Bamboo biodiversity

Africa, Madagascar and the Americas

Nadia Bystriakova, Valerie Kapos, Igor Lysenko
Bamboo biodiversity

Africa, Madagascar and the Americas

Nadia Bystriakova, Valerie Kapos, Igor Lysenko
UNEP World Conservation Monitoring Centre
219 Huntingdon Road
Cambridge
CB3 0DL
United Kingdom
Tel: +44 (0) 1223 277314
Fax: +44 (0) 1223 277136
Email: info@unep-wcmc.org
Website: www.unep-wcmc.org

Director: Mark Collins

The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world’s foremost intergovernmental environmental organization. UNEP-WCMC aims to help decision-makers recognize the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action.

UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on environmental threats and impacts, and development of future scenarios for the living world.

International Network for Bamboo and Rattan
No. 8, Fu Tong Dong Da Jie, Wang Jing Area
Chao Yang District, Beijing 100102
People’s Republic of China
Postal address: Beijing 100102-86
People’s Republic of China
Tel: +86 (0) 10 6470 6161
Fax: +86 (0) 10 6470 2166
Email: info@inbar.int
Website: www.inbar.int

Director General: Ian Hunter

The International Network for Bamboo and Rattan (INBAR) is an international organization established by treaty in November 1997, dedicated to improving the social, economic, and environmental benefits of bamboo and rattan. INBAR connects a global network of partners from the government, private and not-for-profit sectors in over 50 countries to define and implement a global agenda for sustainable development through bamboo and rattan.

Authors
N. Bystriakova¹,²
V. Kapos²
I. Lysenko²

¹ International Network for Bamboo and Rattan
Beijing, China
² UNEP World Conservation Monitoring Centre
Cambridge, UK

Acknowledgements
The authors gratefully acknowledge financial support from the International Network for Bamboo and Rattan (INBAR) and the UNEP World Conservation Monitoring Centre (UNEP-WCMC). UNEP-WCMC and the Royal Botanical Gardens, Kew, are thanked for providing working facilities. We thank Chris Stapleton for providing useful technical input and access to key literature. We are grateful to Ian May for providing extra help with mapping and data management.

Additional photo credits
Page 7 (left to right): INBAR, INBAR C. Petersen/UNEP/Topham, INBAR, Jorg Stamm; page 8: Ron Surratt; page 9: Bruno Locatelli; page 18: Jorg Stamm; page 20: Chris Hagen

A Banson production
Printed in the UK by Swaingrove Imaging

The contents of this report do not necessarily reflect the views or policies of UNEP, INBAR or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP, INBAR or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries.
Contents

Foreword ... 4
Preface .. 5

BAMBOO BIODIVERSITY .. 7
References ... 21

Annex I: Subtribes and genera of woody bamboos occurring naturally in Africa, Madagascar and the Americas ... 24
Annex II: Bamboo species on the 1997 IUCN Red List of Threatened Plants ... 25
Annex III: Useful native species of bamboo in Africa, Madagascar and the Americas ... 26
Annex IV: Woody bamboo species of Africa, Madagascar and the Americas with <20 000 km² of forest remaining within their ranges ... 28
Annex V: Maps of potential distributions of woody bamboos in Africa, Madagascar and the Americas ... 31
The bamboo plant supports an international trade, which (even according to our currently imperfect trade statistics) amounts to well over US$2 billion per year. International trade, however, forms only a part of bamboo usage, with domestic use estimated to account for at least 80 per cent of the total. Bamboo is thus a major world commodity.

Despite this, very little is known about the distribution and resources of bamboo. Certain bamboo species (e.g. Chinese Moso bamboo, *Phyllostachys edulis*) have formed the basis of major industrial development and have been domesticated into plantations. Perhaps 50 or 100 bamboo species are preferred for use and are undergoing some degree of domestication. However there are estimated to be nearly 1,500 species in total and the vast majority of these occur only in their native ranges, and many may have uses of local or wider significance that have yet to be documented. Unfortunately, as obligate components of forested ecosystems, their futures are bound up with the survival of their forest habitats. This work indicates that as forest ecosystems shrink under human pressure the survival of many potentially important bamboo species may be threatened.

This work is a first step towards quantifying existing resources of bamboo. Knowledge of the magnitude and distribution of these resources is a necessary precursor to planning and implementing conservation and sustainable management of bamboos in the wild.

The innovative approach used here can be applied to the study of other species associated with mapped ecosystems.

This study would not have been possible without collaboration between INBAR and UNEP-WCMC. It was the detailed map-based databases of UNEP-WCMC that made the development of the methodology possible. This study thus represents an excellent example of two organizations working together to combine their strengths.

Ian Hunter
Director General
International Network for Bamboo and Rattan
Preface

Wherever they occur, woody bamboos are of direct importance to people. They are used for everything from construction to irrigation systems, from musical instruments to food and fuel. Their greatest economic importance is in the Asia-Pacific region, but they are also fundamental to local economies in other regions of the world. Despite their value to humanity, we still know relatively little about most bamboos in the wild.

Bamboos are an ancient group of plants that play a distinctive role in the forest ecosystems of which they are a part. For example, they support a range of specialized and rare species, such as the greater bamboo lemur of Madagascar. This report (like its companion volume for the bamboos of the Asia-Pacific region) applies innovative approaches and analytical tools to expand our understanding of the ecological role of bamboos substantially. The authors have generated a revealing overview of the distribution of bamboos in Africa, Madagascar and the Americas, which provides the first sound basis for a description of their importance and an analysis of their conservation needs.

This work directly supports the *Global Strategy for Plant Conservation*, adopted under the Convention on Biological Diversity, which expressly recognizes the need for more knowledge on distribution and threats as a basic requirement for effective conservation measures. A Global Partnership for Plant Conservation has recently been formed to help implement the *Global Strategy*, and UNEP-WCMC is pleased to be one of its founding members. By assessing conservation status, identifying areas important for bamboo diversity and *in situ* conservation of threatened species, and providing information on the use of wild species, this report contributes directly to implementation of the *Global Strategy* and achievement of its targets.

Conserving such genetic resources as wild bamboos is an essential step towards solving the problems of poverty alleviation and sustainable development. Because of their many uses, bamboos exemplify the connection between biodiversity and livelihoods very clearly. This report will help range states to recognize, and value, the bamboo genetic resources on their own doorsteps, and to conserve them for future generations.

I welcome this opportunity to collaborate with INBAR, the world’s bamboo and rattan trade network. I hope that our first analyses will form the basis for future in-depth assessments of bamboo resources and their conservation status. Bamboos are a fascinating group of plants that bring benefits to people everywhere; they should be conserved as an important resource for all our futures.

Mark Collins
Director
UNEP World Conservation Monitoring Centre
Bamboos are distinct and fascinating plants, with a wide range of values and uses. Although their diversity and their importance are highest in, and have been best documented for, the Asia-Pacific region, they are also important in continental Africa, Madagascar and the Americas. Worldwide they are associated with unique elements of biodiversity, many with great conservation significance. They are important in local cultures and economies, and contribute to soil and water management. The purpose of the present study is to synthesize existing knowledge to provide an overview of the richness and distribution of woody bamboos in Africa, Madagascar and the Americas. It shows that a number of bamboo species in these regions are potentially threatened by the destruction of natural forest cover. Conservation and sustainable management of wild populations of bamboo should be a priority, especially where diversity is high or deforestation is a significant threat.

Bamboos are plants of global interest because of their distinctive life form, their ecological importance and the wide range of uses and values they have for humans. Woody bamboos are an ancient group of forest plants, which evolved in the lowland tropics of Gondwanaland during the Tertiary (Clark 1997).

Bamboos are a significant structural component of many forest ecosystems and play a major role in ecosystem dynamics through their distinctive cycles of mass flowering and subsequent die-off, which may increase the importance of fire (Keeley and Bond 1999). Inhabiting moister, more benign habitats in old-growth forests, bamboos are often associated with threatened plants, and there are many specialized animal species that depend upon them. There are also many little-known invertebrates specially adapted to the environment within hollow bamboo culms. These specialized relationships, which reflect a long history of co-evolution between bamboos and other species, can shed light on evolutionary and ecological processes.

Bamboos are multipurpose crops, with over 1 500 documented uses. Their most important traditional uses include housing, food and material for handicrafts. Worldwide, over 2.5 billion people trade in or use bamboo (INBAR 1999). Globally, domestic trade and subsistence use of bamboo are estimated to be worth US$4.5 billion per year, and export of bamboo generates another US$2.7 billion (INBAR 1999). The many uses and the economic importance of bamboo mean that it plays a considerable role in improving the livelihoods of rural poor people. The
rural poor, especially women and children, harvest much of the bamboo used.

The extensive rhizome system of bamboos lies primarily in the top layers of soil, so bamboos often play a major role in stabilizing soils on slopes and river banks, preventing erosion and land slips. This also makes them important in securing the hydrological function of catchments and rivers. Many forest bamboos are characteristic of high-altitude ecosystems on steep slopes in zones of high seismic activity, so their role in soil stabilization may be critical.

The scientific, environmental, economic and social importance of bamboos means that it is essential that strategies be developed for their sustainable management. However, knowledge to support such planning is limited.

Bamboos are of conservation significance in their own right and may also serve as indicators of high biodiversity in other groups. As most bamboo species are forest plants, they are intrinsically vulnerable to deforestation. The vulnerability of some species is increased by the simultaneous flowering and subsequent death of entire populations in cycles of 20-120 years. A recent study (Bystriakova et al. 2003a,b) showed that around 40 per cent of bamboos in the Asia-Pacific region are potentially threatened due to the small amount of forest cover remaining within their natural ranges. Other authors have suggested that many bamboos in the Americas may be of conservation concern (Judziewicz et al. 1999), and the 1997 IUCN Red List of Threatened Plants contained 12 species of woody bamboo from the Americas and one from Africa (Gillet and Walter 1998). However, there has as yet been little systematic evaluation of potentially threatened bamboos outside the Asia-Pacific region.

In this work, we extend the approach used by Bystriakova et al. (2003a,b) to Africa, Madagascar and the Americas, to synthesize existing knowledge on bamboo distribution and identify bamboo species in the three focal regions that may be of conservation concern.

STATE OF KNOWLEDGE OF BAMBOOS, BAMBOO RESOURCES AND THEIR MANAGEMENT

Despite their importance, very little is known about bamboo distribution and resources, especially in natural forests. As a non-timber forest product, bamboo is not routinely included in forest inventories. According to the FAO (2001), statistical data on bamboo are available for the period 1954 to 1971 only. Today, very few countries monitor non-timber forest product (NTFP) supply and utilization at the national level. The difficulty of assessing bamboo (and other NTFP) resources and their use arises from:

- uncertainty associated with their taxonomy (see below);
- the large number of, and wide variation in, their uses at local, national and international levels;
- the fact that many bamboo products are used or marketed outside traditional economic structures;
- the lack of common terminology and units of measurement (FAO 2001).

The description of bamboos is an ongoing process; not only do new species remain to be discovered and described, many earlier descriptions and classifications of species are being revised. According to Ohrnberger (1999), the subfamily Bambusoideae [of the family Poaceae, or Gramineae] comprises both woody and herbaceous bamboos with 1 575 species altogether. In the most recent (and narrower) classification (Grass Phylogeny Working Group 2001) the subfamily Bambusoideae includes two tribes and approximately 1 200 species.

Although some bamboos have been the subject of a great deal of research, the majority of species are poorly known and much of their biology is incompletely understood. Resources to study bamboos scientifically have been and remain severely limited. Most international research funding and effort has focused on a relatively small set (38) of ‘priority species’ of bamboo that are commercially important and widely distributed (Williams and Rao 1994; Rao et al. 1998). Of these, most are native to the Asia-Pacific region, one (Oxytenanthera abyssinica) is an African species, none occurs in Madagascar and one (Guadua angustifolia) comes from South America. Consequently, research on biodiversity and conservation of forest bamboos has been especially limited in the three regions considered here.
Perhaps because of their great regional economic importance, the bamboos of the Asia-Pacific region have been more thoroughly investigated than those of other regions. The current understanding of their distribution and conservation status was summarized by Bystriakova et al. (2003a,b). Although those publications cover the majority of the world’s 1 200 bamboo species, around 400 bamboo species and subspecies occur in other regions of the world and are less well known.

The purpose of the present study is to synthesize existing knowledge to provide an overview of the richness and distribution of woody bamboos in Africa, Madagascar and the Americas. In these three regions the economic potential of bamboo has not yet been explored and the role of bamboo resources in national economies is negligible. The uses of bamboo are mostly in the domestic field and small-scale construction. As a result, in the majority of African and American countries, information about bamboo resources, and their current and potential uses, is incomplete.

Against a background of poor knowledge of bamboo identification and distribution it is inevitable that the vast majority of bamboos have not been evaluated at all in terms of conservation status, and data deficiencies may limit the value of any ad-hoc assessments that have been made. Despite the growing importance of bamboos, few studies of the conservation status of individual species have been undertaken. The data compiled in this study are used to provide a preliminary assessment of their possible conservation status and are discussed in the light of the importance of bamboos for both conservation and human use.

SCOPE AND METHODS
To determine likely present distributions of bamboo species and to estimate the total area of remaining forest potentially containing bamboo, we compiled information on the distribution of bamboo species in each of the three study regions (Africa, Madagascar and the Americas) from the relevant taxonomic and floristic literature. This information was combined with regional data on remaining forest cover in the same process as used by Bystriakova et al. (2003a,b) for the bamboos of the Asia-Pacific region. The resulting maps for individual species were combined to show regional patterns of potential bamboo species richness.

This study was confined to woody bamboos, as these are most significant from the socio-economic point of view. We gathered data on nearly 400 species, belonging to 37 genera, which occur naturally in the three study regions. For each species bibliographic sources were searched to acquire data about its distribution. These data were principally political units (country, province, locale), altitudinal range and forest type. They were entered into an Access database containing 13 fields and multiple records for each species (a total of 1 180 records). Although the information available in the bibliographic sources was variable, 966 records (82 per cent) contain information about altitudinal range (minimum and maximum altitude), and 952 records (81 per cent) have data about species distribution at the provincial level.

For each species in the database a single potential distribution map was generated using ArcView Geographic Information System (GIS) software to combine data on political units, altitude and forest type according to the information about natural distribution of the species. The information about the distribution of existing forest cover provided by UNEP-WCMC (Iremonger et al. 1997; UNEP-WCMC 2000) was used as a mask to eliminate areas not forested. When multiple data on altitudinal range existed for the same species, the broadest range was applied. The individual species maps were combined to generate maps of potential species richness and potential generic richness for each of the three study regions.

In an effort to validate the distributions obtained in this way, a limited number were compared visually with the point-distributions generated from herbarium specimen data held in the VASCular Tropicos (VAST) nomenclatural database of Missouri Botanical Garden (VAST 2003). In most cases, e.g. Chusquea pohlii (Map 3.23), Arthrostylidium venezuelae (Map 3.11) and Chusquea scandens (Map 3.24), the potential species distribution ranges generated by this study matched the maps of point locations very well. This suggests that this approach to modelling based on political units, altitude and forest is an
appropriate way to generate potential species distribution maps where data are limited. However, for a minority of species, e.g. *Guadua amplexifolia* (Map 3.28) and *Otatea acuminata* (Map 3.41), the range of point locations was larger than predicted by potential species distribution maps, suggesting that the source data on political units need verification. It is important to recognize that this study does not address the persistence of many bamboo species outside forests and in cultivation, or the potential beneficial effects of forest disturbance for some woody bamboo species [Judziewicz et al. 1999].

We gathered data on 388 species and subspecies that occur in Africa, Madagascar and the Americas, and mapped the potential current distributions of 379 individual bamboo species within natural forest. Thirty-seven genera occurring naturally in these regions were included in this study [Annex I].

BAMBOOS IN AFRICA

The lowest diversity of woody bamboos is found in Africa, where five species representing five genera occur (Table 1). Tanzania has the largest number of species followed by Malawi, Uganda and Zambia (Table 2). The greatest potential bamboo richness (two co-occurring species) is in East Africa, especially around Lake Victoria, and in southern Africa in Zambia and Zimbabwe (Figure 1), while the countries of West Africa have only a single species of woody bamboo (principally *Oxytenanthera abyssinica*).

Table 1. The five species of woody bamboo occurring in Africa, and the total area of forest within their range

<table>
<thead>
<tr>
<th>Species</th>
<th>Area of Potential Occurrence (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hickelia africana</td>
<td>1 174</td>
</tr>
<tr>
<td>Yushania alpina</td>
<td>202 019</td>
</tr>
<tr>
<td>Oreobambos buchwaldii</td>
<td>527 789</td>
</tr>
<tr>
<td>Oxytenanthera abyssinica</td>
<td>7 117 915</td>
</tr>
<tr>
<td>Thamnocalamus tesselatus</td>
<td>89 260</td>
</tr>
</tbody>
</table>

The low diversity of bamboo species in mainland Africa, compared with Asia, Madagascar and the Americas, may relate to past climatic variation on the continent. The ancestral woody bamboos are thought to have arisen in the wet forests of Gondwanaland [Clark 1997]. It is possible that after the break-up of Gondwanaland isolated the African genera [Clayton and Renvoize 1999], climate and vegetation patterns in Africa have provided limited opportunities for their expansion and radiation within forest habitats, in contrast to genera on other continents.

Table 2. Numbers of species of Bambuseae occurring in the countries of Africa

<table>
<thead>
<tr>
<th>Country/Territory</th>
<th>Number of Naturally Occurring Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanzania</td>
<td>4</td>
</tr>
<tr>
<td>Malawi</td>
<td>3</td>
</tr>
<tr>
<td>Uganda</td>
<td>3</td>
</tr>
<tr>
<td>Zambia</td>
<td>3</td>
</tr>
<tr>
<td>Cameroon</td>
<td>2</td>
</tr>
<tr>
<td>Congo</td>
<td>2</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>2</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2</td>
</tr>
<tr>
<td>Sudan</td>
<td>2</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>2</td>
</tr>
<tr>
<td>Angola</td>
<td>1</td>
</tr>
<tr>
<td>Benin</td>
<td>1</td>
</tr>
<tr>
<td>Burundi</td>
<td>1</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>1</td>
</tr>
<tr>
<td>Comoro Islands</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Territory</th>
<th>Number of Naturally Occurring Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Côte d’Ivoire</td>
<td>1</td>
</tr>
<tr>
<td>Eritrea</td>
<td>1</td>
</tr>
<tr>
<td>Gambia</td>
<td>1</td>
</tr>
<tr>
<td>Ghana</td>
<td>1</td>
</tr>
<tr>
<td>Guinea</td>
<td>1</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>1</td>
</tr>
<tr>
<td>Kenya</td>
<td>1</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1</td>
</tr>
<tr>
<td>Réunion</td>
<td>1</td>
</tr>
<tr>
<td>Rwanda</td>
<td>1</td>
</tr>
<tr>
<td>Senegal</td>
<td>1</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>1</td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
</tr>
<tr>
<td>Togo</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Ohrnberger 1999.
Conservation and biodiversity importance

Of the African bamboos mapped, only *Thamnocalamus tessellatus* has been listed by IUCN as of conservation concern [Annex II] (Gillet and Walter 1998; Hilton-Taylor 2000). According to our analysis, it currently has 89,260 km² of potential forest habitat remaining. Potentially of great concern but not presently red-listed, is *Hickelia africana*, which is especially limited in its current extent (Table 1), having little more than 1,000 km² of forest remaining within its range.

Despite their lack of diversity in Africa, bamboos play an important role in ecology and biodiversity conservation. In many places, especially at high altitude, African bamboo species form vast pure stands (Chihongo *et al.* 2000; Kigomo 1988), which provide important shelter and resources for some key species of conservation interest. For example, the eastern or mountain bongo (*Tragelaphus euryceros* ssp. *isaaci*) of the Aberdare Mountains in Kenya is considered by IUCN to be 'Endangered' (Antelope Taxon Advisory Group 2003). This large forest antelope spends the wet season in cloud forests lower down the mountains, but migrates to spend the dry season in the dense *Yushania alpina* thickets and open moorland 1,000 m further up the slopes. Effective protection of the surviving remnant populations of the mountain bongo in Kenya is critical to its survival in the wild. The conservation of bamboo forests is a vital part of such protection given their key role in sheltering the mountain bongo during the dry season.

Another close dependence between an endangered mammal and bamboo occurs with the eastern mountain gorilla (*Gorilla beringei beringei*). Mountain gorillas, which are classed as 'Endangered' (IUCN 2002), inhabit montane and bamboo forests in the eastern Democratic Republic of the Congo, Rwanda and southwestern Uganda (IGCP 2003). They eat large amounts of vegetation from more than 70 different plant species, including bamboo (Fossey and Harcourt 1977). When the bamboo plant sprouts in June and November, bamboo shoots can make up to 90 per cent of a gorilla’s diet. An adult male can eat up to 35 kg of bamboo each day, and females about 18 kg (WWF 2003a).

Uses of bamboo

In terms of utilization, the most important African species are *Oreobambus buchwaldii*, *Oxytenanthera abyssinica* and *Yushania alpina* (Annex III and Annex V; Maps 1.1, 1.2 and 1.4). These are mostly harvested from the wild. For example, in Kenya only 0.6 per cent of total bamboo harvested is produced on farms (Ongugo *et al.* 2000).

African bamboos have not been exploited in pulp and paper production, or in any other large-scale bamboo
Bamboo biodiversity

industry. The economic value of trade in bamboo products in Africa is negligible. Since the products are traded locally, statistics do not enter the national accounting systems (Chihongo et al. 2000).

Although there is little cultivation of bamboo and little or no international trade in bamboo from Africa, many bamboo products are used domestically and can be very significant in both household and local economies. Key bamboo uses include small-scale construction, handicrafts, residential fencing, horticultural flower farming, water pipes, farm props for banana plantations, furniture, and other minor cottage industry products like basketry and toothpicks (Chihongo et al. 2000). According to the results of a survey carried out in several Ethiopian states (Kelbessa et al. 2000), the majority of rural families were entirely dependent on raw bamboo for construction, household furniture and as a source of domestic energy. Where collecting and processing bamboo provides income, as for example in the production of toothpicks and incense sticks in Kenya, women are mainly involved in processing whereas men are involved in harvesting, transportation and processing (Ongugo et al. 2000).

In some parts of Africa, bamboo is also a source of food and drink. In Tanzania and Uganda, young shoots and seeds of *Oxytenanthera abyssinica*, a medium-size bamboo reaching 8-16 m in height, are consumed as food. The principal use of this species in Tanzania, however, is in the production of bamboo wine, also known as *ulanzi* (Chihongo et al. 2000; Kigomo 1998). Tips of young shoots are cut off and the stem portion bruised every morning and evening for about a week. The exudate from the bruises is collected and allowed to stand for two days to ferment. The resulting *ulanzi*, which is 5-5.5 per cent alcohol, is one of the principal forms of alcohol consumed in some areas (Willis 2003).

Other roles of bamboo

The role of bamboo in conserving soil and protecting watersheds is also substantial in Africa. For example, in Kenya, *Yushania* (formerly *Arundinaria alpina*) is receiving attention from the government especially for catchment rehabilitation, regulation of water-flow and erosion control (Ongugo et al. 2000).

Conservation and management

The importance of bamboos and their products in local economies has led to overexploitation and a decline in the supply of bamboo from natural stands in some parts of Ethiopia and Tanzania (Chihongo et al. 2000). Approaches to reverse these trends have included efforts to establish introduced species. The Kenya Forestry Research Institute has introduced several bamboo species from Asian countries both to forest areas and on farmlands on an experimental basis (Ongugo et al. 2000; Kigomo 1999). A number of species, among them *Bambusa bambos*, *B. tulda*, *B. vulgaris*, *Dendrocalamus asper*, *D. brandisii*, *D. membranaceus*, *D. strictus*, *Phyllostachys pubescens* and *Thrysostachys siamensis*, have been established successfully in several ecological zones.

Regulation has also been used as a means to ensure continued supply of bamboo in parts of Africa. In Uganda bamboo harvesting is allowed in some areas, but collectors have to obtain permits from the Forestry Department. In Kenya bamboo in state forests is protected, although controlled harvesting is allowed in places (Ongugo et al. 2000). A government ban on cutting bamboo was proclaimed in 1982 to control further indiscriminate cutting and to allow the overcut areas to regenerate to their full potential. Bamboo harvesting from state forests was allowed only with a special licence.

However, regulation is not always a successful approach. Even in Ugandan forest reserves with no legal public access, illegal harvesting of bamboo occurs (Esegu et al. 2000). Implementation of the government ban in Kenya has resulted in conditions that have encouraged corruption and made the bamboo resource unavailable to poor entrepreneurs. A rough comparison of the figures for the bamboo actually used and the official figures for harvested bamboo shows a difference of 88 per cent, which means that a large part of the bamboo used in Kenya is harvested illegally (Ongugo et al. 2000).

Further work is needed to identify appropriate mechanisms and regimes for managing bamboo resources, ensuring conservation of native bamboo populations and maintaining their roles in forest ecosystems.

BAMBOOS IN MADAGASCAR

Information about bamboos in Madagascar is far from complete. Although bamboos began to be described in Madagascar in 1828, there was a long hiatus during the latter half of the 19th century. Limited collection during the early 20th century permitted the description of a total of 27 species up to 1960. New collections between 1987 and 1996 permitted recent revisions of *Hickelia* and *Decaryochloa* and descriptions of three new genera, *Valiha*, *Cathariostachys* and *Sirochloa* (Dransfield 2000; Dransfield 2002). It is likely that additional revisions and some new species descriptions may be produced in the future.

At present, Madagascar is considered to have 33 species of woody bamboo and is therefore strikingly more rich in species than continental Africa. Thirty-two of those species are endemic and a single species, *Bambusa vulgaris*, is pantropical in distribution. As this last species is found principally near villages and along rivers, it is
possible that it is introduced. The richness and endemism of the woody bamboo flora of Madagascar reflects the island’s long (c. 140 million years) isolation from other land masses and the resulting unique evolutionary pathways that have led to extremely high levels of endemism in both flora and fauna.

The majority of the native woody bamboos of Madagascar are found on the eastern escarpment where remnants of rainforest still exist (Figure 2). Some species also occur in the drier vegetation of the west. The maximum potential species richness in Madagascar identified by the present study was seven co-occurring species.

Conservation and biodiversity importance
In addition to being endemic, a number of Madagascar’s woody bamboos have limited amounts of forest remaining within their quite localized ranges. Twenty-five of the Madagascan species have less than 20 000 km² of forest remaining within their ranges and as many as ten species have less than 2 000 km² of forest available to them (Figure 3 and Annex IV). Although the former criterion might be considered analogous to the threshold extent of occurrence used by IUCN as a basis for inclusion in the Red List, none of Madagascar’s woody bamboos is currently listed by IUCN as a plant species of global conservation concern (Gillet and Walter 1998; Hilton-Taylor 2000).

Besides their endemism and potentially threatened status, a number of Madagascar’s woody bamboos are fundamental to the survival of other species. The most extreme case may be that of the bamboo lemurs. There are three recognized species of bamboo lemur, each occupying a different habitat in Madagascar: the grey bamboo lemur (Hapalemur griseus), the greater bamboo lemur (Hapalemur simus) and the golden bamboo lemur (Hapalemur aureus). All these species are characteristic of forest with a high proportion of bamboo, and various parts of bamboo plants make up a large part of their diets. The grey bamboo lemur lives on the new shoots, leaf bases, and sometimes pith of several bamboo species (Garbutt 1999; Mittermeier et al. 1994). The rare greater bamboo lemur primarily consumes the pith of the giant bamboo, Cathariostachys madagascariensis, which contains high levels of cyanide (Garbutt 1999; Dransfield 2000). The golden bamboo lemur eats leaf bases and new shoots of the same bamboo species, as well as other non-woody bamboos (Garbutt 1999).

Figure 2. Map of potential species richness of woody bamboos in Madagascar, derived by integrating the distributions of the 33 native woody bamboo species, all of which are endemic to Madagascar.

<table>
<thead>
<tr>
<th>Potential species richness: tribe Bambuseae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
</tr>
</tbody>
</table>

Existing forest cover with no records of Bambuseae

Figure 3. Number of bamboo species in Madagascar with different areas of forest remaining within their geographical ranges. Species that are dependent on forest and have less than 20 000 km² of forest in their ranges should be considered as threatened in any preliminary assessment of conservation status.
Although the bamboo lemurs are threatened by rainforest destruction, at least one group, the western grey bamboo lemur, may actually benefit from low levels of forest disturbance, which increase the density of bamboo. The grey bamboo lemurs are at relatively low risk (the eastern subspecies is classified as ‘Lower Risk’, and the western as ‘Vulnerable’), but both the other two species are ‘Critically Endangered’ (Hilton-Taylor 2000).

Other animals besides lemurs are dependent on bamboo. There is a community of rainforest organisms that rely on so-called bamboo wells, cavities in fallen bamboo culms that fill with rainwater. Some use them for reproduction, others for shelter and to escape from potential predators. Mantella laevigata, a species of poison frog endemic to northeastern Madagascar, breeds in water-filled tree holes or broken bamboo. The frogs are found in association with Bambusa vulgaris, Valiha diffusa and other native bamboo species. The frogs’ eggs often become food for other animals. For instance, crane flies (Limonia renaudi) lay eggs in the water of the same bamboo wells, and their larvae feed on the eggs of Mantella (Heying 2001).

The bamboo forests in the drier western part of Madagascar are the habitat of one of the most endangered reptiles in the world, which is also the rarest tortoise, the angonoka or ploughshare tortoise (Geochelone yniphora) (WWF 2003b).

Uses of bamboo

Bamboos are also extremely important to local communities in Madagascar. Nearly half of all households use bamboo domestically (Ferraro 2001): for construction and for items ranging from handicrafts to musical instruments. For example, the culms of Valiha diffusa are used for the construction of walls and roofs; they are split on one side and flattened, then woven into large panels. Bamboo is also used for flooring and fencing, and in irrigation systems. Water containers, fishing traps and poles, darts, baskets and storage containers are all made from a number of bamboo species. Culms of Valiha are used to make the traditional musical instrument, the tube zither or valiha, and those of another endemic genus, Cathariostachys, are used for making flutes (Dransfield 2000).

Much of the bamboo used domestically comes from secondary forests, and there are some plantations in and around villages. However, in some areas villages have depleted the available supply of bamboo nearby and residents must travel greater distances to obtain resources (Ferraro 2001).

Bamboo is traded domestically in Madagascar on a small scale, but not internationally.

Conservation and management

The destruction of native vegetation in Madagascar is a major problem, which has been recognized for a number of years. According to IUCN (1992), at least 80 per cent of the land surface of the island no longer has significant native woody plant cover. Green and Sussman (1990) calculated that all but 34 per cent of the eastern rainforests had been lost by 1985, and high rates of deforestation have continued. Conservation International estimates that less than 10 per cent of the original vegetation of Madagascar remains (Myers et al. 2000). The expansion of small-scale agriculture and the harvesting of wood for charcoal production and forest fires continue to threaten the remaining forests.

These alarming figures help to explain why so many of Madagascar’s endemic woody bamboo species have little forest habitat remaining within their ranges. While some bamboos persist and may even proliferate in disturbed landscapes, others are less resilient and many of the species that depend on bamboos require a forest environment. Improving management of the 3 per cent of Madagascar currently officially protected (Conservation International 2003) should help to conserve many of the endemic bamboos. However more direct attention is needed to determine the conservation status of bamboo species and identify the priority actions for ensuring their conservation in situ.

BAMBOOS IN THE AMERICAS

The Americas are collectively much richer in bamboo species than either continental Africa or Madagascar, but have lower diversity than the Asia-Pacific region (Bystrakova et al. 2003a). There are currently 20 recognized genera of woody bamboos that are confined to the New World. Only Arundinaria occurs in both the Old and New Worlds. There are approximately 430 species of New World woody bamboos, of which more than 40 per cent belong to a single genus, Chusquea (Judziewicz et al. 1999).

The greatest diversity of bamboos in the New World is in South America. Brazil has nearly twice as many bamboo species as Venezuela and Colombia, which are in turn nearly twice as rich as the richest Mesoamerican countries (Costa Rica and Mexico; Table 3). The United States has only a single woody bamboo species, as do many Caribbean island nations.

Previous studies have identified the areas of highest bamboo diversity and endemism in the New World as Brazil, the northern and central Andes and Mexico, along with the still poorly known Guyana Highlands (Judziewicz et al. 1999). The results of our study confirm this and identify São Paulo state as the area with the...
Table 3. Numbers of species of Bambuseae occurring in the countries of North, Central and South America

<table>
<thead>
<tr>
<th>Country/Territory</th>
<th>No. of naturally occurring species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>134</td>
</tr>
<tr>
<td>Venezuela</td>
<td>68</td>
</tr>
<tr>
<td>Colombia</td>
<td>56</td>
</tr>
<tr>
<td>Ecuador</td>
<td>41</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>36</td>
</tr>
<tr>
<td>Peru</td>
<td>35</td>
</tr>
<tr>
<td>Mexico</td>
<td>32</td>
</tr>
<tr>
<td>Bolivia</td>
<td>20</td>
</tr>
<tr>
<td>Panama</td>
<td>19</td>
</tr>
<tr>
<td>Chile</td>
<td>14</td>
</tr>
<tr>
<td>Cuba</td>
<td>13</td>
</tr>
<tr>
<td>Argentina</td>
<td>12</td>
</tr>
<tr>
<td>Guatemala</td>
<td>12</td>
</tr>
<tr>
<td>Honduras</td>
<td>8</td>
</tr>
<tr>
<td>El Salvador</td>
<td>7</td>
</tr>
<tr>
<td>Haiti</td>
<td>7</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>7</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>7</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>6</td>
</tr>
<tr>
<td>Paraguay</td>
<td>6</td>
</tr>
<tr>
<td>Guyana</td>
<td>5</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>5</td>
</tr>
<tr>
<td>Uruguay</td>
<td>5</td>
</tr>
<tr>
<td>Suriname</td>
<td>4</td>
</tr>
<tr>
<td>Belize</td>
<td>3</td>
</tr>
<tr>
<td>Bahamas</td>
<td>1</td>
</tr>
<tr>
<td>Dominica</td>
<td>1</td>
</tr>
<tr>
<td>French Guiana</td>
<td>1</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>1</td>
</tr>
<tr>
<td>Jamaica</td>
<td>1</td>
</tr>
<tr>
<td>Martinique</td>
<td>1</td>
</tr>
<tr>
<td>United States</td>
<td>1</td>
</tr>
<tr>
<td>Virgin Islands</td>
<td>1</td>
</tr>
</tbody>
</table>
The largest number of potentially co-occurring woody bamboo species (35) (Figure 4).

At a generic level, woody bamboo diversity appears to be concentrated in the Brazilian state of Minas Gerais (nine co-occurring genera), whereas other authors have reported higher generic diversity of all bamboos (woody and herbaceous combined) in the coastal state of Espirito Santo (Burman and Filgueiras 1993). Of the five monotypic genera in the Americas (Arundinaria, Actinocladum, Athroostachys, Criciuma, Eremocaulon), four coincide in an area covering the states of Mato Grosso, Bahia and Minas Gerais, Brazil (Arundinaria is distributed solely in the United States). This confirms the importance of the Atlantic Forest region for the diversity of woody bamboos in South America.

To a large degree, these patterns may reflect the state of knowledge as a result of the distribution of collecting effort (Burman and Filgueiras 1993), and the true pattern may yet prove to be somewhat different. However, they are consistent with suggestions that the Atlantic coastal zone may have provided diverse habitats that fostered bamboo evolution and/or facilitated bamboo survival during cold glacial maxima (Judziewicz et al. 1999).

Conservation and biodiversity importance

Currently, the IUCN Red List of ‘Endangered’ bamboos in the Americas comprises 20 species, among them 12 woody bamboos (see Annex II) (Gillet and Walter 1998; Hilton-Taylor 2000). The present study has identified nearly 200 New World woody bamboo species with less than 20 000 km² of forest remaining within their potential ranges (Annex IV). Ninety-five of these species occur where there are less than 2 000 km² of forest (Figure 5).

Throughout the Americas, woody bamboos are an important part of forested ecosystems and occur in almost homogeneous stands in some places. Bamboo-dominated areas in the Amazon region occupy between 121 000 and 180 000 km² (Nelson 1994; Judziewicz et al. 1999). This vegetation, which is dominated by bamboos of the genera Guadua, Elytrostachys and Arthrostylidium, is dense and often impenetrable because of the thorns of the bamboo. In northern South America, especially Colombia and Ecuador, the ‘guadal’ – dense bamboo forest dominated by Guadua angustifolia – is an important vegetation type at low to mid-altitude. This is often an important refuge for wildlife species from surrounding native hardwood forests that are being destroyed (Judziewicz et al. 1999).

The mechanism by which bamboos become dominant in these areas is unclear, though it is likely that clonal growth following disturbance by wind, fire and landslips plays an important role. It has been suggested that bamboos may also significantly increase the potential for some types of natural disturbances (Keeley and Bond 1999). According to this hypothesis, mass mortality in bamboos after fruiting generates a widespread and synchronous fuel load that significantly increases the potential for wildfire. The resulting canopy disturbance both increases resources for seedling recruitment and resets the successional cycle to favour persistence of the new clones. The dense and rapid growth of woody bamboos may suppress the regeneration of other woody species (Clark 1995). The aggressive growth strategy of such species as Guadua weberbaueri and G. sarcocarpa can alter the normal forest succession process following small or large-scale forest disturbance. This may contribute to the high levels of endemism and species diversity evident in some regions where these species are prominent (Kirkby 2003). In some areas, woody bamboos have become invasive and dominate forest succession in abandoned cultivation, excluding regeneration of native tree species (WWF 2003c). Bamboos therefore play an important role in determining forest structure and dynamics.

Throughout the Americas, bamboo stands provide habitat and food for a wide range of mammals, birds, amphibians and invertebrates, many of which are of conservation concern. In South America, especially at higher altitudes and in the Atlantic Forest zone, several important mammals feed on bamboo. The spectacled bear (Tremarctos ornatus), which is classified as ‘Vulnerable’ by IUCN (Hilton-Taylor 2000), feeds opportunistically on...
young shoots of bamboo [Judziewicz et al. 1999]. ‘Endangered’ mountain tapirs [Tapirus pinchaque] eat considerable amounts of grasses, bamboo, sedges and bromeliads in their high-altitude habitats (Downer 1996). The ‘Vulnerable’ lowland tapir [Tapirus terrestris], which feeds on grasses and aquatic plants in the Amazon, consumes substantial amounts of bamboo leaves and twigs in the Atlantic Forest (Rodrigues et al. 1993).

At least four South American rodent species known as bamboo rats [Dactylomys dactylinus, D. peruanus and D. boliviensis in Amazonia and Kannabateomys amblyonyx in the Atlantic Forest] use bamboo patches as their principal habitat and also eat bamboo (Nowak 1995; Haemig 2003a,b).

At least 4-5 per cent of all the bird species that occur in Amazonia are dependent on bamboo, and 34 bird species are reported to be confined to bamboo thickets in at least one of the regions of Amazonia [Haemig 2003a]. In the Atlantic Forest, which extends along the coast of eastern Brazil into neighbouring parts of Argentina and southeastern Paraguay, at least 27 species were reported to be confined almost entirely to large stands of bamboo, or most abundant where bamboo is common, or to forage most extensively on bamboo (Haemig 2003b). Of the Atlantic Forest bird species associated with bamboo, 11 are of conservation concern (Table 4).

The water that accumulates in bamboo internodes provides important habitat for numerous invertebrates [Judziewicz et al. 1999] and some amphibians. Furthermore, evidence is emerging of complex ecological relationships between forest bamboos and ant species that inhabit their internodes and defend them from attack by herbivores (Davidson et al. 2003).

Canebrakes, dense stands of Arundinaria gigantea, were once widespread throughout the southeastern portion of the United States, where they provided shelter and resources for rare species such as the ‘Critically Endangered’ Bachmann’s warbler [Vermivora bachmani] and the now ‘Extinct’ Carolina Parakeet [Conuropsis carolinensis] [Judziewicz et al. 1999]. Other species that rely on canebrakes include at least five species of butterfly, which require the cane as food during the caterpillar stage [Hendershott 2002]. These important habitats have been much reduced by development, drainage and suppression of the fire regime that was important to their maintenance, with resulting adverse effects on the species that depend on them.

<table>
<thead>
<tr>
<th>IUCN RED LIST STATUS</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Endangered'</td>
<td>Purple-winged ground-dove (Claravis godefrida)</td>
</tr>
<tr>
<td></td>
<td>Fork-tailed tody-tyrant (Hemitriccus furcatus)</td>
</tr>
<tr>
<td></td>
<td>Wied’s tyrant-manakin (Neopelma aurifrons)</td>
</tr>
<tr>
<td>'Vulnerable'</td>
<td>Canebrake groundcreeper (Clibanornis dendrocolaptoides)</td>
</tr>
<tr>
<td></td>
<td>White-bearded antshrike (Biatas nigropectus)</td>
</tr>
<tr>
<td></td>
<td>Buffy-fronted seedeater (Sporophila frontalis)</td>
</tr>
<tr>
<td></td>
<td>Temminck’s seedeater (Sporophila falcirostris)</td>
</tr>
<tr>
<td>'Low Risk'/‘Near Threatened'</td>
<td>White-browed foliage-gleaner (Anabacerthia amaurotis)</td>
</tr>
<tr>
<td></td>
<td>Rufous-tailed antbird (Drymophila genei)</td>
</tr>
<tr>
<td></td>
<td>Spotted bambowren (Psilorhamphus guttatus)</td>
</tr>
<tr>
<td></td>
<td>Blackish-blue seedeater (Amaurospiza moesia)</td>
</tr>
</tbody>
</table>

Uses of bamboo

The Americas have never had a ‘bamboo culture’ in the way that Japan and China may be said to have had. The exploitation of native bamboo in Latin America is limited to the local use of species found close by. It is only in Colombia, Ecuador and Brazil that bamboo plays a more conspicuous role in the local economy (Londoño 2001). Nonetheless, bamboo is of local importance throughout the region, and many species are used.

The most useful species in Latin America are found in the genus Guadua, and there are several others in the native genera of Apoclada, Aulonemia, Chusquea, Elytrostachys, Otaeta and Rhipidocladum. Bambusa, which has been introduced from Asia, is also extensively used. Cultivation of bamboos on a commercial scale is limited to only a few native (Guadua angustifolia, G.
Bamboo biodiversity

German architect Jorg Stamm has successfully implemented several construction projects in Colombia. Among them is a bamboo bridge with a span of 52 m. amplexifolia) and introduced (Bambusa vulgaris, B. tuloides, Phyllostachys aurea) species (Londoño 2001).

Bamboo has a long history of use in construction in Central and South America, where it is a common part of the vernacular architecture. This is particularly widespread in southern Colombia and northern Ecuador, where bamboo (mostly Guadua angustifolia) has been extensively used in houses that have stood for 50-100 years on unstable sites such as steep slopes, earthquake-prone regions or swampy coastal areas that are frequently inundated (Gutierrez 2000).

Contemporary architects are also increasingly using bamboo. Through new techniques, bamboo has been combined with modern materials like reinforced concrete or steel to create some extraordinary structures including luxury housing, bridges and observation towers. These architects have made a deliberate attempt to increase social acceptance of bamboo and promote its adoption as an inexpensive and environmentally friendly building material among both rich and poor (Gutierrez 2000). Prefabricated panels made of flattened Guadua culms are distributed in Ecuador as part of low-cost housing programmes (Judziewicz et al. 1999).

Studies have been undertaken to explore the use of native South American bamboos for making paper, but the two Guadua species (G. angustifolia and G. amplexifolia) examined proved to have fibre lengths much inferior to Bambusa vulgaris. More than 100 000 ha of this introduced species are cultivated for paper production in Brazil, which is the only New World country to use bamboo for making paper (Judziewicz et al. 1999; Itapagê 2003).

Throughout the Americas indigenous people use woody bamboos to make handicrafts and musical instruments. Baskets, fans, utensils, toys, furniture and agricultural supports are all made from bamboos of different types. Musical instruments ranging from flutes to drums are also produced from bamboo. In particular, the pan pipes and quena flutes so characteristic of Andean music are made from cloud-forest bamboos, either Aulonemia queko or Rhipidocladum harmonicum (Judziewicz et al. 1999).

Though to a much lesser extent than in Asia, bamboos are a source of food both for humans and for livestock in the Americas. Indigenous groups eat the fruits and seeds of several species, and some use of bamboo shoots as food has been reported (Judziewicz et al. 1999). The bamboo of North American canebrakes has long been recognized as an especially rich forage and was much prized for this purpose by both aboriginal and colonial pastoralists (Hendershott 2002).

Annex III provides a summary based on published literature of the most used woody bamboos of the Americas and the purposes to which they are put in different parts of the region.

Conservation and management

In many parts of the New World, forest ecosystems were destroyed long ago or are currently under threat. The forests of the southeast United States were severely depleted during colonial times and reached their minimum extent around 1860. The rapid rate of forest loss in the Amazon has been well publicized in recent years. While vast tracts of forest still remain, the rate of deforestation in the Amazon has been well publicized in recent years. While vast tracts of forest still remain, the rate of deforestation has recently increased again (INPE 2002). The Atlantic Forest has been reduced to less than 8 per cent of its original area and is under continuing threat (Burman and Filgueiras 1993; Myers et al. 2000). These trends help to explain the high proportion of American bamboos that now have very limited areas of forest within their ranges.

These results suggest that many woody bamboos in the Americas are potentially threatened if they depend on forest habitat for their survival, and that carefully planned and implemented conservation measures are needed to ensure the continued survival of many bamboo species. Bamboo-dominated ecosystems need to be carefully assessed and monitored to ensure that their status is thoroughly understood and that measures are taken to protect them where needed. For example, forested canebrake communities in the United States are now listed as ‘Critically Rare’ by the National Biological Survey and as ‘Globally Rare’ by the Nature Conservancy (Hendershott 2002), prompting increased efforts for their protection and restoration. In other cases, the ecology of native bamboos as invasives in disturbed landscapes needs further investigation as does their role in
Figure 6. Distribution of potential generic richness of woody bamboos across the three study regions, derived by combining the distributions of 37 genera, and showing the strong concentration of generic diversity in eastern Brazil.

Figure 7. Distribution of potential species richness of woody bamboos across the three study regions, derived by combining the distributions of 379 species, and showing a pattern similar but not identical to that of generic richness.
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

This study has shown that many woody bamboos in Africa, Madagascar and the Americas may be of conservation concern, despite the fact that they are not presently included in global Red Lists. It has highlighted the richness and distinctiveness of the bamboos of Madagascar and the even greater richness of the Americas at both generic and species levels (Figures 6 and 7). The study has also made it clear that significant further effort will be required to assemble an accurate overview of the magnitude and distribution of woody bamboo resources in these regions. Such information is needed to support wise policy-making and management decisions, and to facilitate progress towards the conservation and management targets of the Global Strategy for Plant Conservation (CBD 2002). The actions needed to progress towards such a sound information base include:

1. Refining and validating species distributions based on (a) comparisons with the rapidly increasing digital resources of herbarium specimen data, and (b) incorporating climatic and soil data to improve species distribution models.

2. Strengthening the Red List assessments of bamboo species status, prioritizing the assessment of those species with the smallest estimated geographical ranges and least remaining habitat.

3. Extending the global list of priority bamboo species (cf. Rao et al. 1998) to take account of the utility and/or economic importance of bamboos from Africa, Madagascar and the Americas.

4. Filling information gaps, including taxonomic inconsistencies and inadequate knowledge of the distribution of woody bamboo species, and clarifying the ecological roles of woody bamboos, through research-based, national capacity-building and international collaboration.

5. Developing appropriate methods for assessing bamboo resources and the pressures on them, and incorporating these methods into NTFP elements of national forest inventories.

6. Assessing the value of existing reserves and reserve networks for conserving the biological diversity of bamboos.
References

Bamboo biodiversity

Annex I: Subtribes and genera of woody bamboos occurring naturally in Africa, Madagascar and the Americas

<table>
<thead>
<tr>
<th>Subtribe</th>
<th>Genus</th>
<th>No. of species as in Ohrnberger, 1999</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arundinariniinae</td>
<td>Arundinaria</td>
<td>1</td>
<td>North America</td>
</tr>
<tr>
<td>Thamnocalaminae</td>
<td>Thamnocalamus</td>
<td>2</td>
<td>South Africa and Madagascar</td>
</tr>
<tr>
<td></td>
<td>Yushania</td>
<td>6</td>
<td>Tropical Africa and Madagascar</td>
</tr>
<tr>
<td>Bambusinae</td>
<td>Bambusa</td>
<td>1</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Oreobambos</td>
<td>1</td>
<td>Tropical Africa</td>
</tr>
<tr>
<td></td>
<td>Oxytenanthera</td>
<td>1</td>
<td>Tropical Africa</td>
</tr>
<tr>
<td>Melocanninae</td>
<td>Cephalostachyum</td>
<td>5</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Ochlandra</td>
<td>2</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Schizostachyum</td>
<td>3</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Hickelinae</td>
<td>Decaryochloa</td>
<td>1</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Hickelia</td>
<td>4</td>
<td>Tropical Africa and Madagascar</td>
</tr>
<tr>
<td></td>
<td>Hitchcockella</td>
<td>1</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Nastus</td>
<td>12</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Perrierbambus</td>
<td>2</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Guaduinae</td>
<td>Criciuma</td>
<td>1</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Eremocaulon</td>
<td>1</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Guadua</td>
<td>37</td>
<td>Central and South America</td>
</tr>
<tr>
<td></td>
<td>Olmeca</td>
<td>2</td>
<td>Central America</td>
</tr>
<tr>
<td></td>
<td>Odatea</td>
<td>2</td>
<td>Central America</td>
</tr>
<tr>
<td>Chusqueinae</td>
<td>Chusquea</td>
<td>138</td>
<td>Central and South America</td>
</tr>
<tr>
<td></td>
<td>Neurolepis</td>
<td>22</td>
<td>Central and South America</td>
</tr>
<tr>
<td>Arthrostylidiinae</td>
<td>Actinocladum</td>
<td>1</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Alvimia</td>
<td>3</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Apoclada</td>
<td>3</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Arthrostylidium</td>
<td>22</td>
<td>Central and South America</td>
</tr>
<tr>
<td></td>
<td>Athrostachys</td>
<td>1</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Atractantha</td>
<td>5</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Aulonemia</td>
<td>33</td>
<td>Central and South America</td>
</tr>
<tr>
<td></td>
<td>Colanthea</td>
<td>7</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Elytrostachys</td>
<td>3</td>
<td>Central and South America</td>
</tr>
<tr>
<td></td>
<td>Glaziophyton</td>
<td>1</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Merostachys</td>
<td>34</td>
<td>Central and South America</td>
</tr>
<tr>
<td></td>
<td>Myriocladus</td>
<td>13</td>
<td>South America</td>
</tr>
<tr>
<td></td>
<td>Rhapidocladum</td>
<td>19</td>
<td>Central and South America</td>
</tr>
</tbody>
</table>

Annex II: Bamboo species on the 1997 IUCN Red List of Threatened Plants

<table>
<thead>
<tr>
<th>Species name</th>
<th>Status</th>
<th>Distribution</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chusquea aperta</td>
<td>Vulnerable</td>
<td>Mexico</td>
<td>Woody</td>
</tr>
<tr>
<td>Chusquea bilimekii</td>
<td>Vulnerable</td>
<td>Mexico</td>
<td>Woody</td>
</tr>
<tr>
<td>Chusquea fernandeziana</td>
<td>Vulnerable</td>
<td>Juan Fernandez</td>
<td>Woody</td>
</tr>
<tr>
<td>Chusquea latifolia</td>
<td>Endangered</td>
<td>Colombia</td>
<td>Woody</td>
</tr>
<tr>
<td>Chusquea longiligulata</td>
<td>Vulnerable</td>
<td>Costa Rica</td>
<td>Woody</td>
</tr>
<tr>
<td>Chusquea pohlii</td>
<td>Endangered</td>
<td>Costa Rica</td>
<td>Woody</td>
</tr>
<tr>
<td>Cryptochloa decumbens</td>
<td>Vulnerable</td>
<td>Panama</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Cryptochloa dressleri</td>
<td>Vulnerable</td>
<td>Panama</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Froesiochloa boutelouoides</td>
<td>Endangered</td>
<td>French Guiana</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Guadua calderoniana</td>
<td>Endangered</td>
<td>Brazil</td>
<td>Woody</td>
</tr>
<tr>
<td>Olmeca recta</td>
<td>Indeterminate</td>
<td>Mexico</td>
<td>Woody</td>
</tr>
<tr>
<td>Olmeca reflexa</td>
<td>Indeterminate</td>
<td>Mexico</td>
<td>Woody</td>
</tr>
<tr>
<td>Olyra filiformis</td>
<td>Endangered</td>
<td>Brazil</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Olyra latispicula</td>
<td>Endangered</td>
<td>Brazil</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Pariana parvispica</td>
<td>Vulnerable</td>
<td>Costa Rica</td>
<td>Woody</td>
</tr>
<tr>
<td>Pariana strigosa</td>
<td>Endangered</td>
<td>Panama</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Rhipidocladum clarkiae</td>
<td>Endangered</td>
<td>Costa Rica</td>
<td>Woody</td>
</tr>
<tr>
<td>Rhipidocladum maxonii</td>
<td>Vulnerable</td>
<td>Costa Rica</td>
<td>Woody</td>
</tr>
<tr>
<td>Rhipidocladum pacuarense</td>
<td>Endangered</td>
<td>Costa Rica</td>
<td>Woody</td>
</tr>
<tr>
<td>Streptochaeta angustifolia</td>
<td>Extinct*</td>
<td>Brazil</td>
<td>Herbaceous</td>
</tr>
<tr>
<td>Thamnocalamus tessellatus</td>
<td>Rare</td>
<td>South Africa</td>
<td>Woody</td>
</tr>
</tbody>
</table>

* Taxa that are known no longer to exist in the wild after repeated searches of the type localities and other known or likely places.

Source: Gillet and Walter 1998.
Annex III: Useful native species of bamboo in Africa, Madagascar and the Americas

Table A. Useful native species of bamboo in Africa and Madagascar

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Uses</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bambusa vulgaris</td>
<td>Multiple uses</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Cathariostachys madagascariensis</td>
<td>Water containers</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Hickelia madagascariensis</td>
<td>Baskets</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Oreobambos buchwaldii</td>
<td>Construction (80%), weaving (20%)</td>
<td>Africa, East</td>
</tr>
<tr>
<td>Oxytenanthera abyssinica</td>
<td>Wine (85%), construction (15%)</td>
<td>Africa</td>
</tr>
<tr>
<td>Valiha diffusa</td>
<td>Construction, musical instruments</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Yushania alpina</td>
<td>Weaving (70%), construction (20%), furniture (5%), household items (5%)</td>
<td>Africa, East</td>
</tr>
</tbody>
</table>
Table B. Useful species of bamboo in the Americas

<table>
<thead>
<tr>
<th>Species name</th>
<th>Uses</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinocladum verticillatum</td>
<td>Forage for cattle, skewers for barbecues, arrows by Indians</td>
<td>Brazil</td>
</tr>
<tr>
<td>Apolclada simplex</td>
<td>Construction, forage</td>
<td>Brazil</td>
</tr>
<tr>
<td>Arthrostylidium venezuelae</td>
<td>Basketry, crafts</td>
<td>Brazil, Costa Rica, Venezuela</td>
</tr>
<tr>
<td>Arundinaria gigantea</td>
<td>Fishing rods, basketry, mats, scaffolding, fodder</td>
<td>United States</td>
</tr>
<tr>
<td>Aulonemia longiaristata</td>
<td>Basketry</td>
<td>Colombia, Ecuador</td>
</tr>
<tr>
<td>Aulonemia patula</td>
<td>Construction, crafts</td>
<td>Colombia, Ecuador</td>
</tr>
<tr>
<td>Aulonemia queko</td>
<td>Ceiling rafters, musical instruments, crafts</td>
<td>Bolivia, Colombia, Ecuador</td>
</tr>
<tr>
<td>Chusquea culeou</td>
<td>Horticulure</td>
<td>Argentina, Chile</td>
</tr>
<tr>
<td>Chusquea longifolia</td>
<td>n/a</td>
<td>Guatemala</td>
</tr>
<tr>
<td>Chusquea nelsonii</td>
<td>n/a</td>
<td>Guatemala</td>
</tr>
<tr>
<td>Chusquea pittieri</td>
<td>Christmas decorations</td>
<td>Costa Rica</td>
</tr>
<tr>
<td>Chusquea scandens</td>
<td>Crafts</td>
<td>Colombia, Ecuador</td>
</tr>
<tr>
<td>Elytrostachys clavigera</td>
<td>Weaving</td>
<td>Costa Rica</td>
</tr>
<tr>
<td>Elytrostachys typica</td>
<td>Ceiling rafters</td>
<td>Colombia</td>
</tr>
<tr>
<td>Guadua amplexifolia</td>
<td>Construction</td>
<td>Colombia, Honduras, Mexico, Nicaragua, Venezuela</td>
</tr>
<tr>
<td>Guadua angustifolia</td>
<td>Construction</td>
<td>Central and South America</td>
</tr>
<tr>
<td>Guadua chacoensis</td>
<td>Construction</td>
<td>Argentina, Paraguay</td>
</tr>
<tr>
<td>Guadua glomerata</td>
<td>Crafts</td>
<td>French Guiana, Guyana, Suriname</td>
</tr>
<tr>
<td>Guadua latifolia</td>
<td>Crafts</td>
<td>French Guiana, Guyana, Suriname</td>
</tr>
<tr>
<td>Guadua longifolia</td>
<td>Various purposes</td>
<td>Mexico</td>
</tr>
<tr>
<td>Guadua macrostachya</td>
<td>Construction</td>
<td>Brazil, French Guiana, Guyana, Suriname</td>
</tr>
<tr>
<td>Guadua paniculata</td>
<td>Ceiling rafters</td>
<td>Bolivia, Honduras, Mexico, Paraguay</td>
</tr>
<tr>
<td>Guadua sarcocarpa</td>
<td>Construction</td>
<td>Peru</td>
</tr>
<tr>
<td>Guadua superba</td>
<td>Construction</td>
<td>Bolivia, Brazil, Colombia, Ecuador, Peru</td>
</tr>
<tr>
<td>Guadua tagoara</td>
<td>Ceiling rafters</td>
<td>Brazil</td>
</tr>
<tr>
<td>Guadua trinii</td>
<td>Construction</td>
<td>Argentina, Brazil, Uruguay</td>
</tr>
<tr>
<td>Guadua velutina</td>
<td>Construction</td>
<td>Mexico</td>
</tr>
<tr>
<td>Guadua weberbaueri</td>
<td>Ceiling rafters</td>
<td>French Guiana, Guyana, Peru, Suriname</td>
</tr>
<tr>
<td>Merostachys spp.</td>
<td>Handicrafts, basketwork, small-scale construction</td>
<td>Brazil</td>
</tr>
<tr>
<td>Neurolepis aperta</td>
<td>Roof-thatching</td>
<td>Colombia</td>
</tr>
<tr>
<td>Olatea acuminata</td>
<td>Crafts</td>
<td>Mexico</td>
</tr>
<tr>
<td>Olatea fimbriata</td>
<td>n/a</td>
<td>Honduras</td>
</tr>
<tr>
<td>Rhipidocladum geminatum</td>
<td>Crafts</td>
<td>Colombia, Ecuador</td>
</tr>
<tr>
<td>Rhipidocladum harmonicum</td>
<td>Musical instruments</td>
<td>Bolivia</td>
</tr>
<tr>
<td>Rhipidocladum racemiflorum</td>
<td>Crafts</td>
<td>Colombia, Ecuador</td>
</tr>
</tbody>
</table>

n/a: no information available

Annex IV: Woody bamboo species of Africa, Madagascar and the Americas with <20 000 km² of forest remaining within their ranges

0-500 km² FOREST REMAINING WITHIN RANGE

- Arthrostylidium angustifolium
- Arthrostylidium banaense
- Arthrostylidium longiflorum
- Arthrostylidium obtusatum
- Arthrostylidium reflexum
- Aulonemia chimantaensis
- Aulonemia hirtula
- Aulonemia humillima
- Aulonemia laxa
- Aulonemia patriae
- Aulonemia purpurata
- Aulonemia steyermarkii
- Chusquea amistadensis
- Chusquea caparaoensis
- Chusquea deflexa
- Chusquea effusa
- Chusquea fernandeziana
- Chusquea inamoena
- Chusquea linearis
- Chusquea longiligulata
- Chusquea laxensis
- Chusquea perlglulata
- Chusquea riosaltensis
- Chusquea spathacea
- Chusquea straminea
- Chusquea subtessellata
- Chusquea subtilis
- Chusquea tomentosa
- Chusquea tonduzii
- Chusquea virgata
- Chusquea vulcanalis
- Guadua glaziovii
- Hickelia perrieri
- Merostachys polyantha
- Myriocladus distansiflorus
- Myriocladus involutus
- Myriocladus neblinaensis
- Myriocladus paludicolus
- Myriocladus purpureus
- Myriocladus steyermarkii
- Myriocladus variabilis
- Myriocladus wurdackii
- Nastus tsaratananensis
- Neurolepis asymmetrica
- Neurolepis diversiglumis
- Neurolepis laegaardi
- Neurolepis stuebelii
- Neurolepis tessellata
- Neurolepis villosa
- Rhipidocladum clarkiae
- Rhipidocladum longispiculatum
- Rhipidocladum panamense
- Schizostachyum perrieri
- Yushania humbertii
- Yushania madagascariensis
- Yushania marojejyensis

501-1000 km² FOREST REMAINING WITHIN RANGE

- Arthrostylidium judziewiczii
- Alvimia auriculata
- Alvimia gracilis
- Alvimia lancifolia
- Arthrostylidium distichum
- Arthrostylidium ekmanii
- Chusquea talamanccensis
- Nastus ambrensis
- Neurolepis nana
- Neurolepis pittieri
- Rhipidocladum maxonii

1001-5000 km² FOREST REMAINING WITHIN RANGE

- Alvimia auriculata
- Alvimia gracilis
- Alvimia lancifolia
- Arthrostylidium fimbriatum
- Arthrostylidium merostachyoides
- Arthrostylidium pinifolium
- Atractantha falcata
- Atractantha radiata
Bamboo biodiversity

Aulonemia amplissima
Aulonemia clarkiae
Aulonemia herzogiana
Aulonemia jauensis
Aulonemia longiaristata
Aulonemia robusta
Aulonemia subpectinata
Aulonemia ulei
Cephalostachyum peclardii
Chusquea albilanata
Chusquea angustifolia
Chusquea barbata
Chusquea bilimekii
Chusquea delicatula
Chusquea depauperata
Chusquea erecta
Chusquea foliosa
Chusquea huantensis
Chusquea irbariae
Chusquea leonardiorum
Chusquea ligulata
Chusquea neurophylla
Chusquea nudiramea
Chusquea palenae
Chusquea pohlii
Chusquea polyclados
Chusquea pulchella
Chusquea scabra
Chusquea smithii
Chusquea tarmensis
Chusquea tuberculosa
Chusquea wilkesii
Criciuma asymmetrica
Colanthelia rhizantha
Decaryochloa diadelpha
Elytrostachys falcata
Guadua calderoniana

Hickelia africana
Merostachys argyronema
Merostachys filgeirae
Merostachys glauca
Merostachys kleinii
Merostachys latifolia
Merostachys pauciflora
Merostachys pilifera
Myriocladus affinis
Myriocladus churunensis
Myriocladus confertus
Myriocladus exsertus
Myriocladus gracilis
Myriocladus longiramosus
Myriocladus maguirei
Myriocladus simplex
Nastus decaryanus
Nastus humbertianus
Nastus lokohomensis
Nastus manongarivensis
Nastus perrieri
Neurolepis acuminatissima
Neurolepis angusta
Neurolepis aristata
Neurolepis fimbriligulata
Neurolepis glomerata
Neurolepis mollis
Neurolepis petiolata
Neurolepis rigida
Neurolepis virgata
Ochlandra perrieri
Rhipidocladum martinezii
Rhipidocladum pacuarense
Rhipidocladum prestoei
Yushania ambositrensis
Yushania perrieri

5 001 - 10 000 KM² FOREST REMAINING WITHIN RANGE

Arthrostylidium cubense
Arthrostylidium excelsum
Arthrostylidium urbanii
Arthrostylidium youngianum
Aulonemia gucko
Aulonemia radiata
Aulonemia ramosissima
Aulonemia setigera
Cephalostachyum perrieri
Chusquea abietifolia
Chusquea andina
Chusquea breviglumis
Chusquea falcata
Chusquea glauca
Chusquea latifolia
Chusquea lehmannii subsp. Lehmannii
Chusquea longipendula
Chusquea lorentziana
Chusquea nutans
Chusquea patens
Chusquea sclerophylla
Chusquea sneidernii
Chusquea spadicea
Chusquea urelytra
Bamboo biodiversity

Chusquea wettsteinii
Guadua longifimbriata
Guadua ribbentropii
Hickelia alaotrensis
Merostachys retrorsa

10 001 - 15 000 KM² FOREST REMAINING WITHIN RANGE

Apocladia cannavieira
Arthrostylidium haitiense
Arthrostylidium schomburgkii
Aulonemia effusa
Chusquea exasperata
Chusquea grandiflora
Chusquea lehmannii subsp. farinosa
Chusquea leptophylla
Chusquea longifolia
Chusquea muelleri

Chusquea peruviana
Chusquea purdieana
Chusquea subulata
Chusquea tenuiflora
Merostachys magellanica
Myriocladus cardonae
Nastus elongatus
Olmeca recta
Schizostachyum parvifolium

15 001 - 20 000 KM² FOREST REMAINING WITHIN RANGE

Arthrostylidium ecuadorense
Aulonemia haenkei
Aulonemia parviflora
Cephalostachyum madagascariense
Cephalostachyum viguieri
Chusquea anelytroides
Chusquea aspera
Chusquea cumingii
Chusquea londoniae
Chusquea nelsonii

Chusquea repens
Colanthelia macrostachya
Merostachys abadiana
Merostachys burchellii
Merostachys caucaiana
Merostachys fischeriana
Merostachys kunthii
Merostachys scandens
Ochlandra capitata
Bamboo biodiversity

Annex V: Maps of potential distributions of woody bamboos in Africa, Madagascar and the Americas

Nine maps (highlighted purple) show potential distributions within remaining forest and species richness of selected genera. The remaining maps are of species that are useful (highlighted green), on current global Red Lists (brown), representative of monotypic genera, or have <20,000 km² of forest remaining within their ranges. Where more than one of these categories applies it is indicated in the comments column of the list.

<table>
<thead>
<tr>
<th>Map no.</th>
<th>Genera/Species</th>
<th>Region</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oreobambos buchwaldii</td>
<td>Africa</td>
<td>Useful</td>
</tr>
<tr>
<td>1.2</td>
<td>Oxytenanthera abyssinica</td>
<td>Africa</td>
<td>Useful</td>
</tr>
<tr>
<td>1.3</td>
<td>Thamnocalamus tessellatus</td>
<td>Africa</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>1.4</td>
<td>Yushania alpina</td>
<td>Africa</td>
<td>Useful</td>
</tr>
<tr>
<td>2.1</td>
<td>Nastus</td>
<td>Madagascar</td>
<td>Genus</td>
</tr>
<tr>
<td>2.2</td>
<td>Bambusa vulgaris</td>
<td>Madagascar</td>
<td>Useful</td>
</tr>
<tr>
<td>2.3</td>
<td>Cephalostachyum viguieri</td>
<td>Madagascar</td>
<td>Less than 20 000 km² of remaining habitat</td>
</tr>
<tr>
<td>2.4</td>
<td>Decaryochloa diadelpha</td>
<td>Madagascar</td>
<td>Monotypic genus, less than 20 000 km² of remaining habitat</td>
</tr>
<tr>
<td>2.5</td>
<td>Hickelia madagascariensis</td>
<td>Madagascar</td>
<td>Useful</td>
</tr>
<tr>
<td>2.6</td>
<td>Hitchcockella baronii</td>
<td>Madagascar</td>
<td>Monotypic genus</td>
</tr>
<tr>
<td>3.1</td>
<td>Arthrostylidium</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.2</td>
<td>Aulonemia</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.3</td>
<td>Chusquea</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.4</td>
<td>Guadua</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.5</td>
<td>Merostachys</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.6</td>
<td>Myriocladus</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.7</td>
<td>Neurolepis</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.8</td>
<td>Rhipidocladum</td>
<td>America</td>
<td>Genus</td>
</tr>
<tr>
<td>3.9</td>
<td>Actinocladum verticillatum</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.10</td>
<td>Aporclada simplex</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.11</td>
<td>Arthrostylidium venezuelae</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.12</td>
<td>Arundinaria gigantea</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.13</td>
<td>Arthrostachys capitata</td>
<td>America</td>
<td>Monotypic genus</td>
</tr>
<tr>
<td>3.14</td>
<td>Aulonemia longiaristata</td>
<td>America</td>
<td>Useful, less than 20 000 km² of remaining habitat</td>
</tr>
<tr>
<td>3.15</td>
<td>Aulonemia patula</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.16</td>
<td>Chusquea aperta</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.17</td>
<td>Chusquea cuteou</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.18</td>
<td>Chusquea latifolia</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.19</td>
<td>Chusquea longifolia</td>
<td>America</td>
<td>Useful, less than 20 000 km² of remaining habitat</td>
</tr>
<tr>
<td>3.20</td>
<td>Chusquea longiligulata</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.21</td>
<td>Chusquea nelsonii</td>
<td>America</td>
<td>Useful, less than 20 000 km² of remaining habitat</td>
</tr>
<tr>
<td>3.22</td>
<td>Chusquea pittieri</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.23</td>
<td>Chusquea pohtii</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.24</td>
<td>Chusquea scandens</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.25</td>
<td>Criciuma assimetrica</td>
<td>America</td>
<td>Monotypic genus, less than 20 000 km² of remaining habitat</td>
</tr>
<tr>
<td>3.26</td>
<td>Elytrostachys clavigera</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>Code</td>
<td>Species</td>
<td>Continent</td>
<td>Status</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>3.27</td>
<td>Eremocaulon aureofimbriatum</td>
<td>America</td>
<td>Monotypic genus</td>
</tr>
<tr>
<td>3.28</td>
<td>Guadua amplexifolia</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.29</td>
<td>Guadua angustifolia</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.30</td>
<td>Guadua glomerata</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.31</td>
<td>Guadua latifolia</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.32</td>
<td>Guadua longifolia</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.33</td>
<td>Guadua macrostachya</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.34</td>
<td>Guadua paniculata</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.35</td>
<td>Guadua tagoara</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.36</td>
<td>Guadua trinii</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.37</td>
<td>Guadua velutina</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.38</td>
<td>Neurolepis aperta</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.39</td>
<td>Olmeca recta</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.40</td>
<td>Olmeca reflexa</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.41</td>
<td>Olatea acuminata</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.42</td>
<td>Olatea fimbriata</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.43</td>
<td>Rhipidocladum clarkiae</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.44</td>
<td>Rhipidocladum harmonicum</td>
<td>America</td>
<td>Useful</td>
</tr>
<tr>
<td>3.45</td>
<td>Rhipidocladum maxonii</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
<tr>
<td>3.46</td>
<td>Rhipidocladum pacuarense</td>
<td>America</td>
<td>IUCN Red List</td>
</tr>
</tbody>
</table>
Map 1.2. Potential distribution of *Oxytenanthera abyssinica*

- **Native: within forest cover**
- **Existing forest cover with no records**
- **Congo, DR**
- **Angola**
- **Zambia**
- **Namibia**
- **Botswana**
- **South Africa**

ATLANTIC OCEAN

INDIAN OCEAN
Map 1.4. Potential distribution of Yushania alpina

- **Native: within forest cover**
- **Existing forest cover with no records of Yushania alpina**
Map 2.1. Potential distribution of *Nastus*

Number of species

1	2	3

Existing forest cover with no records of *Nastus*

Madagascar

INDIAN OCEAN
Map 2.2. Potential distribution of *Bambusa vulgaris*

- **Native:** within forest cover
- **Existing forest cover with no records of *Bambusa vulgaris***
Map 2.3. Potential distribution of *Cephalostachyum viguieri*

- **Native:** within forest cover
- **Existing forest cover with no records of Cephalostachyum viguieri**
Map 2.4. Potential distribution of *Decaryochloa diadelpha*

- **Native:** within forest cover
- **Existing forest cover with no records** of *Decaryochloa diadelpha*
Map 2.5. Potential distribution of *Hickelia madagascariensis*

- **Native:** within forest cover
- **Existing forest cover with no records:** of *Hickelia madagascariensis*
Bamboo biodiversity

Map 2.6. Potential distribution of Hitchcockella baronii

- Native: within forest cover
- Existing forest cover with no records of Hitchcockella baronii

Madagascar

INDIAN OCEAN
Bamboo biodiversity

Map 3.1. Potential distribution of Arthrostylidium

Number of species

1 - 2
3 - 4
5 - 6
7

Existing forest cover with no records of Arthrostylidium
Map 3.4. Potential distribution of *Guadua*

<table>
<thead>
<tr>
<th>Number of species</th>
<th>1 - 2</th>
<th>3 - 4</th>
<th>5 - 6</th>
<th>7</th>
</tr>
</thead>
</table>

Existing forest cover with no records of *Guadua*
Bamboo biodiversity

Map 3.6. Potential distribution of *Myriocladus*

Number of species

- 1
- 2
- 3
- 4 - 5

Legend:
- Existing forest cover with no records of *Myriocladus*
Map 3.7. Potential distribution of *Neurolepis*

Number of species

- 1 - 2
- 3 - 5

Existing forest cover with no records of *Neurolepis*
Map 3.8. Potential distribution of *Rhipidocladum*

Number of species

<table>
<thead>
<tr>
<th>Number of Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing forest cover with no records of *Rhipidocladum*
Map 3.9. Potential distribution of *Actinocladum verticillatum*

- **Native:** within forest cover
- **Existing forest cover with no records of** *Actinocladum verticillatum*

ATLANTIC OCEAN
Map 3.10. Potential distribution of *Apoclada simplex*

- **Native:** within forest cover
- **Existing forest cover with no records of** *Apoclada simplex*
Map 3.11. Potential distribution of *Arthrostyletum venezuelae*

- **Native:** within forest cover
- **Existing forest cover with no records of* Arthrostyletum venezuelae**
- **Specimens of* Arthrostyletum venezuelae** with coordinates
Map 3.13. Potential distribution of *Athroostachys capitata*

- **Green**: Native: within forest cover
- **Gray**: Existing forest cover with no records of *Athroostachys capitata*
Map 3.14. Potential distribution of *Aulonemia longiaristata*

- **Native:** within forest cover
- **Existing forest cover with no records** of *Aulonemia longiaristata*
Map 3.15. Potential distribution of *Aulonemia patula*

- Native: within forest cover
- Existing forest cover with no records of *Aulonemia patula*
Map 3.16. Potential distribution of *Chusquea aperta*

- **Green**: Native, within forest cover
- **Gray**: Existing forest cover with no records of *Chusquea aperta*
Map 3.17. Potential distribution of *Chusquea culeou*

- **Green**: Native: within forest cover
- **Gray**: Existing forest cover with no records of *Chusquea culeou*
Map 3.18. Potential distribution of *Chusquea latifolia*

- Native: within forest cover
- Existing forest cover with no records of *Chusquea latifolia*
Map 3.19. Potential distribution of *Chusquea longifolia*

- **Native:** within forest cover
- **Existing forest cover with no records** of *Chusquea longifolia*
Map 3.20. Potential distribution of *Chusquea longiligulata*

- **Native: within forest cover**
- **Existing forest cover with no records of *Chusquea longiligulata***
Map 3.21. Potential distribution of *Chusquea nelsonii*

- **Native:** within forest cover
- **Existing forest cover with no records of** *Chusquea nelsonii*
Bamboo biodiversity
Map 3.23. Potential distribution of *Chusquea pohlii*

- Green: Native within forest cover
- Gray: Existing forest cover with no records of *Chusquea pohlii*
- Pink: Specimens of *Chusquea pohlii* with coordinates
Map 3.25. Potential distribution of *Criciuma asymmetraca*

- Native: within forest cover
- Existing forest cover with no records of *Criciuma asymmetraca*
Map 3.26. Potential distribution of *Elytrostachys clavigera*

- **Native:** within forest cover
- **Existing forest cover with no records of** *Elytrostachys clavigera*
Map 3.27. Potential distribution of *Eremocauleon aureofimbriatum*

- Native: within forest cover
- Existing forest cover with no records of *Eremocauleon aureofimbriatum*

ATLANTIC OCEAN

Bamboo biodiversity
Bamboo biodiversity

Map 3.28. Potential distribution of *Guadua amplexifolia*

- Green: Native within forest cover
- Light grey: Existing forest cover with no records of *Guadua amplexifolia*
- Black dot: Specimens of *Guadua amplexifolia* with coordinates
Map 3.29. Potential distribution of Guadua angustifolia

- Native: within forest cover
- Existing forest cover with no records of Guadua angustifolia
Map 3.30. Potential distribution of Guadua glomerata

- Green: Native, within forest cover
- Gray: Existing forest cover with no records of Guadua glomerata

ATLANTIC OCEAN
Map 3.31. Potential distribution of *Guadua latifolia*

- Native: within forest cover
- Existing forest cover with no records of *Guadua latifolia*
Map 3.32. Potential distribution of *Guadua longifolia*

- **Native: within forest cover**
- **Existing forest cover with no records of *Guadua longifolia***
Map 3.33. Potential distribution of *Guadua macrostachya*

- **Native:** within forest cover
- **Existing forest cover with no records** of *Guadua macrostachya*
Map 3.34. Potential distribution of *Guadua paniculata*

- **Native:** within forest cover
- **Existing forest cover with no records of *Guadua paniculata***
- **Specimens of *Guadua paniculata*** with coordinates

Bamboo biodiversity
Map 3.35. Potential distribution of Guadua tangoara

- Native: within forest cover
- Existing forest cover with no records of Guadua tangoara

atlantic ocean
Bamboo biodiversity

Map 3.36. Potential distribution of *Guadua trinii*

- **Native:** within forest cover
- **Existing forest cover with no records of *Guadua trinii***
Map 3.37. Potential distribution of Guadua velutina

- Native: within forest cover
- Existing forest cover with no records of Guadua velutina

Bamboo biodiversity
Map 3.38. Potential distribution of *Neurolepis aperta*

- **Green**: Native: within forest cover
- **Gray**: Existing forest cover with no records of *Neurolepis aperta*
Map 3.39. Potential distribution of *Olmeca recta*

- **Green**: Native: within forest cover
- **Gray**: Existing forest cover with no records of *Olmeca recta*
Map 3.40. Potential distribution of *Olmeca reflexa*

- **Native: within forest cover**
- **Existing forest cover with no records of *Olmeca reflexa***
Map 3.41. Potential distribution of *Ota tea acuminata*

Native: within forest cover
Existing forest cover with no records of *Ota tea acuminata*
Specimens of *Ota tea acuminata* with coordinates
Map 3.42. Potential distribution of *Omatea fimbriata*

- **Green**: Native: within forest cover
- **Gray**: Existing forest cover with no records of *Omatea fimbriata*
Map 3.43. Potential distribution of *Rhipidocladum clarkiae*

- **Native:** within forest cover
- **Existing forest cover with no records** of *Rhipidocladum clarkiae*
Map 3.45. Potential distribution of *Rhipidocladum maxonii*

- **Green**: Native within forest cover
- **Dark Green**: Existing forest cover with no records of *Rhipidocladum maxonii*
Bamboos are distinct and fascinating plants, with a wide range of values and uses. They play a significant role in biodiversity conservation, are important to ecosystem dynamics, and contribute to soil and water management. They play an increasing role in local and world economies.

This study used an innovative approach to map potential current distributions of nearly 400 individual bamboo species that occur naturally within the remaining forests of Africa, Madagascar and the Americas. The maps were also combined to generate regional maps showing potential species and generic richness.

By quantifying the area of forest cover remaining within each species’ range, this analysis shows that over half the species studied are potentially threatened by the destruction of natural forest cover. The situation is particularly alarming in Madagascar, where the woody bamboos are all endemic and 75 per cent of them have only very small amounts of forest remaining within their ranges. Conservation and sustainable management of wild populations of bamboo should be a priority in all three regions, especially where diversity is high or deforestation is a significant threat.

This report contributes to implementation of the Global Strategy for Plant Conservation, which aims to halt the current and continuing loss of plant diversity.