj = arg max
q∈Qj−1

∑
i∈[j]

qi

subject to ∑
i∈S

qi ≤ µm,∀m ∈ [k],∀S ⊂ [k] s.t. |S| = m.

In words, the first agent’s service rate is maximized subject to the constraint that he
can never receive more than µ1 the maximal service rate any single agent can ever receive.
Taking that as constraint, we next maximize first and second agents’ service rate now only
subject to µ2 the maximal total service rate that any two agents can ever receive, and so on.

The FCFS service rates (q∗k,1, ..., q
∗
k,k) are then defined to be an optimal solution for step

k—i.e., an element of Qk. While it is in principle possible that Qk has multiple elements, it
is easily seen that Qk is a singleton. We let µ∗k denote the maximized value of [C∗k ]. Next,
observe that, for any i ≤ k, k′, we have q∗k,i = q∗k′,i. Hence, we henceforth write q∗i for q∗k,i.

We now derive the optimal solution (q∗j )j∈[k] explicitly. The resulting formula will resemble
the one we defined for the service rates under FCFS.

Lemma S1. Fix k. The optimal value of [C∗j ] is µ∗j , where µ∗1 = µ1, and for j = 2, ..., k,

µ∗j = µ∗j−1 + min{µj − µ∗j−1, µ
∗
j−1 − µ∗j−2}.

Agent j ∈ [k] receives service rates q∗j = µ∗j−µ∗j−1, which is nonincreasing in j, for j = 1, ...k,

where µ∗0 , 0.

Proof. The proof is inductive. First, it is trivial to note that µ∗1 = µ1 is indeed the value of
[C∗1 ] and q∗1 = µ∗1 = µ∗1 − µ∗0. Suppose next that µ∗i is the value of [C∗i ] for all i = 1, ..., j − 1,
and these steps pin down q∗i := µ∗i − µ∗i−1. We make several observations: (i) Since µ∗i is the
value of [C∗i ] for i = j − 2, j − 1, any q ∈ Qj−1 has q` ≤ µ∗j−1 − µ∗j−2 = q∗j−1 for all ` ≥ j − 1.
(Suppose to the contrary that q` > µ∗j−1 − µ∗j−2 for some q ∈ Qj−1, then swapping qj−1 and
q` between j − 1 and ` is feasible and strictly improves the value of [C∗j−1], a contradiction.)
(ii) By construction, we have µ∗i ≤ µi for all i = 1, ..., j − 1. (iii) By construction, we have
q∗i ≤ q∗i′ for i′ ≤ i ≤ j − 1 (which follows from the fact that µ∗j − µ∗j−1 is nonincreasing in j.).

Consider problem [C∗j ]. We will argue that its value is given by the formula µ∗j = µ∗j−1 +
min{µj − µ∗j−1, µ

∗
j−1 − µ∗j−2}, and it pins down q∗j = µ∗j − µ∗j−1. To this end, note first that

the value µ∗j of [C∗j ] cannot exceed:

µ∗j−1 + min{µj − µ∗j−1, µ
∗
j−1 − µ∗j−2}.

To see this, simply observe that the above term can take two values, either µj or µ∗j−1 +
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µ∗j−1 − µ∗j−2. Since, by definition of [C∗j ], µ∗j ≤ µj the result holds in the former case. Since
by (i) above q` ≤ µ∗j−1− µ∗j−2 for all ` ≥ j − 1 for any q ∈ Qj−1, and since, by definition, the
value of [C∗j ] equals µ∗j−1 + q∗j , the result also holds in the latter case.

We next prove that the value is actually attained. Construct q̂ such that q̂i = q∗i for
all i ≤ j − 1, q̂j = µ∗j − µ∗j−1 and q̂i = 0 for all i ≥ j + 1. Note that, since µ∗i − µ∗i−1 is
nonincreasing in i, q̂j ≤ q̂i for all i ≤ j. Take any S ⊂ [k] such that |S| = ` < j. Then,∑

i∈S

q̂i ≤
∑
i∈[`]

q̂i = µ∗` ≤ µ`,

where the first inequality follows from (iii) and the second follows from (ii). Next, take any
S ⊂ [k] such that |S| = k. Then,∑

i∈S

q̂i ≤
∑
i∈[j]

q̂i = µ∗j ≤ µj,

where the first follows from (iii) and the fact that q∗j ≤ q∗i for all i ≤ j, and the second
follows from our prior observation that the value µ∗j of [C∗j ] must be smaller than µj. Lastly,
it is trivial that

∑
i∈S q̂i ≤ µ`, for any S with |S| = `, where ` > j. We thus conclude q̂ ∈ Qj

and µ∗j is the value of [C∗j ].

It is easy to verify that the optimal solution (q∗j )j∈[k] is unique. More importantly, one
can see that the solution coincides with the service rate we define for FCFS in the main text,
provided that FCFS is work conserving. To see this note from Lemma S1 that

∑
j∈[k] q

∗
j = µ∗k.

Hence, if FCFS is work conserving, we must have µ∗k = µk for each k (since µ∗k ≤ µk for each
k). In that case, we get q∗j = µj − µj−1, precisely as we defined in the text.

Axiomatic Characterization: We now prove that regularity of µ is a necessary and
sufficient condition for FCFS to be work-conserving, i.e.,

∑
i∈[k] q

∗
k,i = µk for all k.

Theorem S1. FCFS is work-conserving if and only if µ is regular.

Proof. By Lemma S1, for all k ∈ N,
∑

i∈[k] q
∗
i = µ∗k, and by feasibility µ∗k ≤ µk. Hence, FCFS

is work-conserving if and only if µ∗k = µk for all k ∈ N. Thus, it suffices to prove that µ is
regular if and only if µ∗k = µk for all k.

To prove the “only if” direction, suppose µ is regular. We argue inductively that µ∗k = µk
for all k. First, by definition, µ∗1 = µ1. Suppose µ∗i = µi for all i ∈ [k − 1]. Then,

µ∗k = µ∗k−1 + min{µk − µ∗k−1, µ
∗
k−1 − µ∗k−2}

= µk−1 + min{µk − µk−1, µk−1 − µk−2} = µk,

where the first equality is by definition of µ∗k, the second follows from the induction hypoth-
esis, and the last follows from the regularity.

The converse, the “if” direction, follows from the fact that µk − µk−1 = µ∗k − µ∗k−1 = q∗k
and q∗k is nonincreasing in k by Lemma S1.
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We have focused only on FCFS, but the LCFS can be defined analogously, and a similar
result is obtained.

S.2 Proof of Lemma A.5

We have

K∑
k=0

p′kϕ(k) = ϕ(K)−
K−1∑
L=0

(
L∑
k=0

p′k

)
(ϕ(L+ 1)− ϕ(L))

= ϕ(K)−
K−1∑
L=0

(
1−

K∑
k=L+1

p′k

)
(ϕ(L+ 1)− ϕ(L))

> ϕ(K)−
K−1∑
L=0

(
1−

K∑
k=L+1

pk

)
(ϕ(L+ 1)− ϕ(L))

= ϕ(K)−
K−1∑
L=0

(
L∑
k=0

pk

)
(ϕ(L+ 1)− ϕ(L))

=
K∑
k=0

pkϕ(k),

where the first and the last equalities hold by Abel’s formula for summation by parts while the
strict inequality uses the fact that (1) p′ stochastically dominates p; (2) ϕ is a nondecreasing
function and (3) there is κ ≥ 1 such that

K∑
k=κ

p′k >
K∑
k=κ

pk and ϕ(κ) > ϕ(κ− 1).

S.3 Remaining Proof of Theorem 1

In this section we prove Proposition A.2 which completes the proof of Theorem 1.

S.3.0.1 Existence of a solution in the infinite-dimensional problem

Our problem [P ′] can be written as

[P ′] max
p∈M ′

∞∑
k=0

pk [µk((1− α)R + αV )− αCk]

where M ′ , {p ∈ ∆(Z+) :
∑∞

k=0 pk [µkV − Ck] ≥ 0, λkpk ≥ µk+1pk+1, ∀k}. We prove the
following result.
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Proposition S1. The set of optimal solutions of [P ′] is nonempty.

We start by showing that the objective of the optimization problem is upper semi-
continuous (Proposition S2). We endow Z+ with the discrete topology and ∆(Z+) with
the weak topology. Since Z+ endowed with the discrete topology is a (separable) metric
space, ∆(Z+) is metrizable by Prokhorov’s Theorem. We next show that set M ′ is compact
(Proposition S3). This enough for our purpose. Indeed, by the Extreme Value Theorem for
upper semi-continuous functions, optimization problem [P ′] has an optimal solution.

Proposition S2. The function

∞∑
k=0

pk [µk((1− α)R + αV )− αCk]

is upper semi-continuous in p ∈ ∆(Z+).

Proof. Consider a sequence {pn} in ∆(Z+) converging to p∗. Since the function k 7→ µk((1−
α)R+αV )−αCk is continuous (in the discrete topology) and upper bounded,A.2 by Portman-
teau’s Theorem, lim sup

∑∞
k=0 p

n
k [µk((1− α)R + αV )− αCk] ≤

∑∞
k=0 p

∗
k [µk((1− α)R + αV )− αCk]

and so we get the upper semi-continuity of our function.

Proposition S3. Set M ′ is compact.

Proof. The proof is based on the two lemmas proved below.

Lemma S2. The set M ′ is tight.

Proof. We need to show that for any ε > 0, there is n large enough so that any probability
measure p ∈ M ′ has

∑∞
k=n+1 pk < ε. Suppose to the contrary that there is ε > 0 and a

sequence {pn}n in M ′ (which satisfies
∑∞

k=0 p
n
k [µkV − Ck] ≥ 0) such that

∑∞
k=n+1 p

n
k > ε for

all n. This implies

∞∑
k=0

pnk(µkV − Ck) = V

∞∑
k=0

pnkµk − C
∞∑
k=0

pnkk

≤ sup
k
µkV − C

∞∑
k=n+1

pnkk

≤ sup
k
µkV − C(n+ 1)

∞∑
k=n+1

pnk

≤ sup
k
µkV − C(n+ 1)ε.

Note that for n large enough, using our assumption that supk µk < +∞, the above term
must be strictly negative. This contradicts the fact that

∑∞
k=0 p

n
k(µkV −Ck) ≥ 0 for all n.

A.2Recall our assumption that µk is uniformly bounded.
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Lemma S3. The set M ′ is closed.

Proof. To show that M ′ is closed, we need to show that it contains all its limit points. Recall
that since ∆(Z+) is a metric space, p ∈ ∆(Z+) is a limit point of M ′ if and only if there is
a sequence of points in M ′\{p} converging to p. Take any sequence {pn}n in M ′ converging
to p∗. We need to show that (1)

∑∞
k=0 p

∗
k(µkV −Ck) ≥ 0 and (2) for all k, λkp

∗
k ≥ µk+1p

∗
k+1.

(1)
∑∞

k=0 p
∗
k(µkV − Ck) ≥ 0. Proceed by contradiction and assume that

∑∞
k=0 p

∗
k(µkV −

Ck) < 0. By Portmanteau’s Theorem, since the function k 7→ µkV − Ck is bounded above
(and trivially continuous in the discrete topology), we must have that lim sup

∑∞
k=0 p

n
k(µkV −

Ck) ≤
∑∞

k=0 p
∗
k(µkV − Ck). Hence, since, by assumption,

∑∞
k=0 p

∗
k(µkV − Ck) < 0, it must

be that for n large enough,
∑∞

k=0 p
n
k(µkV − Ck) < 0, a contradiction with the fact that

pn ∈M ′.
(2) For all k, λkp

∗
k ≥ µk+1p

∗
k+1. By contradiction, assume that for some k, λkp

∗
k < µk+1p

∗
k+1.

Since pnk and pnk+1 converge pointwise to p∗k and p∗k+1, for n large enough we have λkp
n
k <

µk+1p
n
k+1 which contradicts the fact that pn is in M ′.

Since M ′ is closed and tight, by Prokhorov Theorem, M ′ must be sequentially compact.
Since ∆(Z+) is a metric space, this implies that M ′ is compact, as claimed.

S.3.0.2 Completion of the proof of Proposition A.2

Let M ′′ be the set of p’s in M ′ which exhibits a cutoff policy. That is any p ∈ M ′′ satisfies
for some K̂, λkpk = µk+1pk+1, ∀k = 0, ..K̂ − 1 and pk = 0 for all k ≥ K̂ + 1. We define the
sequence {pK}K where, for each K, pK is an optimal solution of [P ′K ]. If µ is regular, we
assume that p∗ exhibits a cutoff policy which is well-defined by Proposition A.1. In addition,
for each K, we see pK as a point in RZ+ with pKk = 0 for all k ≥ K + 1. Clearly {pK}K is a
sequence in M ′′. In the next proposition we show that M ′′ is (sequentially) compact. This
will show that {pK}K must have a subsequence converging to a point that exhibits a cutoff
policy. In the sequel, we assume that µ is regular.

Proposition S4. {pK}K must have a subsequence converging to a feasible point p∗ of [P ′]
that exhibits a cutoff policy. In addition, p∗k > 0 for each k ≤ min arg maxk µkV − Ck.

Proof. For the first part of the statement, it suffices to show that M ′′ is (sequentially)
compact. Since M ′′ is a subset of M ′ which is compact (Proposition S3), we only need to
show that M ′′ is closed. Consider a sequence {pn} in M ′′ converging to p∗. We show that
p∗ ∈ M ′′. Since M ′ is (sequentially) compact, we already know that p∗ ∈ M ′. Letting
K̂ be the largest state in the support of p∗ (which is potentially +∞ if the support is
unbounded), we proceed by contradiction and assume that there exists k0 < K̂ such that
λk0−1p∗k0−1 > µk0p

∗
k0

. Now, simply pick n large enough so that (1) pnk > 0 for all k = 0, ..., k0+1
and (2) λk0−1p

n
k0−1 > µk0p

n
k0

. This contradicts the assumption that pn is in M ′′. We thus
conclude that p∗ ∈M ′′.

We now show the second part of the statement. We just proved that {pK}K must
have a subsequence converging to a feasible point p∗ of [P ′]. We show that p∗ satisfies
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p∗k > 0 for each k ≤ min arg maxk µkV − Ck. First, we simply observe that for any ξ ≥ 0,
min arg maxk µkV − Ck ≤ min arg max f(k; ξ).A.3 Now, we proceed by contradiction and
assume that there is k0 ≤ min arg maxk µkV − Ck such that p∗k0 = 0. Let us assume that
k0 is the smallest state satisfying this property, so, in particular, p∗k0−1 > 0. This implies
that p∗k0µk0 < p∗k0−1λk0−1. Since {pK}K converges to p∗, for K large enough, pKk0µk0 <
pKk0−1λk0−1. Since k0 ≤ min arg max f(k; ξ∗K), using single-peakedness of f(·; ξ∗K), we must
have f(k0 − 1; ξ∗K) < f(k0; ξ∗K) (where we use the notation (pK , ξ∗K) for the saddle point of
the Lagrangian in [P ′K ]). This contradicts Lemma A.4.

Finally, we complete the proof of Proposition A.2 via the following proposition.

Proposition S5. Take any subsequence of {pK}K converging to a limit p∗. Then, p∗ must
be an optimal solution of [P ′].

Proof. In the sequel, we let p∗ be the limit of an arbitrary converging subsequence {pK}K .
We proceed by contradiction and assume that p∗ is not a solution to the infinite dimensional
problem. By Proposition S1, we know that there is a solution to this problem. Let us call it
p̄. By assumption,

∞∑
k=0

p̄k [µk ((1− α)R + αV )− αCk] >
∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] . (A.1)

Now, let us note by p̄K the distribution p̄ conditional on {0, ..., K}, i.e., p̄Kk = 0 for all

k ≥ K + 1 while p̄Kk = p̄k

/∑K
k=0 p̄k for all k ≤ K. We claim that

lim
∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] =
∞∑
k=0

p̄k [µk ((1− α)R + αV )− αCk] .

Indeed, by construction, for each K,

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] =
K∑
k=0

p̄k [µk ((1− α)R + αV )− αCk]

/
K∑
k=0

p̄k .

Taking limits on both sides as K → ∞ (and using the fact that limK→∞
∑K

k=0 p̄k = 1), we
obtain

lim
K→∞

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] =
∞∑
k=0

p̄k [µk ((1− α)R + αV )− αCk] ,

as claimed.
A.3Straightforward algebra show that µk+1V − C(k + 1) > µkV − Ck if and only if µk+1 − µk > C/V .

Similarly, given ξ ≥ 0, we have that f(k+ 1; ξ) > f(k; ξ) if and only if µk+1−µk > C/[(1−α)/(α+ ξ) + V ].
Hence, whenever µkV − Ck is strictly increasing from k to k + 1, so is f(k; ξ). Since by Lemma A.3, these
functions are single-peaked, we must have min arg maxk µkV − Ck ≤ min arg max f(k; ξ).
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Now, using Equation (A.1), for K large enough, we must have

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] >
∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] + ε (A.2)

for some ε > 0. Now, since {pK}K converges weakly to p∗, by Proposition S2,

lim
K→∞

sup
∞∑
k=0

pKk [µk ((1− α)R + αV )− αCk] ≤
∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] .

Hence, we must have that for K large enough,

∞∑
k=0

p∗k [µk ((1− α)R + αV )− αCk] + ε >

∞∑
k=0

pKk [µk ((1− α)R + αV )− αCk] . (A.3)

Using Equation (A.2) and (A.3), we conclude that for K large enough,

∞∑
k=0

p̄Kk [µk ((1− α)R + αV )− αCk] >
∞∑
k=0

pKk [µk ((1− α)R + αV )− αCk] .

This contradicts the fact that pK is an optimal solution of [P ′K ] since p̄K is feasible in this
problem.

S.4 Proof that FCFS with no information satisfies (IC0).

Recall that policy (q∗, I∗) stands for FCFS queueing rule and the no information (beyond
recommendations) rule.

Lemma S4. The queueing/information policy (q∗, I∗) satisfies (IC0).

Proof. Recall the optimality of the cutoff policy means x∗k = 1 for all k = 0, ..., K∗ − 2 and
x∗k = 0 for all k > K∗ − 1, and y∗k,` = z∗k,` = 0 for all (k, `). Substitute these into (B). Use
the resulting equations to rewrite (1):

γ̃0
` =

p∗`µ`∑K∗

i=1 p
∗
iµi

,∀` = 1, ..., K∗.

An agent’s expected payoff when joining the queue after being recommended to do so is:

V − C
K∗∑
k=1

γ̃0
k · τ ∗k =V − C

∑K∗

k=1 p
∗
kµk · τ ∗k∑K∗

i=1 p
∗
iµi

=V − C
∑K∗

k=1 p
∗
kk∑K∗

i=1 p
∗
iµi
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=

(
1∑K∗

i=1 p
∗
iµi

)
K∗∑
k=1

p∗k (µkV − kC) ,

where the first equality is from the preceding observation and the second equality follows
from Lemma 1. Since

∑K∗

i=1 p
∗
iµi > 0, (IC0) holds if and only if (IR) holds.

S.5 Proof of Lemma 2 when K̄ =∞.

We first derive the infinite system of ODEs in terms of agents’ belief of occupying queue
position ` = 1, ...,∞ at time t. It follows from (2), together with q∗i = µi − µi−1, that

γ̃t+dt` =
(1− µ`dt)γ̃t` + µ`dtγ̃

t
`+1∑K̄

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt).

γ̃t+dtk − γ̃tk
dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1

dt
∑∞

i=1 γ̃
t
i(1− q∗i dt)

− γ̃tk
dt

+
o(dt)

dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1

dt
[
1− dt

∑∞
i=1 γ̃

t
iq
∗
i

] − γ̃tk
dt

+
o(dt)

dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1

dt
[
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

] − γ̃tk
dt

+
o(dt)

dt

=
(1− µkdt)γ̃tk + µkdtγ̃

t
k+1 − γ̃tk

[
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

]
dt
[
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

] +
o(dt)

dt

=
−µkγ̃tk + µkγ̃

t
k+1 + γ̃tk

[∑∞
i=1 γ̃

t
i(µi − µi−1)

][
1− dt

∑∞
i=1 γ̃

t
i(µi − µi−1)

] +
o(dt)

dt
.

Letting dt→ 0, we obtain: for all k ∈ N,

˙̃γtk = −µkγ̃tk + µkγ̃
t
k+1 + γ̃tk

[
∞∑
i=1

γ̃ti(µi − µi−1)

]
, fk(γ̃

t), (A.4)

and let f , (fk)k∈N. The following proposition states that, given an initial condition, this
system of ODEs has a unique solution.

Proposition S6. For any initial condition in ∆(N), there is a unique solution to the system
of ODEs given by (A.4).

Proof. Let X be the set of sequences in `1-space endowed with `1-norm. As is well-known,
this is a Banach space. Clearly, ∆(N) ⊆ X. Further, we can see that f maps from X to X.
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Indeed, for any γ̃t ∈ X :

||f(γ̃t)|| =
∞∑
k=1

∣∣fk(γ̃tk)∣∣
=

∞∑
k=1

∣∣∣∣∣−µkγ̃tk + µkγ̃
t
k+1 + γ̃tk

[
∞∑
i=1

γ̃ti(µi − µi−1)

]∣∣∣∣∣
≤

∞∑
k=1

∣∣−µkγ̃tk∣∣+
∞∑
k=1

∣∣µkγ̃tk+1

∣∣+
∞∑
k=1

∣∣∣∣∣γ̃tk
[
∞∑
i=1

γ̃ti(µi − µi−1)

]∣∣∣∣∣
≤ µ̄

∞∑
k=1

∣∣γ̃tk∣∣+ µ̄

∞∑
k=1

∣∣γ̃tk+1

∣∣+ µ̄

(
∞∑
k=1

∣∣γ̃tk∣∣
)(

∞∑
i=1

∣∣γ̃ti∣∣
)
<∞

where we recall that µ̄ , supk µk < ∞ and use the fact that γ̃t ∈ X. Hence, we have
f(γ̃t) ∈ X.

Lemma S5. Consider the restriction of f defined as follows f : U → X where U ,
{{xk}k≥1 ∈ X :

∑∞
k=1 |xk| < 1 + ε} ⊂ X, for some ε > 0, is an open set containing

∆(N). Mapping f (restricted to U) is Lipschitz continuous.

Proof. Indeed, for any γ̃ and γ̃′ in U ,

‖f(γ̃′)− f(γ̃)‖ =
∞∑
k=1

|fk(γ̃′)− fk(γ̃)|

≤
∞∑
k=1

|−µkγ̃′k + µkγ̃k|+
∞∑
k=1

∣∣µkγ̃′k+1 − µkγ̃k+1

∣∣
+
∞∑
k=1

∣∣∣∣∣γ̃′k
[
∞∑
i=1

γ̃′i(µi − µi−1)

]
− γ̃k

[
∞∑
i=1

γ̃i(µi − µi−1)

]∣∣∣∣∣
≤

∞∑
k=1

µk |γ̃′k − γ̃k|+
∞∑
k=1

µk
∣∣γ̃′k+1 − γ̃k+1

∣∣
+ max{

∞∑
i=1

|γ̃′i| (µi − µi−1),
∞∑
i=1

|γ̃i| (µi − µi−1)}
∞∑
k=1

|γ̃′k − γ̃k|

≤ µ̄ ‖γ̃′ − γ̃‖+ µ̄ ‖γ̃′ − γ̃‖+ (1 + ε)µ̄ ‖γ̃′ − γ̃‖ .

Thus, f restricted to U is Lipschitz continuous with Lipschitz constant equal to µ̄(3 + ε).

In order to complete the proof of Proposition S6, let us consider the system of ODEs
given by (A.4) where the vector field f is the mapping from X to X. Since f is bounded and,
by Lemma S5, Lipschitz continuous on ∆(N) and ∆(N) is positively invariant, existence and
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uniqueness of a solution for our system of ODEs with initial condition in ∆(N) follows from
Picard-Lindelöf Theorem on Banach spaces.A.4

In the sequel, we consider solutions to the system of ODEs when the entry rule x∗ is
“truncated”to xK , i.e., where xKk = x∗k = 1 for all k ≤ K and xKk = 0 otherwise. We show that
solutions to the system of ODEs under the truncated cutoff policy (xK , y∗, z∗) approximate
solutions to the system under the original cutoff policy (x∗, y∗, z∗). More specifically, we let
γ̃K(t) = (γ̃Kk (t))k∈N denote a solution to the system given by (A.4)

˙̃γt = f(γ̃t),

when γ̃0 = γ̃K(0) , (γ̃Kk (0))k∈N where γ̃Kk (0) is an agent’s belief of entering the queue with
position k at t = 0 under the truncated cutoff policy.A.5 Meanwhile, γ̃∞(t) = (γ̃∞k (t))k∈N
denotes a solution to this system of ODEs when γ̃0 = γ̃∞(0) , (γ̃∞k (0))k∈N where γ̃∞k (0) is
an agent’s belief of entering the queue with position k at t = 0 under the original cutoff
policy. We show that solution γ̃K converges to solution γ̃∞ when K goes to infinity.

Lemma S6. The solution γ̃K converges pointwise to the solution γ̃∞, i.e., for each t > 0,

lim
K→∞

||γ̃K(t)− γ̃∞(t)|| = 0.

Proof. The following two steps prove the lemma.

Step 1.
∥∥γ̃K(0)− γ̃∞(0)

∥∥→ 0 as K →∞.

Proof. We know that for all ` = 2, ..., K : γ̃K` (0) =
∏`

i=2 r
0
i γ̃

K
1 (0) =

∏`
i=2

λ̃i−1

µi−1
γ̃K1 (0), where

we used (B.9), while γ̃K` (0) = 0 for ` ≥ K + 1. In addition, we know that γ̃∞` (0) =∏`
i=2

λ̃i−1

µi−1
γ̃∞1 (0) and

∑∞
k=1

∏k
i=2

λ̃i−1

µi−1
γ̃∞1 (0) = 1 where our convention is that

∏1
i=2

λ̃i−1

µi−1
, 1.

Thus,

γ̃∞1 (0) =
1∑∞

k=1

∏k
i=2

λ̃i−1

µi−1

.

Note that this implies that
∑∞

k=1

∏k
i=2

λ̃i−1

µi−1
<∞. Similar computation yields

γ̃K1 (0) =
1∑K

k=1

∏k
i=2

λ̃i−1

µi−1

.

Note that
∣∣γ̃K1 (0)− γ̃∞1 (0)

∣∣→ 0 as K increases. We have

∥∥γ̃K(0)− γ̃∞(0)
∥∥ =

∞∑
k=1

∣∣γ̃Kk (0)− γ̃∞k (0)
∣∣

A.4Recall that a subset S of X is positively invariant if no solution starting inside S can leave S in the
future.
A.5Note that γ̃Kk (0) = 0 for all k > K.
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=
K∑
k=1

∣∣γ̃Kk (0)− γ̃∞k (0)
∣∣+

∞∑
k=K+1

|γ̃∞k (0)|

=
K∑
k=1

∣∣∣∣∣
k∏
i=2

λ̃i−1

µi−1

γ̃K1 (0)−
k∏
i=2

λ̃i−1

µi−1

γ̃∞1 (0)

∣∣∣∣∣+
∞∑

k=K+1

|γ̃∞k (0)|

=
∣∣γ̃K1 (0)− γ̃∞1 (0)

∣∣ K∑
k=1

k∏
i=2

λ̃i−1

µi−1

+
∞∑

k=K+1

|γ̃∞k (0)| .

Since
∣∣γ̃K1 (0)− γ̃∞1 (0)

∣∣ → 0 as K → ∞,
∑∞

k=1

∏k
i=2

λ̃i−1

µi−1
< ∞, and

∑∞
k=K+1 |γ̃

∞
k (0)| goes to

0 as K →∞, the result follows.

Step 2. For each t > 0,

lim
K→∞

∞∑
k=1

∣∣γ̃Kk (t)− γ̃∞k (t)
∣∣ = 0.

Proof. By Grönwall’s inequality,∥∥γ̃K(t)− γ̃∞(t)
∥∥ ≤ eCt

∥∥γ̃K(0)− γ̃∞(0)
∥∥ ,

where, by Lemma S5, C , µ̄(3 + ε) is the Lipschitz constant for the Lipschitz continuous
function f restricted to open set U = {{xk}k≥1 ∈ X :

∑∞
k=1 |xk| < 1 + ε}. The result then

follows from Step 1.

We now complete the proof of Lemma 2 when K̄ =∞ with the following lemma.

Lemma S7. ṙ∞` (t) ≤ 0 for all ` ≥ 2 and t, where r∞` (t) = γ̃∞` (t)/γ̃∞`−1(t) for all ` ≥ 2.

Proof. Recall from Equation (B.8) in the main text that the system of ODEs is given by

ṙ∞` (t) = r∞` (t)
(
µ`−1 − µ` − µ`−1r

∞
` (t) + µ`r

∞
`+1(t)

)
for all ` ≥ 2. Suppose to the contrary that ṙ∞` (t) > 0 for some ` and t. We already proved
in Appendix B.2 (in the main text) where K̄ <∞ that

ṙK` (t) = rK` (t)
(
µ`−1 − µ` − µ`−1r

K
` (t) + µ`r

K
`+1(t)

)
≤ 0

for all K <∞, ` and t. To show a contradiction, it is enough to prove that

rK` (t)
(
µ`−1 − µ` − µ`−1r

K
` (t) + µ`r

K
`+1(t)

)
→ r∞` (t)

(
µ`−1 − µ` − µ`−1r

∞
` (t) + µ`r

∞
`+1(t)

)
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as K → ∞. To this end, it suffices to show that rK` (t) and rK`+1(t) converge respectively to
r∞` (t) and r∞`+1(t). It follows from Lemma S6 that for each k :

lim
K→∞

γ̃Kk (t) = γ̃∞k (t).

By assumption γ̃∞k (0) > 0 for all k, so

lim
K→∞

rK` (t) = lim
K→∞

γ̃K` (t)

γ̃K`−1(t)
=

γ̃∞` (t)

γ̃∞`−1(t)
= r∞` (t)

Similarly,
lim
K→∞

rK`+1(t) = r∞`+1(t),

which completes the argument.

S.6 Generalization of Naor (1969)

In this section, we generalize Naor (1969)’s classic result (obtained for the M/M/1 queue) to
our more general Markov process:agents would have excess incentives to queue under FCFS
with full information. Since the designer can simply stop excessive queueing, this means that
FCFS with a full information rule, denoted IFI , can be used to achieve the optimal cutoff
policy.

Proposition S7. Suppose α = 1 and µ is regular. Then, FCFS with full information, IFI ,
implements the optimal cutoff outcome (x∗, y∗, p∗).

Proof. Consider FCFS with full information. We need to show that (ICt) holds for all
t ≥ 0. With the full information rule, we only need to show that (IC0) holds. By Lemma 1,
condition (IC0) can be written as:

V − C k

µk
≥ 0⇐⇒ µkV − Ck ≥ 0 (A.5)

for all k ≤ K∗. In the sequel, we let KFI be the largest integer satisfying (A.5). We know
that, by regularity of µ, k 7→ µkV − Ck is single-peaked (by Lemma A.3 for α = 1 and
ξ = 0). Hence, KFI is well-defined (i.e., finite) given our assumption that µk is uniformly
bounded. In addition, Equation (A.5) holds at state k if and only if k ≤ KFI . Hence, it is
enough for our purpose to show that K∗ ≤ KFI .

Proceed by contradiction and assume that the optimal cutoff policy p∗, which we recall
solves [P ′], puts strictly positive weight on k > KFI . Note that, using again the fact that
k 7→ µkV − Ck is single-peaked, for any such k, µkV − Ck < 0. Now, build p′ such that
p′k = 0 for all k > KFI and p′k = Zp∗k for all k ≤ KFI where Z > 1 is set so that the sum of p′k
is equal to 1. Given that p∗ satisfies (B′) and given that, by construction, p′k/p

′
k−1 = p∗k/p

∗
k−1

for all k ≤ KFI , we must have that p′ also satisfies (B′). Compared to p∗, distribution p′
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removes all weight on negative values and, for each positive value, increases its weight. This
must strictly increase the value of the objective. It remains to show that p′ satisfies (IR).
The value of the objective must be positive under p∗ (recall that the dirac mass on 0 brings
a value of the objective of 0), and so the value of the objective must be positive under p′ as
well. Given that α = 1, this implies that (IR) is satisfied.

S.7 Formal Arguments for Dynamic Matching with Over-

loaded Lists

In this section, we explain how our results can be obtained in the setting with overloaded
waiting-lists as proposed by Leshno (2019). Consider an infinite discrete time horizon model
where at each period a number of agents are waiting on a wait-list. Each period t begins
with arrival of an item which can be of two types, either A with probability µA or B with
probability µB = 1 − µA independently across periods. Period t ends when the item is
assigned to an agent. Agents can be either type α or β each with probability µα and
µβ = 1− µα. Type α agents prefer A items to B items while type β agents prefer B over A.
Agents’ non-preferred item is referred to as a mismatched item. As in our main setting, all
agents are infinitely lived, risk neutral, and incur a common linear waiting cost C > 0 per
period until they are assigned. Opting out of the waiting-list is assumed to be equivalent to
never getting assigned and entails a utility of −∞. An agent’s value of being assigned an
item is V if the item is his most preferred and value 0 if assigned a mismatched item. As we
already mentioned in the main text, since agents prefer to receive a mismatched item over
never being assigned, taking a mismatched item for an agent could simply be intrepreted as
choosing an outside option.

A mechanism decides at each date, to which agent waiting on the list is assigned the
arriving item. As in Leshno (2019), we restrict our attention to buffer-queue mechanisms
where a separate buffer-queue is held for each item. A (B) items arriving are assigned to the
agents waiting on the A (B) buffer-queue if it is non-empty and to agents on the waiting-list
otherwise. Those, agents from the wait-list can either accept the A (B) item or refuse. If
they refuse a A (B) item, these agents are identified as β (α) type agents and enter the B
(A) buffer-queue. The buffer-queue mechanism specifies the queueing discipline (i.e., how to
prioritize agents within the buffer-queue) and so uses positions within the buffer-queue to
decide who gets assigned the arriving item. In addition, a buffer-queue mechanism specifies
the maximum number of agents in each buffer queue, say KA (KB) for the A (B) buffer-
queue. Any buffer-queue mechanism induces a stochastic process over the number of agents
in each buffer-queue. Note that at each date, one of the two buffer-queues must be empty.
Hence, we can think of the state space as {−KB, ...,−1, 0, 1, ..., KA} where k ≥ 0 means that
the B buffer-queue is empty and that there are k agents in the A buffer-queue. The invariant
distribution of this process is denoted by p = (p−KB , ..., p−1, p0, p1, ..., pKA) and characterized
in Leshno (2019). The stochastic processes induced by buffer-queue mechanisms are not
birth-death processes. Hence, our results do not directly apply to the environment under
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study. However, in the sequel, we explain how these can be adapted.
The social planner’s goal is to allocate items to maximize total utility. We follow Leshno

(2019) and assume that the waiting-list is “overloaded”, i.e., no mechanism will ever ex-
haust the waiting-list. In this context, any allocation reduces total waiting costs by the
same amount. Hence, the social planner can ignore waiting costs when comparing different
allocations and his goal boils down to minimizing misallocations under incentive constraints.

So far the setup is the same as Leshno (2019). However, Leshno (2019) assumes that
upon entering a buffer-queue, agents are informed of the length of the buffer queue and,
hence, perfectly know their positions in that queue at all subsequent periods. We, however,
depart from the full information rule. We allow similar information policy as in previous
sections and, hence, impose similar obedience constraint, i.e., we require that conditional
on the information released to agents, any agent recommended to join a buffer-queue or to
stay in that queue must have an incentive to follow that recommendation. Consistently with
what we proved in previous sections, we will show that FCFS with no information is optimal.
Under FCFS with no information, the obedience constraints for the two buffer-queues can
be written as follows. For agents recommended to enter the A buffer-queue:

V − C
KA∑
`=1

γ̃t`τ
∗
` ≥ 0,∀t ≥ 0

where γ̃t` stands for an agent’s belief on having position ` in the A buffer-queue after spending
t periods on this buffer-queue while τ ∗` is the expected waiting time induced by the policy
of an agent having position ` in the A buffer-queue. A similar condition applies to agents
recommended to join the B buffer-queue.

Intuitively, if one wants to minimize misallocations, the problem of deriving the opti-
mal buffer-queue mechanism reduces to finding the maximal size of an incentive-compatible
buffer-queue mechanism. These maximal sizes K∗A and K∗B, for buffer-queues A and B re-
spectively, are identified in Leshno (2019). In the sequel, we show that under FCFS with
no information, when the size of the buffer-queues are set to these maximal sizes, obedience
constraints are satisfied at all t ≥ 0.

Theorem S2. Assume that the maximal sizes of buffer-queues are given by K∗A and K∗B.
FCFS with no information satisfies the obedience constraints.

In the full information context, Leshno (2019) proves that FCFS is not optimal among
incentive compatible buffer-queue mechanisms and, further, that it can be dominated by
SIRO. SIRO is not incentive compatible when the maximal sizes of buffer-queues are set to
K∗A and K∗B.A.6 Hence, Theorem S2 not only shows that FCFS becomes optimal with a no
information policy but it also shows that FCFS under no information outperforms SIRO
under full information. Further, one can show that, under the no information policy, SIRO
may violate obedience constraints for t > 0.

A.6SIRO is not optimal in general but it is optimal within belief-free incentive compatible mechanisms. We
observe that, trivially, FCFS is belief-free incentive compatible in Leshno (2019)’s terminology.
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We prove that FCFS with these sizes of buffer-queues is incentive compatible under the
no information policy. Our argument parallels that of Theorem 2. Indeed, we first prove that
the obedience constraints hold at t = 0. In a second step, we show that the likelihood ratio of
beliefs about being in queue position ` cersus being in queue position `−1 after spending time
t on the queue.declines as t increases, meaning one’s belief about getting served improves
over time under FCFS with no information proving that the obedience constraints hold at
all t ≥ 0.

In order to prove both of these results, the lemma below stating that the likelihood ratio
r0
` does not depend on ` is helpful. Leshno (2019) defines an extended Markov chain to

describe the evolution of the number of agents in the buffer-queues both across periods and
within a period and characterizes the invariant distribution of the process. Upon entering
the A buffer-queue at a date t, an agent knows that a B item arrived and holds some beliefs
over the number of agents who are ahead of him (including those who entered before him
at the current date t). Conditional on a B item arriving, Leshno (2019)’s characterization
states that the ratio of the likelihood of having ` agents over the likelihood of having ` − 1
agents in the A-queue is a constant equal to µα

µA
. This yields the lemma below whose proof

is provided for completeness.A.7

Lemma S8. Under FCFS with no information, we have r0
` =

γ̃0`
γ̃0`−1

= µα
µA

for all ` = 2, ..., KA.

Proof. Recall that our goal here is to show that the likelihood ratio r` of beliefs of agents
entering the A-buffer queue does not depend on `. A symmetric argument clearly holds for
agents entering into the B-buffer queue.

Let M be the size of the main queue at t = 0 (i.e., the date at which the agent enters into
the A buffer-queue) and recall that there are caps KA and KB on the A-buffer and B-buffer
queues. For a given α-type agent, we compute the probability γ̃0

` that he gets position ` in
the A-buffer queue conditional on the agent entering into the A-buffer queue,

γ̃0
` =

∑̀
`′=0

p`′µB
1
M
µ`−`

′
α

K∑
`=1

∑̀
`′=0

p`′µB
1
M
µ`−`′α

for all ` = 1, ..., KA. The probability that there are `′ agents in the A-queue at the begining
of the period is p`′ . Given that there are `′ agents in the A-queue, the event that the agent
enters in the A-queue and has position ` in this buffer-queue corresponds to the joint event
that (1) a B-item arrived (which occurs with probability µB), (2) the agents has queue
position exactly ` − `′ in the main queue and all agents ahead of him in the A-queue and

A.7We simply focus on the likelihood ratio of beliefs of agents entering the A-buffer queue. A symmetric
argument holds for agents entering the B buffer-queue.
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himself are of α-type (which occurs with probability (1/M) × µ`−`′α ).A.8 This explains the
numerator. The denominator is simply the sum over ` of probabilities in the numerator.

Hence,

γ̃0
` =

µB
1
M

(
p0µ

`
α +

∑̀
`′=1

p`′µ
`−`′
α

)
K∑
`=1

∑̀
`′=0

p`′µB
1
M
µ`−`′α

=

µB
1
M
p0

(
µ`α +

∑̀
`′=1

(
µα
µA

)`′
µBµ

`−`′
α

)
K∑
`=1

∑̀
`′=0

p`′µB
1
M
µ`−`′α

where the second equality is obtained by Lemma 2 in Leshno (2019) where it is proved that

p` = µB

(
µα
µA

)`
p0 for all ` = 1, ..., KA.

To prove the lemma, we note that for all ` = 2, ..., KA,

r0
` =

γ̃0
`

γ̃0
`−1

=

µ`α +
∑̀
`′=1

(
µα
µA

)`′
µBµ

`−`′
α

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

=

µ`α +
(
µα
µA

)
µBµ

`−1
α +

∑̀
`′=2

(
µα
µA

)`′
µBµ

`−`′
α

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

=

µ`−1
α (µα +

(
µα
µA

)
µB) +

∑̀
`′=2

(
µα
µA

)`′
µBµ

`−`′
α

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

=

µ`−1
α

µα
µA

(µA + µB) +
∑̀
`′=2

(
µα
µA

)`′
µBµ

`−`′
α

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

A.8Note that these agents have never been offered any item. Otherwise, they would have been matched or
they would be in a buffer queue. So, wlog, we can consider that we are drawing their types and positions
only at the current period. Further, we are assuming that each agent believes that the position he holds in
the main queue is a uniform draw over all possible positions.
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=
µα
µA

µ`−1
α +

∑̀
`′=2

(
µα
µA

)`′−1

µBµ
`−`′
α

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

=
µα
µA

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

µ`−1
α +

`−1∑
`′=1

(
µα
µA

)`′
µBµ

`−`′−1
α

=
µα
µA

.

Now, we are in a position to prove the first step of our argument, i.e., that obedience
constraints hold at t = 0. (Recall that the maximal sizes of the buffer-queues compatible with
the obedience constraints are denoted K∗A and K∗B, for buffer-queues A and B respectively).

Proposition S8. Assume that the maximal sizes of buffer-queues are given by K∗A and K∗B.
FCFS with no information satisfies the obedience constraints at t = 0.

Proof. In the sequel, we simply focus on the obedience constraint at t = 0 for agents rec-
ommended to join the A buffer-queue. A symmetric argument holds for the other obedience
constraint. The maximal sizes of the buffer-queues satisfying the obedience constraints are
identified in Leshno (2019). In case µα = µA, it is equal to

⌊
2µA

V
C

⌋
− 1 ≡ K∗A for the A

buffer-queue. In case µα 6= µA, K∗A is equal to sup{K ∈ Z+ | K+ µA
µA−µα

+ K(
µα
µA

)K
−1
≤ V

C
µA}.

First, it is clear that τ ∗` = `/µA. Indeed, an agent in position ` in the A-buffer-queue will
have to wait the arrival of ` items A to get matched. Since, at each date, the likelihood that
an item A arrives is µA, the expected waiting time for this agent must be `/µA.

Case 1: µα = µA. Lemma S8 implies that γ̃0
` = 1

K∗A
for all ` = 1, ..., K∗A. Hence, we can

rewrite the obedience constraint at t = 0 as follows

V − C
K∗A∑
`=1

γ̃0
`τ
∗
` = V − C 1

K∗A

K∗A∑
`=1

`

µA

= V − 1

µA
C
K∗A + 1

2
≥ 0.

Note that this inequality holds true if and only if K∗A ≤ 2V
C
µA − 1. Since K∗A is an integer,

this is equivalent to K∗A ≤
⌊
2µA

V
C

⌋
− 1 which holds by definition of K∗A.

Case 2: µα 6= µA. Lemma S8 implies that γ̃0
` = γ̃0

1

(
µα
µA

)`−1

for all ` = 1, ..., K∗A and
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γ̃0
1 = 1∑K∗

A
`=1

(
µα
µA

)`−1 . Hence, we can rewrite the obedience constraint at t = 0 as follows

V − C
K∗A∑
`=1

γ̃0
`τ
∗
` = V − C 1

µA

∑K∗A
`=1

(
µα
µA

)`−1

`∑K∗A
`=1

(
µα
µA

)`−1

= V − C 1

µA

∑K∗A
`=1

(
µα
µA

)`
`∑K∗A

`=1

(
µα
µA

)`
= 1− C 1

µA

µA
µA − µα

µα
µA

1− (K∗A + 1)
(
µα
µA

)K∗A
+K∗A

(
µα
µA

)K∗A+1

(
µα
µA

)
−
(
µα
µA

)K∗A+1

= V − C 1

µA
[K∗A +

µA
µA − µα

+
K∗A(

µα
µA

)K∗A − 1
] ≥ 0

where the third equality uses basic properties of power series. Note that this inequality holds
true since K∗A = sup{K ∈ Z+ | K+ µA

µA−µα
+ K(

µα
µA

)K
−1
≤ V

C
µA} and since, as proved in Leshno

(2019), the function K 7→ K + µA
µA−µα

+ K(
µα
µA

)K
−1

is monotonically increasing in K and goes

to infinity when K grows large.

Finally, we need to show that the obedience constraints hold for all t > 0. In order to do
so, we simply show that the likelihood ratio decreases over time.

Proposition S9. rt` ≤ r0
` for all t ≥ 0 for all ` ∈ {2, ..., KA}.

Proof. Note that one can write {γ̃t+1
` }` as a function of {γ̃t`}` as follows

γ̃t+1
` =

γ̃t`µB + γ̃t`+1µA

γ̃t1µB +
∑K

i=2 γ̃
t
i

for ` = 1, ..., KA where we recall that γ̃tKA+1 = 0. Indeed, the numerator is the probability
that the agent’s queue position is ` after staying in the queue for t + 1 periods. This event
occurs either if (1) the agent has already `−1 agents ahead of him in the queue at time t and
none of them as well as himself are served at time t; or (2) if there are ` agents ahead of him
at t and at least one agent ahead of him is served at t. The denominator in turn gives the
probability that the agent has not been served by time t+ 1. Hence, given that an agent has
not been served when period t + 1 starts, the above expression gives the conditional belief
that his position in the queue is ` when period t+ 1 starts.
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Thus, we obtain

rt+1
` =

γ̃t+1
`

γ̃t+1
`−1

=
γ̃t`µB + γ̃t`+1µA
γ̃t`−1µB + γ̃t`µA

=
µB + rt`+1µA

1
rt`
µB + µA

for ` = 2, ..., KA where we recall that rtKA+1 = 0. Hence, we have a mapping from rt ≡ {rt`}`
to rt+1 ≡ {rt+1

` }`. Clearly, this mapping is increasing (in the product order). Thus, if we
can show that r1

` ≤ r0
` for ` = 2, ..., KA, then the sequence {rt`}t will be decreasing for each

` = 2, ..., KA, and so the proof will be complete.
Fix any ` = 2, ..., KA, we want to show that r1

` ≤ r0
` , i.e.,

µB + r0
`+1µA

1
r0`
µB + µA

≤ r0
`

which in turn is equivalent to
r0
`+1 ≤ r0

` .

The above holds true by Lemma S8 (we recall that r0
KA+1 = 0).
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