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Abstract

This paper measures the mean, standard deviation, alpha, and beta of venture capital

investments, using a maximum likelihood estimate that corrects for selection bias. The bias-

corrected estimation neatly accounts for log returns. It reduces the estimate of the mean log

return from 108% to 15%, and of the log market model intercept from 92% to �7%: The

selection bias correction also dramatically attenuates high arithmetic average returns: it

reduces the mean arithmetic return from 698% to 59%, and it reduces the arithmetic alpha

from 462% to 32%. I confirm the robustness of the estimates in a variety of ways. I also find

that the smallest Nasdaq stocks have similar large means, volatilities, and arithmetic alphas in

this time period, confirming that the remaining puzzles are not special to venture capital.

Published by Elsevier B.V.

JEL classification: G24

Keywords: Venture capital; Private equity; Selection bias
- see front matter Published by Elsevier B.V.

.jfineco.2004.03.006

teful to Susan Woodward, who suggested the idea of a selection-bias correction for venture

s, and who also made many useful comments and suggestions. I gratefully acknowledge the

of Shawn Blosser, who assembled the venture capital data. I thank many seminar participants

ymous referees for important comments and suggestions. I gratefully acknowledge research

NSF grants administered by the NBER and from CRSP. Data, programs, and an appendix

ta procedures and algebra can be found at http://gsbwww.uchicago.edu/fac/john.cochrane/

ers/.

nding author.

dress: john.cochrane@gsb.uchicago.edu (J.H. Cochrane).

www.elsevier.com/locate/econbase
http://gsbwww.uchicago.edu/fac/john.cochrane/research/Papers/
http://gsbwww.uchicago.edu/fac/john.cochrane/research/Papers/


ARTICLE IN PRESS

J.H. Cochrane / Journal of Financial Economics 75 (2005) 3–524
1. Introduction

This paper measures the expected return, standard deviation, alpha, and beta of
venture capital investments. Overcoming selection bias is the central hurdle in
evaluating such investments, and it is the focus of this paper. We observe valuations
only when a firm goes public, receives new financing, or is acquired. These events are
more likely when the firm has experienced a good return. I overcome this bias with a
maximum-likelihood estimate. I identify and measure the increasing probability of
observing a return as value increases, the parameters of the underlying return
distribution, and the point at which firms go out of business.

I base the analysis on measured returns from investment to IPO, acquisition, or
additional financing. I do not attempt to fill in valuations at intermediate dates. I
examine individual venture capital projects. Since venture funds often take 2–3%
annual fees and 20–30% of profits at IPO, returns to investors in venture capital
funds are often lower. Fund returns also reflect some diversification across projects.

The central question is whether venture capital investments behave the same way
as publicly traded securities. Do venture capital investments yield larger risk-
adjusted average returns than traded securities? In addition, which kind of traded
securities do they resemble? How large are their betas, and how much residual risk
do they carry?

One can cite many reasons why the risk and return of venture capital might differ
from the risk and return of traded stocks, even holding constant their betas or
characteristics such as industry, small size, and financial structure (leverage, book/
market ratio, etc.). First, investors might require a higher average return to
compensate for the illiquidity of private equity. Second, private equity is typically
held in large chunks, so each investment might represent a sizeable fraction of the
average investor’s wealth. Finally, VC funds often provide a mentoring or
monitoring role to the firm. They often sit on the board of directors, or have the
right to appoint or fire managers. Compensation for these contributions could result
in a higher measured financial return.

On the other hand, venture capital is a competitive business with relatively free
(though not instantaneous; see Kaplan and Shoar, 2003) entry. Many venture capital
firms and their large institutional investors can effectively diversify their portfolios.
The special relationship, information, and monitoring stories that suggest a
restricted supply of venture capital might be overblown. Private equity could be
just like public equity.

I verify large and volatile returns if there is a new financing round, IPO, or
acquisition, i.e., if we do not correct for selection bias. The average arithmetic return
to IPO or acquisition is 698% with a standard deviation of 3,282%. The distribution
is highly skewed; there are a few returns of thousands of percent, many more modest
returns of ‘‘only’’ 100% or so, and a surprising number of losses. The skewed
distribution is well described by a lognormal, but average log returns to IPO or
acquisition still have a large 108% mean and 135% standard deviation. A CAPM
estimate gives an arithmetic alpha of 462%; a market model in logs still gives an
alpha of 92%.
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The selection bias correction dramatically lowers these estimates, suggesting that
venture capital investments are much more similar to traded securities than one
would otherwise suspect. The estimated average log return is 15% per year, not
108%. A market model in logs gives a slope coefficient of 1.7 and a �7:1%; not
+92%, intercept. Mean arithmetic returns are 59%, not 698%. The arithmetic alpha
is 32%, not 462%. The standard deviation of arithmetic returns is 107%, not
3,282%.

I also find that investments in later rounds are steadily less risky. Mean returns,
alphas, and betas all decline steadily from first-round to fourth-round investments,
while idiosyncratic variance remains the same. Later rounds are also more likely to
go public.

Though much lower than their selection-biased counterparts, a 59% mean
arithmetic return and 32% arithmetic alpha are still surprisingly large. Most
anomalies papers quarrel over 1–2% per month. The large arithmetic returns result
from the large idiosyncratic volatility of these individual firm returns, not from a
large mean log return. If s ¼ 1 (100%), emþð1=2Þs2

is large (65%), even if m ¼ 0:
Venture capital investments are like options; they have a small chance of a huge
payoff.

One naturally distrusts the black-box nature of maximum likelihood, especially
when it produces an anomalous result. For this reason I extensively check the
facts behind the estimates. The estimates are driven by, and replicate, two central sets
of stylized facts: the distribution of observed returns as a function of firm age, and
the pattern of exits as a function of firm age. The distribution of total (not
annualized) returns is quite stable across horizons. This finding contrasts strongly
with the typical pattern that the total return distribution shifts to the right and
spreads out over time as returns compound. A stable total return is, however, a
signature pattern of a selected sample. When the winners are pulled off the top
of the return distribution each period, that distribution does not grow with time.
The exits (IPO, acquisition, new financing, failure) occur slowly as a function of firm
age, essentially with geometric decay. This fact tells us that the underlying
distribution of annual log returns must have a small mean and a large standard
deviation. If the annual log return distribution had a large positive or negative mean,
all firms would soon go public or fail as the mass of the total return distribution
moves quickly to the left or right. Given a small mean log return, we need a large
standard deviation so that the tails can generate successes and failures that grow
slowly over time.

The identification is interesting. The pattern of exits with time, rather than the
returns, drives the core finding of low mean log return and high return volatility. The
distribution of returns over time then identifies the probability that a firm goes public
or is acquired as a function of value. In addition, the high volatility, rather than a
high mean return, drives the core finding of high average arithmetic returns.

Together, these facts suggest that the core findings of high arithmetic returns and
alphas are robust. It is hard to imagine that the pattern of exits could be anything
but the geometric decay we observe in this dataset, or that the returns of individual
venture capital projects are not highly volatile, given that the returns of traded small
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growth stocks are similarly volatile. I also test the hypotheses a ¼ 0 and EðRÞ ¼ 15%
and find them overwhelmingly rejected.

The estimates are not just an artifact of the late 1990s IPO boom. Ignoring all data
past 1997 leads to qualitatively similar results. Treating all firms still alive at the end
of the sample (June 2000) as out of business and worthless on that date also leads to
qualitatively similar results. The results do not depend on the choice of reference
return: I use the S&P500, the Nasdaq, the smallest Nasdaq decile, and a portfolio of
tiny Nasdaq firms on the right-hand side of the market model, and all leave high,
volatility-induced arithmetic alphas. The estimates are consistent across two basic
return definitions, from investment to IPO or acquisition, and from one round of
venture investment to the next. This consistency, despite quite different features of
the two samples, gives credence to the underlying model. Since the round-to-round
sample weights IPOs much less, this consistency also suggests there is no great return
when the illiquidity or other special feature of venture capital is removed on IPO.
The estimates are quite similar across industries; they are not just a feature of
internet stocks. The estimates do not hinge on particular observations. The central
estimates allow for measurement error, and the estimates are robust to various
treatments of measurement error. Removing the measurement error process results
in even greater estimates of mean returns. An analysis of influential data points finds
that the estimates are not driven by the occasional huge successes, and also are not
driven by the occasional financing round that doubles in value in two weeks.

For these reasons, the remaining average arithmetic returns and alphas are not
easily dismissed. If venture capital seems a bit anomalous, perhaps similar traded
stocks behave the same way. I find that a sample of very small Nasdaq stocks in this
time period has similarly large mean arithmetic returns, large—over 100%—
standard deviations, and large—53%!—arithmetic alphas. These alphas are
statistically significant, and they are not explained by a conventional small-firm
portfolio or by the Fama-French three-factor model. However, the beta of venture
capital on these very small stocks is not one, and the alpha is not zero, so venture
capital returns are not ‘‘explained’’ by these very small firm returns. They are similar
phenomena, but not the same phenomenon.

Whatever the explanation—whether the large arithmetic alphas reflect the
presence of an additional factor, whether they are a premium for illiquidity, etc.—
the fact that we see a similar phenomenon in public and private markets suggests
that there is little that is special about venture capital per se.
2. Literature

This paper’s distinctive contribution is to estimate the risk and return of venture
capital projects, to correct seriously for selection bias, especially the biases induced
by projects that remain private at the end of the sample, and to avoid imputed
values.

Peng (2001) estimates a venture capital index from the same basic data I use, with
a method-of-moments repeat sales regression to assign unobserved values and a
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reweighting procedure to correct for the still-private firms at the end of the sample.
He finds an average geometric return of 55%, much higher than the 15% I find for
individual projects. He also finds a very high 4.66 beta on the Nasdaq index.
Moskowitz and Vissing-Jorgenson (2002) find that a portfolio of all private equity
has a mean and standard deviation of return close to those of the value-weighted
index of traded stocks. However, they use self-reported valuations from the survey of
consumer finances, and venture capital is less than 1% of all private equity, which
includes privately held businesses and partnerships. Long (1999) estimates a
standard deviation of 24.68% per year, based on the return to IPO of nine
successful VC investments.

Bygrave and Timmons (1992) examine venture capital funds, and find an average
internal rate of return of 13.5% for 1974–1989. The technique does not allow any
risk calculations. Venture Economics (2000) reports a 25.2% five-year return
and 18.7% ten-year return for all venture capital funds in their database as of 12/21/
99, a period with much higher stock returns. This calculation uses year-end values
reported by the funds themselves. Chen et al. (2002) examine the 148 venture
capital funds in the Venture Economics data that had liquidated as of 1999. In these
funds they find an annual arithmetic average return of 45%, an annual compound
(log) average return of 13.4%, and a standard deviation of 115.6%, quite similar
to my results. As a result of the large volatility, however, they calculate that one
should only allocate 9% of a portfolio to venture capital. Reyes (1990) reports
betas from 1.0 to 3.8 for venture capital as a whole, in a sample of 175 mature
venture capital funds, but using no correction for selection or missing intermediate
data. Kaplan and Schoar (2003) find that average fund returns are about the
same as the S&P500 return. They find that fund returns are surprisingly persistent
over time.

Gompers and Lerner (1997) measure risk and return by examining the investments
of a single venture capital firm, periodically marking values to market. This sample
includes failures, eliminating a large source of selection bias but leaving the survival
of the venture firm itself and the valuation of its still-private investments. They find
an arithmetic average annual return of 30.5% gross of fees from 1972–1997. Without
marking to market, they find a beta of 1.08 on the market. Marking to market, they
find a higher beta of 1.4 on the market, and 1.27 on the market with 0.75 on the small
firm portfolio and 0.02 on the value portfolio in a Fama-French three-factor
regression. Clearly, marking to market rather than using self-reported values has a
large impact on risk measures. They do not report a standard deviation, though one
can infer from b ¼ 1:4 and R2 ¼ 0:49 a standard deviation of 1:4 � 16=

ffiffiffiffiffiffiffiffiffi
0:49

p
¼

32%: (This is for a fund, not the individual projects.) Gompers and Lerner find an
intercept of 8% per year with either the one-factor or three-factor model. Ljungqvist
and Richardson (2003) examine in detail all the venture fund investments of a single
large institutional investor, and they find a 19.8% internal rate of return. They
reduce the sample selection problem posed by projects still private at the end of the
sample by focusing on investments made before 1992, almost all of which have
resolved. Assigning betas, they recover a 5–6% premium, which they interpret as a
premium for the illiquidity of venture capital investments.
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Discount rates applied by VC investors might be informative, but the contrast
between high discount rates applied by venture capital investors and lower ex post
average returns is an enduring puzzle in the venture capital literature. Smith
and Smith (2000) survey a large number of studies that report discount rates of 35%
to 50%. However, this puzzle depends on the interpretation of ‘‘expected cash
flows’’. If ‘‘expected’’ means ‘‘what will happen if everything goes as planned’’, it is
much larger than a conditional mean, and a larger ‘‘discount rate’’ should be
applied.
3. Overcoming selection bias

We observe a return only when the firm gets new financing or is acquired, but this
fact need not bias our estimates. If the probability of observing a return were
independent of the project’s value, simple averages would still correctly measure the
underlying return characteristics. However, projects are more likely to get new
financing, and especially to go public, when their value has risen. As a result, the
mean returns to projects that get additional financing are an upward-biased estimate
of the underlying mean return.

To understand the effects of selection, suppose that every project goes public when
its value has grown by a factor of 10. Now, every measured return is exactly 1,000%,
no matter what the underlying return distribution. A mean return of 1,000% and a
zero standard deviation is obviously a wildly biased estimate of the returns facing an
investor!

In this example, however, we can still identify the parameters of the underlying
return distribution. The 1,000% measured returns tell us that the cutoff for going
public is 1,000%. Observed returns tell us about the selection function, not the return

distribution. The fraction of projects that go public at each age then identifies the
return distribution. If we see that 10% of the projects go public in one year, then we
know that the 10% upper tail of the return distribution begins at a 1,000% return.
Since the mean grows with horizon and the standard deviation grows with the square
root of horizon, the fractions that go public over time can separately identify the
mean and the standard deviation (and, potentially, other moments) of the underlying
return distribution.

In reality, the selection of projects to get new financing or be acquired is not a step
function of value. Instead, the probability of obtaining new financing is a smoothly
increasing function of the project’s value, as illustrated by PrðIPOjValueÞ in Fig. 1.
The distribution of measured returns is then the product of the underlying return
distribution and the rising selection probability. Measured returns still have an
upward-biased mean and a downward-biased volatility. The calculations are more
complex, but we can still identify the underlying return distribution and the selection
function by watching the distribution of observed returns as well as the fraction of
projects that obtain new financing over time.

I have nothing new to say about why projects are more likely to get new financing
when value has increased, and I fit a convenient functional form rather than impose
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Return = Value at year 1

Pr(IPO|Value) 

Measured Returns 

Fig. 1. Generating the measured return distribution from the underlying return distribution and selection

of projects to go public.
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a particular economic model of this phenomenon. It’s not surprising: good news
about future productivity raises value and the need for new financing. The standard
q theory of investment also predicts that firms will invest more when their values rise.
(MacIntosh (1997, p. 295) discusses selection.) I also do not model the fact that more
projects are started when market valuations are high, though the same motivations
apply.

3.1. Maximum likelihood estimation

My objective is to estimate the mean, standard deviation, alpha, and beta of
venture capital investments, correcting for the selection bias caused by the fact that
we do not see returns for projects that remain private. To do this, I have to develop a
model of the probability structure of the data—how the returns we see are generated
from the underlying return process and the selection of projects that get new
financing or go out of business. Then, for each possible value of the parameters, I
can calculate the probability of seeing the data given those parameters.

The fundamental data unit is a financing round. Each round can have one of three
basic fates. First, the firm can go public, be acquired, or get a new round of
financing. These fates give us a new valuation, so we can measure a return. For this
discussion, I lump all three fates together under the name ‘‘new financing round’’.
Second, the firm can go out of business. Third, the firm can remain private at the end
of the sample. We need to calculate the probabilities of these three events, and the
probability of the observed return if the firm gets new financing.
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Fig. 2 illustrates how I calculate the likelihood function. I set up a grid for the log
of the project’s value logðVtÞ at each date t. I start each project at an initial value
V 0 ¼ 1; as shown in the top panel of Fig. 2. (I’m following the fate of a typical dollar
invested.) I model the growth in value for subsequent periods as a lognormally
distributed variable,

ln
V tþ1

V t

� �
¼ gþ ln R

f
t þ dðln Rm

tþ1 � ln R
f
t Þ þ etþ1; etþ1 	 Nð0;s2Þ: (1)

I use a time interval of three months, balancing accuracy and simulation time. Eq. (1)
is like the CAPM, but using log rather than arithmetic returns. Given the extreme
skewness and volatility of venture capital investments, a statistical model with
normally distributed arithmetic returns would be strikingly inappropriate. Below, I
derive and report the implied market model for arithmetic returns (alpha and beta)
from this linear lognormal statistical model. From Eq. (1), I generate the probability
distribution of value at the beginning of period 1, PrðV 1Þ as shown in the second
panel of Fig. 2.
-1 -0.5 0 0.5 1 1.5
log value grid

Time zero value = $1 

Value at beginning of time 1 
Pr(new round|value) Pr(out|value) 

Pr(new round at time 1) 

Pr(out of bus. at time 1) 

Pr(still private at end of time 1) 

Value at beginning of time 2 

Pr(new round at time 2) 

k 

Fig. 2. Procedure for calculating the likelihood function.



ARTICLE IN PRESS

J.H. Cochrane / Journal of Financial Economics 75 (2005) 3–52 11
Next, the firm could get a new financing round. The probability of getting a new
round is an increasing function of value. I model this probability as a logistic
function,

Prðnew round at tjV tÞ ¼ 1=½1 þ e�aðlnðVtÞ�bÞ�: (2)

This function rises smoothly from 0 to 1, as shown in the second panel of Fig. 2.
Since I have started with a value of $1, I assume here that selection to go public
depends on total return achieved, not size per se. A $1 investment that grows to
$1,000 is likely to go public, where a $10,000 investment that falls to $1,000 is not.
Now I can find the probability that the firm gets a new round with value V t;

Prðnew round at t; value VtÞ ¼ PrðV tÞ � Prðnew round at tjV tÞ:

This probability is shown by the bars on the right-hand side of the second panel of
Fig. 2. These firms exit the calculation of subsequent probabilities.

Next, the firm can go out of business. This is more likely for low values. I model
Prðout of business at tjV tÞ as a declining linear function of value Vt; starting from
the lowest value gridpoint and ending at an upper bound k, as shown by
PrðoutjvalueÞ on the left side of the second panel of Fig. 2. A lognormal process such
as (1) never reaches a value of zero, so we must envision something like k if we are to
generate a finite probability of going out of business.1 Multiplying, we obtain the
probability that the firm goes out of business in period 1,

Prðout of business at t; value V tÞ

¼ PrðVtÞ � ½1 � Prðnew round at tjV tÞ� � Prðout of business at tjV tÞ:

These probabilities are shown by the bars on the left side of the second panel
of Fig. 2.

Next, I calculate the probability that the firm remains private at the end of period
1. These are just the firms that are left over,

Prðprivate at end of t; value V tÞ

¼ PrðVtÞ � ½1 � Prðnew roundjVtÞ� � ½1 � Prðout of businessjV tÞ�:

This probability is indicated by the bars in the third panel of Fig. 2.
Next, I again apply (1) to find the probability that the firm enters the second

period with value V 2; shown in the bottom panel of Fig. 2,

PrðVtþ1Þ ¼
X
Vt

PrðVtþ1jVtÞPrðprivate at end of t;VtÞ: (3)

PrðVtþ1jVtÞ is given by the lognormal distribution of (1). As before, I find the
probability of a new round in period 2, the probability of going out of business in
1The working paper version of this article used a simpler specification that the firm went out of business

if V fell below k. Unfortunately, this specification leads to numerical problems, since the likelihood

function changes discontinuously as the parameter k passes through a value gridpoint. The linear

probability model is more realistic, and results in a better-behaved continuous likelihood function. A

smooth function like the logistic new financing selection function would be prettier, but this specification

requires only one parameter, and the computational cost of extra parameters is high.
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period 2, and the probability of remaining private at the end of period 2. All of these
are shown in the bottom panel of Fig. 2. This procedure continues until we reach the
end of the sample.

3.2. Accounting for data errors

Many data points have bad or missing dates or returns. Each round results in one
of the following categories: (1) new financing with good date and good return data,
(2) new financing with good dates but bad return data, (3) new financing with bad
dates and bad return data, (4) still private at end of sample, (5) out of business with
good exit date, (6) out of business with bad exit date.

To assign the probability of a type 1 event, a new round with a good date and
good return data, I first find the fraction d of all rounds with new financing that have
good date and return data. Then, the probability of seeing this event is d times the
probability of a new round at age t with value V t;

Prðnew financing at age t; value V t; good dataÞ

¼ d � Prðnew financing at t; value V tÞ: ð4Þ

I assume here that seeing good data is independent of value.
A few projects with ‘‘normal’’ returns in a very short time have astronomical

annualized returns. Are these few data points driving the results? One outlier
observation with probability near zero can have a huge impact on maximum
likelihood. As a simple way to account for such outliers, I consider a uniformly
distributed measurement error. With probability 1 � p; the data record the true
value. With probability p; the data erroneously record a value uniformly distributed
over the value grid. I modify Eq. (4) to

Prðnew financing at age t; value V t; good dataÞ

¼ d � ð1 � pÞ � Prðnew financing at t; value VtÞ

þ d � p�
1

#gridpoints

X
Vt

Prðnew financing at t; value V tÞ:

This modification fattens up the tails of the measured value distribution. It allows a
small number of observations to get a huge positive or negative return by
measurement error rather than force a huge mean or variance of the return
distribution to accommodate a few extreme annualized returns.

A type 2 event, new financing with good dates but bad return data, is still
informative. We know how long it takes this investment round to build up the
kind of value that typically leads to new financing. To calculate the probability of a
type 2 event, I sum across the vertical bars on the right side of the second panel of
Fig. 2,

Prðnew financing at age t;no return dataÞ

¼ ð1 � dÞ �
X
Vt

Prðnew financing at t; value VtÞ:
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A type 3 event, new financing with bad dates and bad return data, tells us that at
some point this project was good enough to get new financing, though we know only
that it happened between the start of the project and the end of the sample. To
calculate the probability of this event, I sum over time from the initial round date to
the end of the sample as well,

Prðnew financing, no date or return dataÞ

¼ ð1 � dÞ �
X

t

X
Vt

Prðnew financing at t; valueVtÞ:

To find the probability of a type 4 event, still private at the end of the sample,
I simply sum across values at the appropriate age

Prðstill private at end of sampleÞ

¼
X
Vt

Prðstill private at t ¼ ðend of sampleÞ � ðstart dateÞ;VtÞ:

. Type 5 and 6 events, out of business, tell us about the lower tail of the return

distribution. Some of the out of business observations have dates, and some do not.
Even when there is apparently good date data, a large fraction of the out-of-business
observations occur on two specific dates. Apparently, there were periodic data
cleanups of out-of-business observations prior to 1997. Therefore, when there is an
out-of-business date, I interpret it as ‘‘this firm went out of business on or before
date t’’, summing up the probabilities of younger out-of-business events, rather than
‘‘on date t’’. This assignment affects the results: since one of the cleanup dates comes
on the heels of a large positive stock return, using the dates as they are leads to
negative beta estimates. To account for missing date data in out-of-business firms, I
calculate the fraction of all out-of-business rounds with good date data c. Thus, I
calculate the probability of a type 5 event, out of business with good date
information, as

Prðout of business on or before age t;date dataÞ

¼ c �
Xt

t¼1

X
Vt

Prðout of business at t;V tÞ: ð5Þ

Finally, if the date data are bad, all we know is that this round went out of
business at some point before the end of the sample. I calculate the probability of a
type 6 event as

Prðout of business, no date dataÞ

¼ ð1 � cÞ �
Xend

t¼1

X
Vt

Prðout of business at t;V tÞ:

Based on the above structure, for given parameters fg; d;s; k; a; b; pg; I can
compute the probability that we see any data point. Taking the log and adding up
over all data points, I obtain the log likelihood. I search numerically over values
fg; d; s; k; a; b;pg to maximize the likelihood function.
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Of course, the ability to separately identify the probability of going public and the
parameters of the return process requires some assumptions. Most important, I
assume that the selection function Pr(new round jV t) is the same for firms of all ages
t. If the initial value doubles in a month, we are just as likely to get a new round as if
it takes ten years to double the initial value. This is surely unrealistic at very short
and very long time periods. I also assume that the return process is i.i.d. One might
specify that value creation starts slowly and then accelerates, or that betas or
volatilities change with size. However, identifying these tendencies without much
more data will be tenuous.
4. Data

I use the VentureOne database from its beginning in 1987 to June 2000. The
dataset consists of 16,613 financing rounds, with 7,765 companies and a total of
$112,613 million raised. VentureOne claims to have captured approximately 98% of
financing rounds, mitigating survival bias of projects and funds. However, the
VentureOne data are not completely free of survival bias. VentureOne records a
financing round if it includes at least one venture capital firm with $20 million or
more in assets under management. Having found a qualifying round, they search for
previous rounds. Gompers and Lerner (2000, 288pp.) discuss this and other potential
selection biases in the database. Kaplan et al. (2002) compare the VentureOne data
to a sample of 143 VC financings on which they have detailed information. They find
as many as 15% of rounds omitted. They find that post-money values of a financing
round, though not the fact of the round, are more likely to be reported if the
company subsequently goes public. This selection problem does not bias my
estimates.

The VentureOne data do not include the financial results of a public offering,
merger, or acquisition. To compute such values, we use the SDC Platinum
Corporate New Issues and Mergers and Acquisitions (M&A) databases, Market-
Guide, and other online resources.2 We calculate returns to IPO using offering
prices. There is usually a lockup period between IPO and the time that venture
capital investors can sell shares, and there is an active literature studying IPO
mispricing, post-IPO drift and lockup-expiration effects, so one might want to study
returns to the end of the first day of trading, or even include six months or more of
market returns. However, my objective is to measure venture capital returns, not to
contribute to the large literature that studies returns to newly listed firms. For this
purpose, it seems wisest to draw the line at the offering price. For example, suppose
that I include first-day returns, and that this inclusion substantially raises the
resulting mean returns and alphas. Would we call that the ‘‘risk and return of
venture capital’’ or ‘‘IPO mispricing’’? Clearly the latter, so I stop at offering prices
to focus on the former. In addition, all of these new-listing effects are small
compared to the returns (and errors) in the venture capital data. Even a 10% error in
2‘‘We’’ here includes Shawn Blosser, who assembled the venture capital data.
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final value would have little effect on my results, since it is spread over the many
years of a typical VC investment. A 10% error is only four days of volatility at the
estimated nearly 100% standard deviation of return.3

The basic data consist of the date of each investment, dollar amount invested,
value of the firm after each investment, and characteristics including industry and
location. VentureOne also notes whether the company has gone public, been
acquired, or gone out of business, and the date of these events. We infer returns by
tracking the value of the firm after each investment. For example, suppose firm XYZ
has a first round that raises $10 million, after which the firm is valued at $20 million.
We infer that the VC investors own half of the stock. If the firm later goes public,
raising $50 million and valued at $100 million after IPO, we infer that the VC
investors’ portion of the firm is now worth $25 million. We then infer their gross
return at $25M/$10M = 250%. We use the same method to assess dilution of initial
investors’ claims in multiple rounds.

The biggest potential error of this procedure is that if VentureOne misses
intermediate rounds, the extra investment is credited as a return to the original
investors. For example, the edition of VentureOne I used to construct the data
missed all but the seed round of Yahoo, resulting in a return even more enormous
than reality. I run the data through several filters4 and I add the measurement error
process p to try to account for this kind of error.

Venture capitalists typically obtain convertible preferred rather than common
stock. (See Kaplan and Strömberg (2003). Admati and Pfleiderer (1994) have a nice
summary of venture capital arrangements, especially mechanisms designed to insure
that valuations are ‘‘arm’s length’’.) These arrangements are not noted in the
VentureOne data, so I treat all investments as common stock. This approximation is
not likely to introduce a large bias. The results are driven by the successes, not by
liquidation values in the surprisingly rare failures, or in acquisitions that produce
losses for common stock investors, where convertible preferred holders can retrieve
their capital. In addition, the bias will be to understate estimated VC returns, while
3The unusually large first-day returns in 1999 and 2000 are a possible exception. For example,

Ljungqvist and Wilhelm (2003, Table, II) report mean first-day returns for 1996–2000 of 17%, 14%, 23%,

73%, and 58%, with medians of 10%, 9%, 10%, 39%, and 30%. However, these are reported as

transitory anomalies, not returns expected when the projects are started. We should be uncomfortable

adding a 73% expected one-day return to our view of the venture capital value creation process. Also, I

find below quite similar results in the pre-1997 sample, which avoids this anomalous period. See also Lee

and Wahal (2002), who find that VC-backed firms have larger first-day returns than other firms.
4Starting with 16,852 observations in the base case of the IPO/acquisition sample (numbers vary for

subsamples), I eliminate 99 observations with more than 100% or less than 0% inferred shareholder value,

and I eliminate 107 investments in the last period, the second quarter of 2000, since the model can’t say

anything until at least one period has passed. In 25 observations, the exit date comes before the VC round

date, so I treat the exit date as missing.

For the maximum likelihood estimation, I treat 37 IPO, acquisition, or new rounds with zero returns

as out of business (0 blows up a lognormal), and I delete four observations with anomalously high returns

(over 30,000%) after I hand-checking them and finding that they were errors due to missing intermediate

rounds. I similarly deleted four observations with a log annualized return greater than 15

(100 � ðe15 � 1Þ ¼ 3:269 � 108%) on the strong suspicion of measurement error in the dates. All of these

observations are included in the data characterization, however. I am left with 16,638 data points.
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the puzzle is that the estimated returns are so high. Gilson and Schizer (2003)
argue that the practice of issuing convertible preferred stock to VC investors is
not driven by cash flow or control considerations, but by tax law. Management
is typically awarded common shares at the same time as the venture financing
round. Distinguishing the classes of shares allows managers to underreport the value
of their share grants, taxable immediately at ordinary income rates, and thus to
report this value as a capital gain later on. If so, then the distinction between
common and convertible preferred shares makes even less of a difference for my
analysis.

I model the return to equity directly, so the fact that debt data are unavailable
does not generate an accounting mistake in calculating returns. Firms with different
levels of debt can have different betas, however, which I do not capture.

4.1. IPO/acquisition and round-to-round samples

The basic data unit is a financing round. If a financing round is followed by
another round, if the firm is acquired, or if the firm goes public, we can calculate a
return. I consider two basic sample definitions for these returns. In the ‘‘round-to-
round’’ sample, I measure every return from a financing round to a subsequent
financing round, IPO, or acquisition. Thus, if a firm has two financing rounds and
then goes public, I measure two returns, from round 1 to round 2, and from round 2
to IPO. If the firm has two rounds and then fails, I measure a positive return from
round 1 to round 2 but then a failure from round 2. If the firm has two rounds and
remains private, I measure a return from round 1 to round 2, but round 2 is coded as
remaining private.

One might be suspicious of returns constructed from such round-to-round
valuations. A new round determines the terms at which new investors come in but
almost never the terms at which old investors can get out. The returns to investors
are really the returns to acquisition or IPO only, ignoring intermediate financing
rounds. In addition, an important reason to study venture capital is to examine
whether venture capital investments have low prices and high returns due to their
illiquidity. We can only hope to see this fact in returns from investment to IPO, not
in returns from one round of venture investment to another, since the latter returns
retain the illiquid character of venture capital investments. More basically, it is
interesting to characterize the eventual fate of venture capital investments as well as
the returns measured in successive financing rounds.

For all these reasons, I emphasize a second basic data sample, denoted ‘‘IPO/
acquisition’’ below. If a firm has two rounds and then goes public, I measure two
returns, round 1 to IPO, and round 2 to IPO. If the firm has two rounds and then
fails, I measure two failures, round 1 to failure and round 2 to failure. If it has two
rounds and remains private, both rounds are coded as remaining private with no
measured returns. In addition to its direct interest, we can look for signs of an
illiquidity or other premium by contrasting these round-to-IPO returns with the
above round-to-round returns. Different rounds of the same company overlap in
time, of course, and I deal with the econometric issues raised by this overlap below.
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Table 1

The fate of venture capital investments

IPO/acquisition Round to round

Fate Return No return Total Return No return Total

IPO 16.1 5.3 21.4 5.9 2.0 7.9

Acquisition 5.8 14.6 20.4 2.9 6.3 9.2

Out of business 9.0 9.0 4.2 4.2

Remains private 45.5 45.5 23.3 23.3

IPO registered 3.7 3.7 1.2 1.2

New round 28.3 25.9 54.2

Note: Table entries are the percentage of venture capital financing rounds with the indicated fates. The

IPO/acquisition sample tracks each investment to its final fate. The round-to-round sample tracks each

investment to its next financing round only. ‘‘Return’’ indicates rounds for which we can measure a return,

‘‘No reference’’ indicates rounds in the given category (e.g., IPO) but for which data are missing and we

cannot calculate a return.
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Table 1 characterizes the fates of venture capital investments. We see that 21.4%
of rounds eventually result in an IPO and 20.4% eventually result in acquisition.
Unfortunately, I am able to assign a return to only about three quarters of the IPO
and one quarter of the acquisitions. We see that 45.5% remain private, 3.7% have
registered for but not completed an IPO, and 9% go out of business. There are
surprisingly few failures. Moskowitz and Vissing-Jorgenson (2002) find that only
34% of their sample of private equity survive ten years. However, many firms go
public at valuations that give losses to VC investors, and many more are acquired on
such terms. (Weighting by dollars invested yields quite similar numbers, so I lump
investments together without size effects in the estimation.)

I measure far more returns in the round-to-round sample. The average company
has 2.1 venture capital financing rounds (16; 638 rounds=7; 765 companies), so the
fractions that end in IPO, acquisition, out of business, or still private are cut in half,
while 54.2% get a new round, about half of which result in return data. The smaller
number that remain private means less selection bias to control for, and less worry
that some of the still-private firms are ‘‘living dead’’, really out of business.
5. Results

Table 2 presents characteristics of the subsamples. Table 3 presents parameter
estimates for the IPO/acquisition sample, and Table 4 presents estimates for the
round-to-round sample. Table 5 presents asymptotic standard errors.

5.1. Base case results

The base case is the ‘‘All’’ sample in Table 3. The mean log return in Table 3 is a
sensible 15%, just about the same as the 15.9% mean log S&P500 return in this
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Table 2

Characteristics of the samples

Rounds Industries Subsamples

All 1 2 3 4 Health Info Retail Other Pre 97 Dead 00

IPO/acquisition sample

Number 16,638 7,668 4,474 2,453 1,234 3,915 9,190 3,091 442 5,932 16,638

Out of bus. 9 9 9 9 9 9 10 7 12 5 58

IPO 21 17 21 26 31 27 21 15 22 33 21

Acquired 20 20 21 21 19 18 25 10 29 26 20

Private 49 54 49 43 41 46 45 68 38 36 0

c 95 93 97 98 96 96 94 96 94 75 99

d 48 38 49 57 62 51 49 38 26 48 52

Round-to-round sample

Number 16,633 7,667 4,471 2,453 1,234 3,912 9,188 3,091 442 6,764 16,633

Out of bus. 4 4 4 5 5 4 4 4 7 2 29

IPO 8 5 7 11 18 9 8 7 10 12 8

Acquired 9 8 9 11 11 8 11 5 13 11 9

New round 54 59 55 50 41 59 55 45 52 69 54

Private 25 25 25 23 25 20 22 39 18 7 0

c 93 88 96 99 98 94 93 94 90 67 99

d 51 42 55 61 66 55 52 41 39 54 52

Note: All entries except Number are percentages. c ¼ percent of out of business with good data. d ¼

percent of new financing or acquisition with good data. Private are firms still private at the end of the

sample, including firms that have registered for but not completed an IPO.
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period. (I report average returns, alphas and standard deviations as annualized
percentages, by multiplying averages and alphas by 400 and multiplying standard
deviations by 200.) The standard deviation of log return is 89%, much larger than
the 14.9% standard deviation of the log S&P500 return in this period. These are
individual firms, so we expect them to be quite volatile compared to a diversified
portfolio such as the S&P500. The 89% annualized standard deviation might be
easier to digest as 89=

ffiffiffiffiffiffiffiffi
365

p
¼ 4:7% daily standard deviation, which is typical of very

small growth stocks.
The intercept g is negative at �7:1% The slope d is sensible at 1.7; venture capital

is riskier than the S&P500. The residual standard deviation s is large at 86%.
The volatility of returns comes from idiosyncratic volatility, not from a large
slope coefficient. The implied regression R2 is a very small 0:075:
(1:72 � 14:92=ð1:72 � 14:92 þ 892Þ ¼ 0:075:) Systematic risk is a small component of
the risk of an individual venture capital investment.

(I estimate the parameters g; d;s directly. I calculate E ln R and s ln R in the first
two columns using the mean 1987–2000 Treasury bill return of 6.8%, and the
S&P500 mean and standard deviation of 15.9% and 14.9%, e.g., E ln R ¼ �7:1 þ

6:8 þ 1:7 � ð15:9 � 6:8Þ ¼ 15%: I present mean log returns first in Tables 3 and 4, as
the mean is better estimated, more stable, and more comparable across specifications
than is its decomposition into an intercept and a slope.)
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Table 3

Parameter estimates in the IPO/acquisition sample

E ln R s ln R g d s ER sR a b k a b p

All, baseline 15 89 �7.1 1.7 86 59 107 32 1.9 25 1.0 3.8 9.6

Asymptotic s 0.7 0.04 0.6 0.02 0.02 0.06 0.6

Bootstrap s 2.4 6.7 1.7 0.4 7.0 5.9 11 9.4 0.4 3.6 0.08 0.28 1.9

Nasdaq 14 97 �7.7 1.2 93 66 121 39 1.4 20 0.7 5.0 5.7

Nasdaq Dec1 17 96 �0.3 0.9 92 69 119 45 1.0 22 0.7 5.4 6.3

Nasdaq o$2M 8.2 103 �27 0.5 100 67 129 22 0.5 14 0.7 5.0 4.1

No d 11 105 72 134 11 0.8 4.3 4.2

Round 1 19 96 3.7 1.0 95 71 120 53 1.1 17 1.0 4.2 8.0

Round 2 12 98 �1.6 0.8 97 65 120 49 0.9 16 1.0 3.6 5.0

Round 3 8.0 98 �4.4 0.6 98 60 120 46 0.7 17 0.8 3.9 2.9

Round 4 �0.8 99 �12 0.5 99 51 119 39 0.5 13 1.1 2.5 5.5

Health 17 67 8.7 0.2 67 42 76 33 0.2 36 0.7 5.1 7.8

Info 15 108 �5.2 1.4 105 79 139 55 1.7 14 0.8 4.3 4.3

Retail 17 127 11 �0.1 127 111 181 106 �0.1 11 0.4 10.0 2.9

Other 25 62 13 0.6 61 46 71 33 0.6 53 0.4 10.0 13

Note: Returns are calculated from venture capital financing round to eventual IPO, acquisition, or failure,

ignoring intermediate venture financing rounds.

Columns: E ln R;s ln R are the parameters of the underlying lognormal return process. All means,

standard deviations and alphas are reported as annualized percentages, e.g., 400 � E ln R; 200 � s ln R;
400 � ðER � 1Þ; etc. g; d; and s are the parameters of the market model in logs, ln

Vtþ1
Vt

� �
¼ gþ ln R

f
t þ

dðln Rm
tþ1 � ln R

f
t Þ þ etþ1; etþ1 	 Nð0;s2Þ: E ln R; s ln R are calculated from g; d;s using the sample mean

and variance of the three-month T-bill rate Rf and S&P500 return Rm; E ln R ¼ gþ E ln R
f
t þ

dðE ln Rm
t � E ln R

f
t Þ and s2 ln R ¼ d2s2ðln Rm

t Þ þ s2: ER;sR are average arithmetic returns ER ¼

eE ln Rþ1
2
s2 ln R; sR ¼ ER �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es

2 ln R � 1
p

: a and b are implied parameters of the discrete time regression

model in levels, Vi
tþ1=V i

t ¼ aþ R
f
t þ bðRm

tþ1 � R
f
t Þ þ vi

tþ1: k; a; b are estimated parameters of the selection

function. k is point at which firms start to go out of business, expressed as a percentage of initial value. a; b
govern the selection function Pr IPO, acq. at tjVtð Þ ¼ 1=ð1 þ e�aðlnðVtÞ�bÞÞ: Given that an IPO/acquisition

occurs, there is a probability p that a uniformly distributed value is recorded instead of the correct value.

Rows: ‘‘All’’ includes all financing rounds. Asymptotic standard errors are based on second derivatives of

the likelihood function. Bootstrap standard errors are based on 20 replications of the estimate, choosing

the sample randomly with replacement. ‘‘Nasdaq’’, ‘‘Nasdaq Dec1’’, ‘‘Nasdaq o$2M’’, and ‘‘No d’’ use

the indicated reference returns in place of the S&P500. ‘‘Round i’’ considers only investments in financing

round i. ‘‘Health, Info, Retail, Other’’ are industry classifications.
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The asymptotic standard errors in the second row of Table 3 indicate that all these
numbers are measured with great statistical precision. The bootstrap standard errors
in the third row are a good deal larger than asymptotic standard errors, but still
show the parameters to be quite well estimated. The bootstrap standard errors are
larger in part because there are a small number of outlier data points with very large
likelihoods. Their inclusion or exclusion has a larger effect on the results than the
asymptotic distribution theory suggests. The asymptotic standard errors also ignore
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Table 4

Parameter estimates in the round-to-round sample

E ln R s ln R g d s ER sR a b k a b p

All, baseline 20 84 7.6 0.6 84 59 100 45 0.6 21 1.7 1.3 4.7

Asymptotic s 1.1 0.1 0.8 0.4 0.02 0.02 0.4

Bootstrap s 1.1 7.2 4.7 0.5 6.4 7.5 11 5.7 0.5 3.8 0.2 0.3 0.8

Nasdaq 15 91 �4.9 1.1 87 61 110 35 1.2 18 1.5 1.5 3.4

Nasdaq Dec1 22 90 7.3 0.7 88 68 112 49 0.7 24 0.6 3.3 2.5

Nasdaq o$2M 16 91 �4.5 0.2 90 62 111 37 0.2 16 1.6 1.4 3.5

No d 21 85 61 102 20 1.6 1.4 4.2

Round 1 26 90 11 0.8 89 72 112 55 1.0 16 1.9 1.3 4.3

Round 2 20 83 7.5 0.6 82 58 99 44 0.7 22 1.6 1.4 3.6

Round 3 15 77 3.6 0.5 77 47 89 35 0.5 29 1.4 1.4 4.6

Round 4 8.8 84 0.1 0.2 83 46 97 37 0.2 21 1.3 1.4 3.7

Health 24 62 15 0.3 62 46 70 36 0.3 48 0.3 7.6 4.6

Info 23 95 12 0.5 94 74 119 62 0.5 19 0.7 2.9 2.2

Retail 25 121 11 0.7 121 111 171 96 0.8 14 0.5 4.1 0.5

Other 8.0 64 �3.9 0.6 63 29 70 16 0.6 35 0.5 5.2 3.6

Note: Returns are calculated from venture capital financing round to the next event: new financing, IPO,

acquisition, or failure. See the note to Table 3 for row and column headings.
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cross-correlation between individual venture capital returns, since I do not specify a
cross-correlation structure in the data-generating model (1).

So far, the estimates look reasonable. If anything, the negative intercept is
surprisingly low. However, the CAPM and most asset pricing and portfolio theory
specifies arithmetic, not logarithmic, returns. Portfolios are linear in arithmetic, not
log, returns, so diversification applies to arithmetic returns. The columns ER;sR; a;
and b of Table 3 calculate implied characteristics of arithmetic returns.5 The mean
5We want to find the model in levels implied by Eq. (1), i.e.

V i
tþ1

Vi
t

� R
f
t ¼ aþ bðRm

tþ1 � R
f
t Þ þ vi

tþ1:

I find b from b ¼ covðR;RmÞ=varðRmÞ; and then a from a ¼ EðRÞ � Rf � b½EðRmÞ � Rf �: The formulas are

b ¼ egþðd�1ÞðEðln RmÞ�ln Rf Þþs2=2þðs2�1Þs2
m=2 ðe

ds2
m � 1Þ

ðes
2
m � 1Þ

; (6)

a ¼ elnðRf ÞfðegþdðEðln RmÞ�ln Rf Þþd2s2
m=2þs2=2 � 1Þ � bðeðmm�ln Rf Þþs2

m=2 � 1Þg; (7)

where s2
m � s2ðln RmÞ: The continuous time limit is simpler, b ¼ d; sðeÞ ¼ sðvÞ; and

a ¼ gþ
1

2
dðd� 1Þs2

m þ
1

2
s2:

I present the discrete time computations in the tables; the continuous time results are quite similar.
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Table 5

Asymptotic standard errors for Tables 3 and 4

IPO/acquisition (Table 3) Round to round (Table 4)

g d s k a b p g d s k a b p

All, baseline 0.7 0.04 0.6 0.02 0.02 0.06 0.6 1.1 0.08 0.8 0.4 0.02 0.02 0.4

Bootstrap 1.7 0.37 7.0 3.57 0.08 0.28 1.9 4.7 0.46 6.4 3.8 0.20 0.33 0.8

Nasdaq 1.0 0.05 1.1 0.81 0.02 0.13 0.5 0.7 0.01 0.9 0.4 0.03 0.03 0.4

Nasdaq Dec1 1.0 0.04 1.1 0.62 0.02 0.15 0.6 1.1 0.04 1.1 1.0 0.01 0.02 0.4

Nasdaq o$2M 1.7 0.02 0.8 0.35 0.01 0.08 0.5 1.2 0.01 0.5 0.2 0.03 0.02 0.3

No d 0.7 1.0 0.15 0.02 0.11 0.6 0.7 0.8 0.6 0.03 0.03 0.3

Round 1 1.2 0.05 1.8 0.94 0.04 0.11 1.0 1.4 0.09 1.3 0.7 0.06 0.03 0.5

Round 2 2.4 0.20 2.3 1.18 0.06 0.16 1.2 2.3 0.16 1.8 1.4 0.07 0.05 0.8

Round 3 3.2 0.24 2.5 1.16 0.08 0.31 1.1 2.4 0.16 1.7 1.3 0.08 0.08 0.9

Round 4 5.3 0.38 3.3 1.57 0.08 0.20 1.8 4.0 0.26 2.9 2.0 0.12 0.14 1.1

Health 1.7 0.14 1.4 2.06 0.03 0.19 1.2 1.9 0.15 1.5 2.2 0.01 0.20 0.8

Info 1.7 0.13 1.6 0.69 0.01 0.06 0.8 1.7 0.13 1.3 0.8 0.01 0.04 0.4

Retail 1.9 0.08 3.5 1.27 0.00 0.00 1.2 5.5 0.30 3.8 1.7 0.02 0.10 0.5

Other 3.5 0.26 4.6 7.52 0.01 0.14 4.6 6.8 0.46 5.0 6.1 0.10 1.07 4.0
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arithmetic return ER in Table 3 is a whopping 59%, with a 107% standard
deviation. Even the 1.9 arithmetic b and the large S&P500 return in this period do
not generate a return that high, leaving a 32% arithmetic a:

The large mean arithmetic returns and alphas result from the volatility rather
than the mean of the underlying lognormal return distribution. The mean
arithmetic return is EðRÞ ¼ eE ln Rþð1=2Þ s2 ln R: With s2 ln R on the order of
100%, usually negligible 1

2
s2 terms generate 50% per year arithmetic returns by

themselves. Venture capital investments are like call options; their arithmetic
mean return depends on the mass in the right tail, which is driven by volatility
more than by drift. I examine the high arithmetic returns and alphas in great detail
below.

The out-of-business cutoff parameter k is 25%, meaning that the chance of going
out of business rises to 1

2
at 12.5% of initial value. This is a low number, but

reasonable. Venture capital investors are likely to hang in there and wait for the final
payout despite substantial intermediate losses.

The parameters a and b control the selection function. b is the point at which there
is a 50% probability of going public or being acquired per quarter, and it occurs at a
substantial 380% log return. Finally, the measurement error parameter p is about
10% and statistically significant. The estimation accounts for a small number of
large positive and negative returns as measurement error rather than treat them as
extreme values of a lognormal process.
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The round-to-round sample in Table 4 gives quite similar results. The average log
return is slightly higher, 20% rather than 15%, with quite similar volatility, 84%
rather than 89%. The average log return splits in to a lower slope, 0.6, and thus a
higher intercept, 7.6%. As we will see below, IPOs are more sensitive to market
conditions than new rounds, so an estimate that emphasizes new rounds sees a lower
slope. As in the IPO/acquisition sample, the average arithmetic returns, driven by
large idiosyncratic volatility, are huge at 59%, with 100% standard deviation and
45% arithmetic a: The selection function parameter b is much lower, centering that
function at 130% growth in log value. The typical firm builds value through several
rounds before IPO, so this is what we expect. The measurement error p is lower,
showing the smaller fraction of large outliers in the round to round valuations. The
asymptotic standard errors in Table 5 are quite similar to those of the IPO/
acquisition sample. Once again, the bootstrap standard errors are larger, but the
parameters are still well estimated.

5.2. Alternative reference returns

Perhaps the Nasdaq or small-stock Nasdaq portfolios provide better reference
returns than the S&P500. We are interested in comparing venture capital to similar
traded securities, not in testing an absolute asset pricing model, so a performance
attribution approach is appropriate. The next three rows of Tables 3 and 4 address
this case.

In the IPO/acquisition sample of Table 3, the slope coefficient declines from 1.7 to
1.2 using Nasdaq and to 0.9 using the CRSP Nasdaq decile 1 (small) stocks. We
expect betas nearer to one if these are more representative as reference returns.
However, the residual standard deviation actually goes up a little bit, so the implied
R2s are even smaller. The mean log returns are about the same, and the arithmetic
alphas rise slightly.

Nasdaq o$2M is a portfolio of Nasdaq stocks with less than $2 million in
market capitalization, rebalanced monthly. I discuss this portfolio in detail below.
It has a 71% mean arithmetic return and a 62% S&P500 alpha, compared to the
22% mean arithmetic return and statistically insignificant 12% alpha for the CRSP
Nasdaq decile 1, so a b near one on this portfolio would eliminate the arithmetic
alpha in venture capital investments. This portfolio is a little more successful.
The log intercept declines to �27%; but the slope coefficient is only 0.5 so it only
cuts the arithmetic alpha down to 22%. In the round-to-round sample of Table 4,
there are small changes in the slope and log intercept g from changing the reference
return, but the 60% mean arithmetic return and 45% arithmetic alpha are basically
unchanged.

Perhaps the complications of the market model are leading to trouble. The ‘‘No d’’
rows of Tables 3 and 4 estimate the mean and standard deviation of log returns
directly. The mean log returns are just about the same. In the IPO/acquisition sample
of Table 3, the standard deviation is even larger at 105%, leading to larger mean
arithmetic returns, 72% rather than 59%. In the round-to-round sample of Table 4,
all means and standard deviations are just about the same with no d:
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5.3. Rounds

The ‘‘Round i’’ subsamples in Tables 3 and 4 break the sample down by
investment rounds. It’s interesting to see whether the different rounds have different
characteristics, i.e., whether later rounds are less risky. It’s also important to do
this for the IPO/acquisition sample, for two reasons. First, the model taken
literally should not be applied to a sample with several rounds of the same firm,
since we cannot normalize the initial values of both first and second rounds
to a dollar and use the same probability of new financing as a function of value.
Applying the model to each round separately, we avoid this problem. The selection
function is rather flat, however, so mixing the rounds might not make much
practical difference. Second, the use of overlapping rounds from the same firm
induces cross-correlation between observations, ignored by my maximum likelihood
estimate. This should affect standard errors and not bias point estimates. When we
look at each round separately, there is no overlap, so standard errors in the round
subsamples will indicate whether this cross-correlation in fact has any important
effects.

Table 2 already suggests that later rounds are slightly more mature. The chance of
ending up as an IPO rises from 17% for the first round to 31% for the fourth round
in the IPO/acquisition sample, and from 5% to 18% in the round-to-round sample.
However, the chance of acquisition and failure is the same across rounds.

In the IPO/acquisition sample of Table 3, later rounds have progressively lower
mean log returns, from 19% to �0:8%; steadily lower slope coefficients, from 1.0 to
0.5, and steadily lower intercepts, from 3.7% to �12%: All of these estimates paint
the picture that later rounds are less risky—and hence less rewarding—investments.
These findings are consistent with the theoretical analysis of Berk et al. (2004). The
asymptotic standard error of the intercept g (Table 5) grows to five percentage points
by round 4, however, so the statistical significance of this pattern that g declines
across rounds is not high. The volatilities are huge and steady at about 100%, so we
still see large average arithmetic returns and alphas in all rounds. Still, even these
decline across rounds; arithmetic mean returns decline from 71% to 51% and
arithmetic alphas decline from 53% to 39% from first-round to fourth-round
investments. The cutoff for going out of business k declines for later rounds, the
center point of the selection function b declines from 4.2 to 2.5, and the measurement
error p declines, all of which suggest less risky and more mature projects in later
rounds.

These patterns are all confirmed in the round-to-round sample of Table 4. As we
move to later rounds, the mean log return, intercept, and slope all decline, while
volatility is about the same. The mean arithmetic returns and alphas are still high,
but means decline from 72% to 46% and alphas decline from 55% to 37% from the
first to fourth rounds.

In Table 5, the standard errors for round 1 (with the largest number of
observations) of the IPO/acquisition sample are still quite small compared to
economically interesting variation in the coefficients. The most important change is
the standard error of the intercept g which rises from 0.67 to 1.23. Thus, even if there
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is perfect cross-correlation between rounds, in which case additional rounds give no
additional information, the coefficients are well measured.

5.4. Industries

Venture capital is not all dot-com. Table 2 shows that roughly one-third of the
sample is in health, retail, or other industry classifications. Perhaps the unusual
results are confined to the special events in the dot-com sector during this sample.
Table 2 shows that the industry subsamples have remarkably similar fates, however.
Technology (‘‘info’’) investments do not go public much more frequently, or fail any
less often, than other industries.

In Tables 3 and 4, mean log returns are quite similar across industries, except that
‘‘Other’’ has a slightly larger mean log return (25% rather than 15–17%) in the IPO/
acquisition sample, and a much lower mean log return (8% rather than 25%) in the
round-to-round sample. However, the small sample sizes mean that these estimates
have high standard errors in Table 5, so these differences are not likely to be
statistically significant.

In Table 3, we see a larger slope d ¼ 1:4 for the information industry, and a
correspondingly lower intercept. Firms in the information industry went public
following large market increases, more so than in the other industries.

The main difference across industries is that information and retail have much
larger residual and overall variance, and lower failure cutoffs k. Variance is a key
parameter in accounting for success, especially early successes, as a higher variance
increases the mass in the right tail. Variance together with the cutoff k accounts for
failures, as both parameters increase the left tail. Thus, the pattern of higher variance
and lower k is driven by the larger number of early and highly profitable IPOs in the
information and retail industries, together with the fact that failures are about the
same across industries.

Since the volatilities are still high, we still see large mean arithmetic returns and
arithmetic alphas, and the pattern is confirmed across all industry groups. The retail
industry in the IPO/acquisition sample is the champion, with a 106% arithmetic
alpha, driven by its 127% residual standard deviation and slightly negative beta. The
large arithmetic returns and alphas occur throughout venture capital, and do not
come from the high tech sample alone.
6. Facts: fates and returns

Maximum likelihood gives the appearance of statistical purity, yet it often leaves
one unsatisfied. Are there robust stylized facts behind these estimates? Or are they
driven by peculiar aspects of a few data points? Does maximum likelihood focus on
apparently well-measured but economically uninteresting moments in the data, at
the expense of capturing apparently less well-measured but more economically
important moments? In particular, the finding of huge arithmetic returns and alphas
sits uncomfortably. What facts in the data lie behind these estimates?
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As I argue earlier, the crucial stylized facts are the pattern of exits—new financing,
acquisition, or failure—with project age, and the returns achieved as a function of
age. It is also interesting to contrast the selection-biased, direct return estimates with
the selection-bias-corrected estimates above. So, let us look at the observed returns,
and at the speed with which projects get a return or go out of business.

6.1. Fates

Fig. 3 presents the cumulative fraction of rounds in each category—new financing
or acquisition, out of business, or still private—as a function of age, for the IPO/
acquired sample. The dashed lines give the data, while the solid lines give the
predictions of the model, using the baseline estimates from Table 3.

The data paint a picture of essentially exponential decay. About 10% of the
remaining firms go public or are acquired with each year of age, so that by five years
after the initial investment, about half of the rounds have gone public or been
acquired. (The pattern is slightly speeded up in later subsamples. For example,
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Fig. 3. Cumulative probability that a venture capital financing round in the IPO/acquired sample will end

up IPO or acquired, out of business, or remain private, as a function of age. Dashed lines: data. Solid lines:

prediction of the model, using baseline estimates from Table 3.
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projects that start in 1995 go public and out of business at a slightly faster rate than
projects that start in 1990. However, the difference is small, so age alone is a
reasonable state variable.)

The model replicates these stylized features of the data reasonably well. The major
discrepancy is that the model seems to have almost twice the hazard of going out of
business seen in the data, and the number remaining private is correspondingly
lower. However, this comparison is misleading. The data lines in Fig. 3 treat out-of-
business dates as real, while the estimate treats data that say ‘‘out of business on date
t’’ as ‘‘went out of business on or before date t’’, recognizing VentureOne’s
occasional cleanups. This difference means that the estimates recognize failures
about twice as fast as in the VentureOne data, and that is the pattern we see in Fig. 3.
Also, the data lines characterize only the sample with good date information, while
the model estimates are chosen to fit the entire sample, including firms with bad date
data. And, of course, maximum likelihood does not set out to pick parameters that
fit this one moment as well as possible.

Fig. 4 presents the same picture for the round-to-round sample. Things
happen much faster in this sample, since the typical investment has several
rounds before going public, being acquired, or failing. Here roughly 30% of
the remaining rounds go public, are acquired, or get a new round of financing
each year. The model provides an excellent fit, with the same understanding of the
out-of-business lines.

6.2. Returns

Table 6 characterizes observed returns in the data, i.e., when there is a new
financing or acquisition. The column headings give age bins in years. For example,
the ‘‘1–2 year’’ column summarizes all investment rounds that went public or were
acquired between one and two years after the venture capital financing round, and
for which I have good return and date data. The average log return in all age
categories of the IPO/acquisition sample is 108% with a 135% standard deviation.
This estimate contrasts strongly with the selection-bias-corrected estimate of a 15%
mean log return in Table 3. Correcting for selection bias has a huge impact on
estimated mean log returns.

Fig. 5 plots smoothed histograms of log returns in age categories. (The
distributions in Fig. 5 are normalized to have the same area; they are the
distribution of returns conditional on observing a return in the indicated time frame.)
The distribution of returns in Fig. 5 shifts slightly to the right and then stabilizes.
The average log returns in Table 6 show the same pattern: they increase slightly with
horizon out to 1–2 years, and then stabilize. These are total returns, not annualized.
This behavior is unusual. Log returns usually grow with horizon, so we expect five-
year returns five times as large as the one-year returns, and

ffiffiffi
5

p
times as spread out.

Total returns that stabilize are a signature of a selected sample. In the simple
example that all projects go public when they have achieved 1,000% growth, the
distribution of measured total returns is the same—a point mass at 1,000%—for all
horizons. Fig. 5 dramatically makes the case that we should regard venture capital
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Fig. 4. Cumulative probability that a venture capital financing round in the round-to-round sample will
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projects as a selected sample, with a selection function that is stable across project
ages.

Fig. 5 shows that, despite the 108% mean log return, a substantial fraction of
projects go public or are acquired at valuations that generate losses to the venture
capital investors, even on projects that go public or are acquired soon after the
venture capital investment (0–1 year bin). Venture capital has a high mean return,
but it is not a gold mine.

Fig. 6 presents the histogram of log returns as predicted by the model, using the
baseline estimate of Table 3. The model captures the return distributions of Fig. 5
quite well. In particular, note how the model return distributions settle down to a
constant at five years and above.

Fig. 6 also includes the estimated selection function, which shows how the model
accounts for the pattern of observed returns across horizons. In the domain of the 3
month return distribution, the selection function is low and flat. A small fraction of
projects go public, with a return distribution generated by the lognormal with a small
mean and a huge volatility, and little modified by selection. As the horizon increases,
the underlying return distribution shifts to the right, and starts to run in to the
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Table 6

Statistics for observed returns

Age bins

1 month–1 1–6 month 6–12 month 1–2 year 2–3 year 3–4 year 4–5 year 5 year–1

(1) IPO/acquisition sample

Number 3,595 334 476 877 706 525 283 413

(a) Log returns, percent (not annualized)

Average 108 63 93 104 127 135 118 97

Std. dev. 135 105 118 130 136 143 146 147

Median 105 57 86 100 127 131 136 113

(b) Arithmetic returns, percent

Average 698 306 399 737 849 1067 708 535

Std. dev. 3,282 1,659 881 4,828 2,548 4,613 1,456 1,123

Median 184 77 135 172 255 272 288 209

(c) Annualized arithmetic returns, percent

Average 3.7e+09 4.0e+10 1,200 373 99 62 38 20

Std. dev. 2.2e+11 7.2e+11 5,800 4,200 133 76 44 28

(d) Annualized log returns, percent

Average 72 201 122 73 52 39 27 15

Std. dev. 148 371 160 94 57 42 33 24

(2) Round-to-round sample

(a) Log returns, percent

Number 6,125 945 2,108 2,383 550 174 75 79

Average 53 59 59 46 44 55 67 43

Std. dev. 85 82 73 81 105 119 96 162

(b) Subsamples. Average log returns, percent

New round 48 57 55 42 26 44 55 14

IPO 81 51 84 94 110 91 99 99

Acquisition 50 113 84 24 46 39 44 �0

Note: The ‘‘IPO/acquisition’’ sample consists of all venture capital financing rounds that eventually result

in an IPO or acquisition in the indicated time frame and with good return data. The ‘‘round-to-round’’

sample consists of all venture capital financing rounds that get another round of financing, IPO, or

acquisition in the indicated time frame and with good return data.
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steeply rising part of the selection function. Since the winners are removed from the
sample, the measured return distribution then settles down to a constant. The risk
facing a venture capital investor is as much when his or her return will occur as how

much that return will be.
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The estimated selection function is actually quite flat. In Fig. 6, it only rises from a
20% to an 80% probability of going public as log value rises from 200% (an
arithmetic return of 100 � ðe2 � 1Þ ¼ 639%) to 500% (an arithmetic return of
100 � ðe5 � 1Þ ¼ 14; 741%). If the selection function were a step function, we would
see no variance of returns conditional on IPO or acquisition. The smoothly rising
selection function is required to generate the large variance of observed returns.

6.3. Round-to-round sample

Table 6 presents means and standard deviations in the round-to-round sample;
Fig. 7 presents smoothed histograms of log returns for this sample, and Fig. 8
presents the predictions of the model, using the round-to-round sample baseline
estimates. The average log returns are about half of their value in the IPO/
acquisition sample, though still substantial at about 50%. Again, we expect this
result since most firms have several venture rounds before going public or being
acquired. The standard deviation of log returns is still substantial, around 80%. As
the round to round means are about half the IPO/acquisition means, the round to
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round variances are about half the IPO/acquisition variances, and round to round
standard deviations are lower by about

ffiffiffi
2

p
: The return distribution is even more

stable with horizon in this case than in the IPO/acquisition sample. It does not even
begin to move to the right, as an unselected sample would do. The model captures
this effect, as the model return distributions are even more stable than in the IPO/
acquisition case.

6.4. Arithmetic returns

The second group of rows in the IPO/acquisition part of Table 6 presents
arithmetic returns. The average arithmetic return is an astonishing 698%. Sorted by
age, it rises from 306% in the first six months, peaking at 1,067% in year 3–4 and
then declining a bit to 535% for years 5+. The standard deviations are even larger,
3,282% on average and also peaking in the middle years.

Clearly, arithmetic returns have an extremely skewed distribution. Median net
returns are half or less of mean net returns. The high average reflects the small
possibility of earning a truly astounding return, combined with the much larger
probability of a more modest return. Summing squared returns really emphasizes the
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few positive outliers, leading to standard deviations in the thousands. These extreme
arithmetic returns are just what one would expect from the log returns and a
lognormal distribution: 100 � ðe1:08þð1=2Þ1:352

� 1Þ ¼ 632%; close to the observed
698%. To make this point more clearly, Fig. 9 plots a smoothed histogram of log
returns and a smoothed histogram of arithmetic returns, together with the
distributions implied by a lognormal, using the sample mean and variance. This
plot includes all returns to IPO or acquisition. The top plot shows that log returns
are well modeled by a normal distribution. The bottom plot shows visually that
arithmetic returns are hugely skewed. However, the arithmetic returns coming from
a lognormal with large variance are also hugely skewed, and the fitted lognormal
captures the right tail quite well. The major discrepancy is in the left tail, but kernel
density estimates are not good at describing distributions in regions where they slope
a great deal, and that is the case here.

Though the estimated 59% mean and 107% standard deviation of arithmetic
returns in Table 3 might have seemed surprisingly high, they are nothing like the
698% mean and 3,282% standard deviation of arithmetic returns with no sample
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selection correction. The sample selection correction has a dramatic effect on
estimates of the arithmetic mean return.

6.5. Annualized returns

It might seem strange that so far I have presented total returns without
annualizing. The next two rows of Table 6 show annualized returns. The average
annualized return is 3:7 � 109 percent, and the average in the first six months is
4:0 � 1010 percent. These must be the highest average returns ever reported in the
finance literature, which just dramatizes the severity of selection bias in venture
capital. The mean and volatility of annualized returns then decline sharply with
horizon.

The extreme annualized returns result from a small number of sensible returns that
occur over very short time periods. If you experience a moderate (in this dataset)
100% return, but it happens in two weeks, the result is a 100 � ð224 � 1Þ ¼
1: 67 � 109 percent annualized return. Many of these outliers were checked by
hand, and they appear to be real. There is some question whether they represent
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arm’s-length transactions, however. Ebay is a famous story (though not in the
dataset). Dissatisfied with the offering price, Ebay got one last round of venture
financing at a high valuation, and then went public a short time later at an even
larger value. More typically, the dataset contains seed financings quickly followed by
first-stage financings involving the same investors. It appears that in many cases, the
valuation in the initial seed financing is a matter of little consequence, as the overall
allocation of equity will be determined at the time of the first round, or the decision
could be made not to proceed with the start-up. (See for instance, the discussion in
Halloran, 1997.) While not data errors per se, huge annualized returns from seed to
first round in such cases clearly do not represent the general rate of return to venture
capital investments. (This is analogous to the ‘‘calendar time’’ vs. ‘‘event time’’ issue
in IPO returns.) Below, I check the sensitivity of the estimates to these observations
in several ways.
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However, the log transformation again gives sensible numbers, so the large
average annualized returns are fundamentally a story of extreme volatility, not a
story about outliers or data errors. Average annualized log returns also decline
roughly with the inverse of the horizon. Again, this is what we expect from a selected
sample. For an unselected sample, we expect annualized returns to be stable across
horizon, and total returns to grow with horizon. In a selected sample, total returns
are stable with horizon, so annualized returns decline with horizon.6

In the round-to-round sample, arithmetic returns and annualized returns (not
shown) behave in the same way: arithmetic returns are large and very skewed with
huge standard deviations; annualized arithmetic returns are huge for short horizons,
and annualized returns decline quickly with horizon.

There is no right and wrong here. Statistics are just statistics. Skewed arithmetic
returns are what one expects from roughly lognormal returns with extreme variance.
The constant total returns and declining annualized returns with horizon are what
one expects from a roughly constant total log return distribution, generated by a
selection function of value and not of horizon. It is clear from this analysis that one
cannot do much of anything with the observed returns without correcting for
selection effects.
6.6. Subsamples

How different are returns to a new round, IPO, or acquisition? In addition to the
direct interest in these questions, I lumped outcomes together in the estimation, and
it’s important to check that this procedure is not unreasonable. The final rows of
Table 6 present mean log returns across horizons for these subsamples of the round-
to-round sample, and Fig. 10 collects the distribution of returns for different
outcomes, summing over all ages.

The mean log returns to IPO are a bit larger (81%) than returns to a new round or
acquisition (50%). Except for good returns to acquisitions in the first six months,
and poor returns to new rounds and acquisitions after five years, each category is
reasonably stable over horizon. Fig. 10 shows that the modal return to acquisition is
about the same as the modal return to IPO; the lower mean return to acquisition
comes from the larger left tail of acquisitions. The largest difference is the
surprisingly greater volatility of acquisition returns, and the much lower volatility of
new round returns. I conclude that lumping the three outcomes together is not a
gross violation of the data, and not worth fixing at the large cost of adding
parameters to the already complex ML estimation. Most important, the figure
confirms that IPOS are similar to other fundings and revaluations, and not a
qualitatively different jackpot as in popular perception.
6Also, we should not expect the average annualized arithmetic returns of Table 6 to be stable across

horizons, even in an unselected sample. In such a sample, the annualized average return is independent of

horizon, not the average annualized return. EðR
1=t
0!tÞ ¼ Eðe1=t ln R0!t Þ ¼ eðmtÞ=tþðts2Þ=2t2 ¼ emþs2=ð2tÞ; while

½EðR0!tÞ�
1=t ¼ ½emtþð1=2Þs2t�1=t ¼ emþs2=2: Small s and large t approximations do not work well in a dataset

with huge s and occasionally very small t.
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7. How facts drive the estimates

Having seen estimates and a collection of stylized facts, it is time to see how the
stylized facts drive the estimates. This discussion can give us confidence that the
estimates not driven by a few data points or by odd and untrustworthy aspects of the
data.

7.1. Stylized facts for mean and standard deviation

Table 6 finds average log returns of about 100% in the IPO/acquisition sample,
stable across horizons, and Fig. 3 shows about 10% of financing rounds going public
or being acquired per year in the first few years. These facts allow us to make a
simple back-of-the-envelope estimate of the mean and variance of venture capital
returns, correcting for selection bias. The same general ideas underlie the more
realistic, but hence more complex, maximum likelihood estimation, and this simple
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calculation shows how some of the rather unusual results are robust features of the
data.

Consider the very simple selection model: we see a return as soon as the log value
exceeds b. We can calibrate b to the average log return, or about 100%. Once again,
returns identify the selection function. The fraction of projects that go public by year

t is given by the right tail of the normal F b�tmffiffi
t

p
s

� �
; where m and s denote the mean and

standard deviation of log returns. The 10% right tail of a standard normal is 1.28, so

the fact that 10% go public in the first year means 1�m
s ¼ 1:28:

A small mean m ¼ 0 with a large standard deviation s ¼ 1
1:28

¼ 0:78 or 78% would

generate the right tail. However, a small standard deviation s ¼ 0:1 or 10% and a
huge mean m ¼ 1 � 0:1 � 1:28 ¼ 0:87 or 87% would also work. Which is it? The
second year separately identifies m and s: With a zero mean and a 78% standard

deviation, we should see that by year 2, F 1�2�0
0:78�

ffiffi
2

p

� �
¼ 18% of firms have gone public,

i.e., an additional 8% in year 2, which is roughly what we see. With a huge mean
m ¼ 87% and a small standard deviation s ¼ 10%; we predict that by year 2,

essentially all (F 1�2�0:86
0:10

ffiffi
2

p

� �
¼ Fð�5:2Þ ¼ ð100 � 8 � 10�6Þ%) firms have gone public.

This is not at all what we see—more than 80% are still private at the end of year two.
To get rid of the high mean arithmetic returns, despite high variance, we need a

strongly negative mean log return. The same logic rules out this option. Given
1�m
s ¼ 1:28; the lowest value of mþ 1

2
s2 we can achieve is given by m ¼ �64% and

s ¼ 128% (min mþ 1
2
s2 s.t. 1�m

s ¼ 1:28), leading to mþ 1
2
s2 ¼ 0:18 and a reasonable

mean arithmetic return 100 � ðe0:18 � 1Þ ¼ 20%: But a strong negative mean implies
that IPOs quickly cease and practically every firm goes out of business in short order
as the distribution marches to the left. With m ¼ �64% and s ¼ 128%; we predict

that F 1�2�ð�0:64Þ

1:28
ffiffi
2

p

� �
¼ Fð1:26Þ ¼ 10:4% go public in two years. But 10% go public in

the first year, so only 0.4% more go public in the second year. After that, things get

worse. F 1�3�ð�0:64Þ

1:28
ffiffi
3

p

� �
¼ Fð1:32Þ ¼ 9:3% go public by year 3. Since 10% went public

already in year 1, this number reveals a distribution moving quickly to the left and
the oversimplification of this back-of-the-envelope calculation that ignores
intermediate exits.

To see the problem with failures, start with the fact from Fig. 3 that a steady small
percentage—roughly 1%—fail each year. The simplest failure model is a step
function at k, just like our step function at b for going public. The 1% tail of the
normal is 2.33 standard deviations from the mean, so to get 1% to go out of business

in one year, we need k�m
s ¼ �2:33: Using m ¼ �64% and s ¼ 128%; that means

k ¼ �2:33 � 1:28 � 0:64 ¼ �3:62: A firm goes out of business when value declines to

100 � e�3:62 ¼ 2:7% of its original value, which is both sensible and close to the
formal estimates in Tables 2 and 5. (The latter reports essentially twice this value,
since the selection for out of business is a linearly declining function of value rather

than a fixed cutoff.) But at these parameters, in two years, F k�2m
2
ffiffi
s

p

� �
¼



ARTICLE IN PRESS

J.H. Cochrane / Journal of Financial Economics 75 (2005) 3–52 37
F �2:34þ2�0:64
2
ffiffiffiffiffiffi
1:28

p

� �
¼ Fð�0:47Þ ¼ 32% fail, and by 3 years F k�3m

3
ffiffi
s

p

� �
¼ F �2:34þ3�0:64

3
ffiffiffiffiffiffi
1:28

p

� �
¼

Fð�0:12Þ ¼ 45% fail!
In sum, the fact that firms steadily go public and fail, as seen in Fig. 3, means we

must have a log return distribution with a small mean—no strong tendency to move
to the left or right—and a high variance. Then the tails, which generate firms that go
public or out of business, grow gradually with time. Alas, a mean log return near
zero and large variance imply very large arithmetic returns. This logic is compelling,
and suggests that these central findings are not specific to the sample period.

The round-to-round sample has lower average returns, about 50% in Table 6. We
also see more frequent new financings, about 30% per year in Fig. 7. The 30% right
tail is 0.52 standard deviations above the mean. Thus, we know from the first year
that 0:5�m

s ¼ 0:52: With a mean m ¼ 0; this implies s ¼ 0:50=0:52 ¼ 96%: The lower
observed returns and greater probability of seeing a return are offsetting, giving
about the same estimate of standard deviation as for the IPO/acquisition sample.

It is comforting to see and understand the same underlying mean and standard
deviation parameters in the two samples, despite their quite different observed
means, standard deviations, and histories. This simple calculation shows why, and
why it is a robust feature of natural stylized facts.

7.2. Stylized facts for betas

How can we identify and measure betas? In the simple model that all firms go
public at b value, we would identify b by an increased fraction that go public
following a large market return, not by any change in return, since all observed
returns are the same (bÞ: With a slowly rising selection function, we will see increased
returns as well, since the underlying value distribution shifts to the right. The formal
estimate also relies on more complex effects. For example, after a runup in the
market, many firms will go public, so the distribution of remaining project values
will be different than it would have been otherwise. These dynamic effects are harder
to characterize as stylized facts.

We can anticipate that these tendencies will be difficult to measure, so that beta
estimates might not be precise or robust. With 100% per year idiosyncratic risk, a
typical 15% (1s) rise in the market is a small risk, and shifts the distribution of
returns only a small amount. In the simple model, a 15% rise in the market raises the
fraction of firms that go public in one year from F 1�0

0:78

� 	
¼ Fð1:28Þ ¼ 10% to

F 1�0:15
0:78

� 	
¼ Fð1:09Þ ¼ 14%: The actual selection functions rise slowly, so moving the

return distribution to the right 15% will push even fewer firms over the border.
Similarly, the huge residual standard deviation means that the R2s are low, so
market model return regression estimates will be imprecise.

Still, let us see what facts can be documented about returns and fates conditional
on index returns. Table 7 presents regressions of observed returns on the S&P500
index return. With arithmetic returns, the intercepts (alpha) are huge. At 462%, this
is probably the largest alpha ever claimed in a finance paper, though it surely reflects
the severe selection bias in this sample rather than a golden-egg-laying goose. The
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Table 7

Market model regressions

a (%) sðaÞ b sðbÞ R2 (%)

IPO/acq. arithmetic 462 111 2.0 0.6 0.2

IPO/acq. log 92 3.6 0.4 0.1 0.8

Round to round, arithmetic 111 67 1.3 0.6 0.1

Round to round, log 53 1.8 0.0 0.1 0.0

Round only, arithmetic 128 67 0.7 0.6 0.3

Round only, log 49 1.8 0.0 0.1 0.0

IPO only, arithmetic 300 218 2.1 1.5 0.0

IPO only, log 66 4.8 0.7 0.2 2.1

Acquisition only, arithmetic 477 95 �0.8 0.5 0.3

Acquisition only, log 77 9.8 �0.8 0.3 2.6

Note: Market model regressions are Rt!tþk ¼ aþ bRm
t!tþk þ et!tþk (arithmetic) and ln Rt!tþk ¼ aþ

b ln Rm
t!tþk þ et!tþk (log). For an investment made at date t and a new valuation (new round, IPO,

acquisition) at t þ k; I regress the return on the corresponding S&P500 index return for the period

t ! t þ k: Standard errors are plain OLS ignoring any serial or cross correlation.
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32% arithmetic alpha in the selection-bias-corrected Table 3 pales by comparison.
Once again, though the selection-bias-corrected estimates leave some puzzle, the
selection bias correction has dramatic effects on the uncorrected estimates.

The beta for arithmetic returns is large at 2.0. There is a tendency for market
returns to coincide with even larger venture capital returns. Log returns trim the
outliers, however, and produce a lower beta of 0.4. The R2 values in these regressions
are tiny, as expected. For this reason, betas are poorly measured, despite the huge
sample and optimistic plain-vanilla OLS standard errors.

The round-to-round regressions produce lower betas still, suggesting that much of
the measured beta comes from a tendency to go public at high market valuations
rather than a tendency for new rounds to be more highly valued when the market is
high. Splitting into new round, IPO, and acquisition categories we see this pattern
clearly. The positive betas come from the IPOs.

Fig. 11 graphs the time series of the fraction of outstanding firms in the IPO/
acquisition sample that go public each quarter, along with the previous year’s
S&P500 returns. (The fraction that goes public is a two-quarter moving average.) If
you look hard, you can see that IPOs increase following good market returns in
1992–1993, 1996–1997, and 1999–2000. (There was a huge surge in IPOs in the last
two years of the sample. However, there was also a huge surge of new projects, so the
fraction of outstanding firms that go public only rises modestly as shown.) 1992 and
1996–1997 also show a modest correlation between average IPO returns and the
S&P500 index. For the IPOs, increased numbers rather than larger returns drive the
estimated betas.

Fig. 12 graphs the same time series for firms in the IPO/acquisition sample that are
acquired. Here we see no tendency at all for the frequency of acquisitions to rise
following good market returns. However, we do see that the returns to acquired
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Fig. 11. Percentage of outstanding projects going public, percent average log returns for projects going

public (right scale), and previous year’s percent log S&P500 return. Percentage of projects going public

and their returns are two-quarter moving averages. IPO/acquisition sample.
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firms track the S&P500 index well, with a scale factor of about two or three. This
graph suggests that returns rather than greater frequency of acquisitions drive a beta
estimate among acquisitions. However, this picture is not confirmed in Table 7,
which found negative betas. There are more observations in later years, so the
regression and this graph weight observations differently.

A similar figure for new rounds in the round-to-round sample shows no tendency
for an increased frequency of financing, and a barely discernible tendency towards
higher values on the tail of stock market rises. The maximum likelihood beta
estimates in the round-to-round sample are correspondingly lower and less precise,
and are driven by the acquisition and IPO outcomes in that sample.

In sum, the correlation of observed returns with market returns, and the
correlation of the frequency of observed new financing or acquisition with market
returns, form the basic stylized facts behind beta estimates. The stylized facts are
there: the frequency of IPOs rises when the market rises, and the valuation of
acquisitions rises when the market rises. However, the stylized facts are much weaker
than those that drive average returns and the variance of returns. This weakness
explains why the intercept and beta estimates of the formal model are not
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particularly well estimated or stable across subsamples or variations in technique,
while the average and standard deviation of log returns are quite stable. This
weakness also explains why I have not extended the estimation, for example to three-
factor betas or other risk corrections.
8. Testing a ¼ 0

An arithmetic return of 59% and a 32% arithmetic alpha are still uncomfortably
large. We have already seen that they result from a mean log return near zero, the

large volatility of log returns, and emþ
1
2
s2
: We have seen in a back-of-the-envelope

way that m ¼ �50% would produce IPOs that cease after a few years and all firms
soon failing. But perhaps the more realistic model and formal estimate do not speak
so strongly against a ¼ 0: What if we change all the parameters? In particular, can
we accept the high mean arithmetic return, but imagine a b of three to five so that the
high mean return is explained? The stylized facts behind high volatility are
compelling, but those driving us to a small beta are not so convincing. Can we
imagine that the data are wrong in simple ways that would overturn the finding of a
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Table 8

Additional estimates and tests for the IPO/acquisition sample

E ln R s ln R g d s ER sR a b k a b p w2

All, baseline 15 89 �7.1 1.7 86 59 107 32 1.9 25 1.0 3.8 9.6

a ¼ 0 �0.9 82 �30 2.5 73 34 93 0.0 2.6 23 0.9 3.9 15 1,428

ER ¼ 15% �3.3 60 �3.3 60 15 64 28 1 3.4 28 2,523

Pre-1997 11 81 11 �0.8 80 46 94 48 �0.8 9.6 1.0 3.6 4.4

Dead 2000 36 59 27 0.3 59 58 69 48 0.3 150 0.7 4.9 31

No p 11 115 �4.0 0.9 114 85 152 67 1.1 11 0.6 5.8 170

Note: ‘‘a ¼ 0’’ imposes a ¼ 0 on the estimation, by always choosing g so that, given the other parameters,

the arithmetic a calculation is zero. ‘‘ER ¼ 15%’’ imposes that value on the no-d estimation, choosing g so

that the arithmetic average return calculation is always 15%. w2 gives the likelihood ratio statistic for these

parameter restrictions. Each statistic is w2ð1Þ with a 5% critical value of 3.84. ‘‘Pre-1997’’ limits the data

sample to January 1 1997, treating as ‘‘still private’’ any exits past that date. ‘‘Dead 2000’’ assumes that

any project still private at the end of the sample goes out of business. ‘‘No p’’ removes the measurement

error.

Table 9

Additional estimates for the round-to-round sample

E ln R s ln R g d s ER sR a b k a b p w2

All, baseline 20 84 7.6 0.6 84 59 100 45 0.6 21 1.7 1.3 4.7

a ¼ 0 �3.6 77 �27 1.9 72 27 86 0.0 1.9 21 1.5 1.4 6.8 1,807

ER ¼ 15% �8.9 69 �8.9 69 15 74 19 2.2 1.0 9.9 3,060

Pre-1997 21 75 10 0.4 75 52 87 40 0.4 19 0.4 5.1 2.2

Dead 2000 32 76 16 0.9 74 65 91 47 1.0 108 0.3 6.4 7.2

No p 16 104 1.6 0.9 103 77 133 60 1.0 11 1.2 1.8 864

Note: See note to Table 8.
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high a? All these questions point naturally to an estimate with restricted parameters
such that a ¼ 0; and a likelihood ratio test.

Table 8 presents additional estimates for the IPO/acquisition sample, starting with
a test of a ¼ 0: (I solve Eq. (7) for the value of g that, given the other parameters,
results in a ¼ 0; and I fix g at that value in the estimation.) Table 10 collects
asymptotic standard errors. Imposing a ¼ 0 lowers the mean log return from 15% to
�0:9%: Together with a slightly lower standard deviation, the mean arithmetic
return is cut in half, from 59% to 34%. However, imposing a ¼ 0 changes the
decomposition of mean log return, lowering the log model intercept from �7:1% to
�30%; and raising the slope coefficient d from 1.7 to 2.5. Interestingly, the estimate
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Table 10

Asymptotic standard errors for Tables 8 and 9 estimates

IPO/acquisition sample Round-to-round sample

g d s k a b p g d s k a b p

a ¼ 0 0.06 0.7 0.59 0.03 0.13 0.8 0.01 0.6 0.4 0.04 0.03 0.4

ER ¼ 15% 0.6 0.65 0.01 0.01 1.1 0.6 0.3 0.02 0.01 0.6

Pre-1997 1.2 0.11 1.1 0.42 0.04 0.12 0.8 1.3 0.12 1.1 0.9 0.01 0.06 0.4

Dead 2000 0.7 0.05 1.2 0.08 0.03 0.16 1.1 1.0 0.06 1.1 1.1 0.00 0.02 0.5

No p 1.1 0.08 1.1 0.37 0.02 0.17 1.2 0.08 0.8 0.2 0.02 0.03
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does not just raise beta. It achieves half of the alpha decline via the difficult route of
lowering mean returns. Apparently, there is strong sample evidence against the high-
beta parameterization, despite the apparent weakness of stylized facts seen in the last
section. The estimate also increases measurement error, to try to handle observations
that now cause trouble. Alas, the statistical evidence against this parameterization is
strong. Imposing a ¼ 0; the log likelihood declines by 1,428/2. Compared to the 5%
w2ð1Þ critical value of 3.84, the a ¼ 0 restriction is spectacularly rejected.

The round-to-round sample in Table 9 behaves similarly. The average log return
declines from 20% to �3:6%; and the average arithmetic return is cut in half from
59% to 27%. The intercept declines dramatically from g ¼ þ7:6% to g ¼ �27%;
and the slope rises from 0:6 to 1:9: But the w2ð1Þ likelihood ratio statistic is 1,807, an
even more spectacular rejection.

So far, the estimates raise slope coefficients a good deal in order to lower alphas.
We might want to keep the estimate from following this path in order to examine the
evidence against the core troubling estimate of high average arithmetic returns,
rather than to excuse such returns by large poorly measured betas. In the ER ¼ 15%
rows of Tables 8 and 9, I impose an average arithmetic return of 15%, the same as
the S&P500 in this sample, estimating the mean and variance of returns directly, i.e.,
restricting the ‘‘no d’’ estimate of Tables 3 and 4. The model might have kept the
high standard deviation, and matched it with a �50% or so mean log return in order

to reduce mþ 1
2
s2: Instead, the dynamic evidence for a mean log return near zero is

so strong that the estimate keeps it, with E ln R ¼ �3:3% in the IPO/acquisition
sample and E ln R ¼ �8:9% in the round-to-round sample. The estimate reduces
standard deviation accordingly, to 60% in the IPO/acquisition sample and 69% in
the round-to-round sample. These variance reductions are just enough to produce

the desired 15% mean arithmetic return via emþ
1
2
s2
: However, this reduction in

variance does great damage to the model’s ability to fit the dynamic pattern of new
financing. The measurement error probabilities rise to 28% in the IPO/acquisition

sample, and to 9.9% in the round-to-round sample. The w2ð1Þ likelihood ratio
statistics are 2,523 for IPO/acquisition and 3,060 in the round-to-round samples,
even more decisively rejecting the ER ¼ 15% restriction.
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Where is the great violence to the data indicated by these likelihood ratio
statistics? Fig. 13 compares the simulated fates in the a ¼ 0 restricted models to the
simulated fates with the baseline estimates, and Table 11 characterizes the simulated
distribution of observed returns with the various restricted models. Table 11 is meant
to convey the same information as the return distribution in Figs. 6 and 8 in more
compact form.

I start by lowering the intercept g to produce a ¼ 0 with no change in the other
parameters. The ‘‘a ¼ 0; others unchanged’’ lines of Fig. 13 shows that this
restriction produces far too many bankruptcies and too few IPO/acquisitions. (The
dashed line with no symbols, representing the estimate’s prediction of IPO/
acquisitions, is well below the dashed line with squares, representing the data; and
the solid line with no symbols, representing the estimate’s prediction of out of
business projects, is well above the solid line with squares, representing failures in the
data.) As the back-of-the-envelope calculation suggested, a low mean log return
implies that the distribution of values moves to the left over time, so we have an
inadequate right tail of successes and too large a left tail of failures.
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Table 11

Moments of simulated returns to new financing or acquisition under restricted parameter estimates

1. IPO/acquisition sample 2. Round-to-round sample

Horizon (years): 1/4 1 2 5 10 1/4 1 2 5 10

(a) E log return (%)

Baseline estimate 21 78 128 165 168 30 70 69 57 55

a ¼ 0 11 42 72 101 103 16 39 34 14 10

ER ¼ 15% 8 29 50 70 71 19 39 31 13 11

(b) s log return (%)

Baseline estimate 18 68 110 135 136 16 44 55 60 60

a ¼ 0 13 51 90 127 130 12 40 55 61 61

ER ¼ 15% 9 35 62 91 94 11 30 38 44 44
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The ‘‘a ¼ 0’’ lines of Fig. 13 present the simulated histories when I impose a ¼ 0;
but allow ML to search over the other parameters, in particular raising the slope
coefficient b and measurement error, so as to give a ¼ 0 while keeping a large mean
arithmetic return. Now the estimate can match the pattern of successes (the dashed
lines with triangles and squares are close), but it still predicts far too many failures
(the solid line with triangles is far above the solid line with squares). The 20% lower
mean log and 30% lower mean arithmetic return in this estimate still leave a
distribution that marches off to the left too much. The ER ¼ 15% restriction and the
round-to-round sample behave similarly.

In Table 11, the mean returns to new financing or acquisition under the restricted
models are often less than half the mean returns under the unrestricted model and in
the data. The standard deviations are often a poor match in some of the
parameterizations. The restricted estimates also miss facts underlying the beta
estimates, although I do not graph this phenomenon.

In sum, the data speak strongly against lowering the arithmetic alpha to zero,
either by lowering mean arithmetic returns or by raising betas. To believe such a
parameterization, we must believe that beta is much larger than estimated, we must
believe that the data are measured with much more error, we must believe that the
data substantially understate the frequency and timing of failure (as indicated by
Fig. 13), and we must believe that the sample systematically overstates the returns to
IPO, acquisition, and new financing by as much as a factor of two, as indicated by
Table 11.
9. Robustness

I check that the anomalous IPO market at the end of the sample, measurement
error, and the imputation of returns to out-of-business projects do not affect the
results.
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9.1. End of sample

We might suspect that the results depend crucially on the anomalous behavior
of the IPO market during the late 1990s, and the unfortunate fact that the sample
stops in June of 2000, just after the first Nasdaq crash. (This fact is not a
coincidence—the data collection for this project was commissioned by a now defunct
dot-com.)

To address this concern, the ‘‘pre-1997’’ subsample uses no information
after January 1997. I ignore all rounds that are not started by January 1997,
and I treat all rounds started before then that have not yet gone public,
been acquired, had another round, or gone out of business by January 1997
as ‘‘still private’’. The ‘‘Dead 2000’’ sample assumes that all firms still private
as of June 2000 go out of business on that date. This experiment also provides
a way to address the ‘‘living dead’’ bias: some firms that are reported as still
alive are probably really inactive and worthless. Assuming all inactive firms
are worthless by the end of the sample gives a bound on how severe that bias
could be.

As Table 2 shows, about two-thirds of the venture capital financing rounds
begin after January 1997, so the concern that the results are special to the subsample
is not unfounded. However, the main difference in fates is that firms are much more
likely to fail in the post-1997 sample. The fraction that go public, etc., is virtually
identical. If we assume that all firms alive in June 2000 go out of business, we
increase the out-of-business fraction dramatically, at the expense of the ‘‘still
private’’ category.

In Tables 8 and 9, the mean and standard deviation of log returns are essentially
the same in the pre-1997 sample as in the base case. The main difference is the split
of the mean return between slope and intercept for the IPO/acquisition sample.
The slope coefficient d switches sign from þ1:7 to �0:8; and the intercept g rises
from �7:1% to +11%. The association of IPOs with the stock price rise of the late
1990s is the major piece of information identifying the slope d: Since volatility is
unchanged and the mean log return is unchanged, mean arithmetic returns
are essentially unchanged in the pre-1997 sample. Since the slopes decline,
arithmetic alphas actually increase in the pre-1997 sample, to 48% in Table 8 and
40% in Table 9.

Assuming that all firms still private in June 2000 go out of business on that date
plays havoc with the estimate. The failure cutoff k increases to 150% of its initial
value in Table 8 and 108% in Table 9, naturally enough, as the chance of failure
increases dramatically. The other parameters change a bit, as they must still account
for the successes in the pre-2000 data despite much higher k. Both samples show a
much larger mean log return, and the IPO/acquisition sample shows a somewhat
smaller variance.

In the end, the mean arithmetic returns and alphas are the same or higher in the
pre-1997 and Dead 2000 samples. As always, the idiosyncratic variance remains large
and it is not paired with a huge negative mean. Thus, neither the late 1990s boom nor
a ‘‘living dead’’ bias is behind the central results.
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9.2. Measurement error and outliers

How does the measurement error process affect the estimates? In the rows of
Tables 8 and 9 marked ‘‘no p’’, I remove the measurement error process. This change
raises the estimated standard deviation from 89% to 115% in Table 8 and from 84%
to 104% in Table 9. Absent measurement error, we need a larger variance to
accommodate tail returns. The mean log return is unaffected. Higher variance alone
would drive more firms to failure, so the failure cutoff k drops from 25% to 11% in
Table 8 and 21% to 11% in Table 9. All the other estimated parameters are basically
unchanged. Raising the variance raises mean arithmetic returns to 85% and a to
67% in Table 8, and mean arithmetic returns to 65% and a to 60% in Table 9.
Repeating the whole set of estimations without measurement error, the largest
difference, in addition to the larger variance, is much less stability in slope
coefficients d across subsamples. A few large returns, very unlikely with a lognormal
distribution, drive the d estimates without measurement error. The estimates vary as
the few influential data points jump in and out of subsamples.

The likelihood ratio statistic for p ¼ 0 is 170 in the IPO/acquisition sample and
864 in the round-to-round sample. The 5% critical value for a w2

ð1Þ is 3.84. Whether
we interpret the measurement error process as such, or as a device to induce a fatter
tail in the true return process,7 the model wants it.

The measurement error process does not just throw out large returns, which are
plausibly the most interesting part of venture capital. It largely throws out
reasonable returns that occur in a very short time period, leading to very large
annualized returns. Even if not errors, these events are a separate phenomenon from
what most of us think as the central features of venture capital. Venture capital is
about the possibility of earning a very large return in a few years, not about the
chance of ‘‘only’’ doubling your money in a month.

To document this interpretation, I examine ‘‘outliers,’’ the data points that
contribute the greatest (negative) amount to the log likelihood in each estimate.
Without measurement error, the biggest outliers are IPO/acquisitions that have
moderately large positive—and negative—returns in a short time span, not large
returns per se. With measurement error, the outliers are old (eight to ten years)
projects that eventually go public or are acquired with very low returns—5% to 20%
of initial value. This finding is sensible. Since low values exit, and the probability of
going public is very low at a low value, it is hard to attain a very low value and go
public without failing along the way.

To check further that the high mean returns and alphas are not driven by
anomalous quick successes, implying huge annualized returns, I try replacing the
actual age of returns in the first year with ‘‘1 year or less’’, i.e. summing the
7We cannot interpret this exact specification of the measurement error process as a fat-tailed return

distribution. The measurement error distribution is applied only once, and does not cumulate. A fat-tailed

return distribution, or, equivalently, the addition of a jump process, is an interesting extension, but one I

have not pursued to keep the number of parameters down and to preserve the ease of making

transformations such as log to arithmetic based on lognormal formulas.
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probability of an IPO over the first year rather than using the probability of
achieving the IPO on the reported date. This variant has practically no effect at all
on the estimated parameters.

In sum, the measurement error complication does not drive the large alphas. Quite
the opposite, adding measurement error reduces the volatility-induced mean
arithmetic returns and alphas by accounting for the occasional quick large returns.

9.3. Returns to out-of-business projects

So far, I have implicitly assumed that when a firm goes out of business, the
investor receives whatever value is left. What if, instead, investors get nothing when
the firm goes out of business? This change adds a lumpy left tail to the return
distribution. Perhaps this lumpy left tail is enough to get rid of the troublesome
alphas. Mean log returns become �1; and the standard deviation of log returns
þ1; but we can still characterize the mean and standard deviation of arithmetic
returns.

To answer this question, I simulate the model at the baseline parameter estimates,
and find the probability and value of all the various outcomes. I then calculate the
annualized expected arithmetic return, assuming that investors get zero return for
any project that goes out of business. (Since we are aggregating payoffs at different
horizons, I calculate the arithmetic discount rate that sets the present value of the
cash flows to one.) The average arithmetic return declines only from 58:72% to
58:38%: This modification has so little effect because the failure values k are quite
low, around 10% of the initial investment, and only 9% of firms fail. Losing the last
10%, in the 9% of investments that are down to 10% of initial value, naturally has a
small effect on average returns.
10. Comparison to traded securities

If we admit large arithmetic mean returns, standard deviations, and arithmetic
alphas in venture capital, are these findings unique, or do similar traded securities
behave the same way?

Table 12 presents means, standard deviations, and market model regressions for
individual small Nasdaq stocks. To form the subsamples, I take all stocks that have
market value below the indicated cutoffs in month t, and I examine their returns
from month t þ 1 to month t þ 2: I lag by two months to ensure that erroneously low
prices at t do not lead to spuriously high returns from t to t þ 1; though results with
no lag (selection in t, return from t to t þ 1) are in fact quite similar. I examine
market value cutoffs of two million, five million, 10 million and 50 million dollars.
The average venture capital financing round in my sample raises $6.7 million. The
first five deciles of all Nasdaq market value observations in this period occur at 5, 10,
17, 27, and 52 million dollars, so my cutoffs are approximately the 1

20
; 1

10
; 2

10
; and 1

2

quantiles of market value. Small Nasdaq stocks have a large number of missing
return observations in CRSP data, most due to no trading. I ignore missing returns
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Table 12

Characteristics of monthly returns for individual Nasdaq stocks

N EðRÞ sðRÞ EðRvwÞ a b R2 (%)

MEo$2M, arithmetic 22,289 62 175 54 53 (4.0) 0.49 0.18

MEo$2M, log �1.9 113 �15 (2.6) 0.40 0.30

ME o$5M, arithmetic 72,496 37 139 29 27 (1.8) 0.60 0.44

MEo$5M, log �5.1 103 �26 (1.3) 0.57 0.77

ME o$10M, arithmetic 145,077 24 118 16 12 (1.1) 0.76 0.99

MEo$10M, log �5.8 93 �31 (0.9) 0.66 1.3

All Nasdaq, arithmetic 776,290 14 81 3.1 (0.3) 0.91 3.1

All Nasdaq, log �3.4 72.2 �22 (0.3) 0.97 4.6

Note: Mean returns, alphas, and standard deviations are annualized percentages: means and alphas are

multiplied by 1,200, and standard deviations are multiplied by 100
ffiffiffiffiffi
12

p
: EðRvwÞ denotes the value-weighted

mean return. a; b; and R2 are from market model regressions, Ri
t � Rtb

t ¼ aþ bðRm
t � Rtb

t Þ þ ei
t for

arithmetic returns and ln Ri
t � ln Rtb

t ¼ aþ b ln Rm
t � ln Rtb

t

� 	
þ ei

t for log returns, where Rm is the

S&P500 return and Rtb is the three-month T-bill return. The sample consists of all Nasdaq stocks on

CRSP, January 1987–December 2001, including delisting returns. Each set of rows considers a different

upper limit for market value (ME) in month t. Returns are then calculated from month t þ 1 to month

t þ 2: Missing return data (both regular and delisting) are ignored if the security is still listed the following

period, or if the previous period included a valid delisting return. Other missing returns are assumed to be

�100%: Log returns are computed ignoring observations with �100% returns. Parentheses present simple

pooled OLS standard errors ignoring serial or cross correlation.
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when the company remains listed at t þ 3; or if month t þ 1 is a delisting return. I
treat all remaining missing returns as �100%; to give the most conservative estimate
possible. This sample is different than the CRSP deciles in several respects. First, the
cutoff for inclusion is a fixed dollar value rather than a decile in the selection month;
as a result the numbers and fraction of the Nasdaq in each category fluctuate over
time. Second, I rebalance each month rather than once per year. I make both
changes in order to better control the characteristics of the sample. With 100%
standard deviations, stocks do not keep their capitalizations for long.

The estimates in Table 12 for the smallest Nasdaq stocks are surprisingly similar to
the venture capital estimates. First, the mean arithmetic return of the smallest
Nasdaq stocks is 62%, comparable to the 59% mean return in the baseline venture
capital estimates of Tables 3 and 4. As we increase the size cutoff, mean returns
gradually decline. The mean return of all Nasdaq stocks is only 14.2%, similar to the
S&P500 return in this time period. Value-weighted averages are lower, but still quite
high—the basic result is not a feature of only the smallest stocks in each category.

Second, these individual stock returns are very volatile. The smallest Nasdaq
stocks have a 175% annualized arithmetic return standard deviation, even larger
than the 107% from the baseline venture capital estimate of Table 3. The $5 million
and $10 million cutoffs produce 139% and 118% standard deviations, quite similar
to the 107% of Table 3. Even stocks in the full Nasdaq sample have a quite high
80.7% standard deviation.

Third, as in the venture capital estimates, large arithmetic mean returns come from
the large volatility of log returns, not a large mean log return. The mean and
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standard deviation of the small stock log returns are �1:9% and 113%, comparable
to the 15% and 89% venture capital estimates in Table 3.

Last, and most important, the simple market model regression for the smallest
Nasdaq stocks leaves a 53% annualized arithmetic alpha, even larger than the 32%
venture capital alpha of Table 3. This is a feature of only the very smallest stocks. As
we move the cutoff to $5 and $10 million, the alpha declines rapidly to 27%—
comparable to the 32% of Table 3—and 12%, and it has disappeared to 3% in the
overall Nasdaq. The slope coefficients b are not large at 0.49, gradually rising with
size to 0.91. These values are smaller than the 1.9 b of Table 3. As in Table 3, the log
market models leave substantial negative intercepts, here �15% declining with size
to �22%; similar to the �7% of Table 3. As in Table 3, the arithmetic alpha is
induced by volatility, not by a large intercept in the log market model. The R2 are of
course tiny with such large standard deviations, though the higher R2 for the log
models suggest that they are a better statistical fit than the arithmetic market models.

The finding of high arithmetic returns and alphas in very small Nasdaq stocks is
unusual enough to merit a closer look. In Table 13, I form portfolios of the stocks in
the samples of Table 12. By the use of portfolio average returns, the standard errors
control for cross correlation that the pooled statistics and regressions of Table 12
ignore. In the first panel of Table 13 we still see the very high average returns in the
small portfolios, declining quickly with size. Despite the large standard deviations,
the mean returns appear statistically significant.

The large average returns (and alphas) are not seen in the CRSP small decile. The
CRSP small Nasdaq decile is comparable to the $10 million cutoff. To see the high
returns, you have to look at smaller stocks and control the characteristics more
tightly than annual rebalancing in CRSP portfolios allows.

In the second panel of Table 13, I run simple market model regressions for these
portfolios on the S&P500 return. The market model regressions of the individual

stocks in Table 12 are borne out in portfolios here. The smallest stocks show a 61.6%
arithmetic alpha, and the second portfolio still shows a 31.6% arithmetic a: Though
the standard errors are greater than those of Table 12, the alphas are statistically
significant. By contrast, the relatively much smaller 12% a of the CRSP first (small)
decile is not statistically significant. Again, the behavior of my smallest group is not
reflected in the CRSP small decile.

Is the behavior of very small stocks just an extreme size effect, explainable by a
large beta on a small stock portfolio? In the third panel of Table 13, I run regressions
with the CRSP decile 1 on the right-hand side. Alas, this hope is not borne out.
Though regressions of the small stock portfolios on the CRSP decile 1 return give
substantial betas, up to 1.4, they also leave a substantial alpha. The alpha is 43% in
the $2 million or less portfolio, declining quickly to 18% in the $5M portfolio and
vanishing for larger portfolios. The small Nasdaq portfolio returns lose the
correlation with the CRSP small Nasdaq decile, also suggesting something more
than an extreme size effect.

Perhaps these very small stocks are ‘‘value’’ stocks as well as ‘‘ small’’ stocks. The
final panel of Table 13 runs a regression of the small Nasdaq portfolios on the three
Fama–French factors. Though the SMB loading is quite large, up to 1.9, nonetheless
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Table 13

Characteristics of portfolios of very small Nasdaq stocks

Equally weighted, MEo Value weighted, MEo

CRSP Dec1 $2M $5M $10M $50M $2M $5M $10M $50M

EðRÞ 22 71 41 25 15 70 22 18 10

s.e. 8.2 14 9.4 8.0 6.2 14 9.1 7.5 5.8

sðRÞ 32 54 36 31 24 54 35 29 22

Rt � Rtb
t ¼ aþ b� ðRS&P500

t � Rtb
t Þ þ et

a 12 62 32 16 5.4 60 24 8.5 0.6

sðaÞ 7.7 14 9.0 7.6 5.5 14 8.6 7.0 4.8

b 0.73 0.65 0.69 0.67 0.75 0.73 0.71 0.69 0.81

Rt � Rtb
t ¼ aþ b� ðDec1t � Rtb

t Þ þ et

r 1.0 0.79 0.92 0.96 0.96 0.78 0.92 0.96 0.91

a 0 43 18 4.7 �2.7 43 11 �2.3 �5.7

sðaÞ 8.4 3.6 2.1 1.9 8.9 3.5 2.0 2.5

b 1 1.4 1.1 0.9 0.7 1.3 1.0 0.9 0.7

Rt � Rtb
t ¼ aþ b � R MRFt þ s � SMBt þ h � HMLt þ et

a 5.1 57 26 10 �1.9 55 18 1.9 �7.0

sðaÞ 5.5 12 7.6 5.8 3.5 12 7.3 5.2 2.7

b 0.8 0.6 0.7 0.7 0.8 0.7 0.7 0.7 0.9

s 1.7 1.9 1.6 1.5 1.4 1.8 1.5 1.5 1.3

h 0.5 0.2 0.3 0.4 0.4 0.1 0.3 0.4 0.4

Note: Means, standard deviations, and alphas are annualized percentages. Portfolios are re-formed

monthly. Market equity at date t is used to form a portfolio for returns from t þ 1 to t þ 2: CRSP Dec1 is

the CRSP smallest decile Nasdaq stock portfolio. Rtb is the three-month T-bill return. The sample is for

the period January 1987 to December 2001.
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the smallest portfolio still leaves a 57% alpha, and even the $5 million portfolio still
has a 25% alpha. As expected, the alphas disappear in the larger, and especially
value-weighted, portfolios.

In conclusion, it seems that something unusual happens to the very smallest of
small Nasdaq stocks in this period. It could well be a period-specific event rather
than a true ex ante premium. It could represent exposure to an unusual risk factor.
These Nasdaq stocks are small, thinly traded, and illiquid; the CRSP data show
months of no trading for some of them. For the purposes of this paper, however, the
main point is that alphas of 30% or more are observed in traded securities with
similar characteristics as the venture capital investments.

The small-stock portfolios are natural candidates for a performance attribution of
venture capital investments. It would be gratifying if the venture capital investments
showed a beta near one on the small-stock portfolios. Then the 50% or more average
arithmetic returns in venture capital would be explained, in a performance



ARTICLE IN PRESS

J.H. Cochrane / Journal of Financial Economics 75 (2005) 3–52 51
attribution sense, by the 50% or more average arithmetic returns in the small-stock
portfolios during this time period. Alas, Tables 3 and 4 only found b of 0.5 and 0.2
on the small stock portfolios, and leave substantial alphas. Venture capital betas are
poorly measured, so perhaps the b really is larger. However, the only conclusion
from the evidence is that venture capital shows an anomalously large arithmetic
alpha in this period, and the very smallest Nasdaq stocks also show an anomalously
large arithmetic alpha. The two events are similar, but they are not the same event.
11. Extensions

There are many ways that this work can be extended, though each involves a
substantial investment in programming and computer time, and could strain the
stylized facts that credibly identify the model.

My selection function is crude. I assume that IPO, acquisition, and failure are only
a function of the firm’s value. One might desire separate selection functions for IPO,
acquisition, and new rounds at the (not insubstantial) cost of four more parameters.
The decision to go public could well depend on the market, as well as on the value of
the particular firm, and on firm age or other characteristics. (Lerner (1994) finds that
firms are more likely to go public at high market valuations, and more likely to
employ private financing when the market is low.) I allow for missing data, but I
assume that data errors are independent of value. It might be useful to estimate
additional selection functions for missing data, i.e., firms that subsequently go public
are more likely to have good round data in the VentureOne dataset, or that firms
which go public at large valuations are more likely to have good final valuation data.
I do no modeling of the decision to start venture capital projects, yet it is clear in the
data that this is an endogenous variable.

My return process is simple. The risks (betas, standard deviation) of the firm are
likely to change as its value increases, as the breakout by financing round suggests.
Multiple risk factors, or evaluation with reference to carefully tailored portfolios of
traded securities, are obvious generalizations. I do not attempt to capture cross-
correlation of venture capital returns, other than through identifiable common
factors. Such residual cross-correlation is of course central to the portfolio question.

More and better data will certainly help. Establishing the dates at which firms
actually go out of business is important to this estimation procedure. Many more
projects were started in the late 1990s with very high market valuations than before
or since. When we learn what happened to the post-crash generation of venture
capital investments, the picture might change.
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Kaplan, S., Sensoy, B., Strömberg, P., 2002. How well do venture capital databases reflect actual

investments? Unpublished working paper, University of Chicago.

Lee, P., Wahal, S., 2002. Grandstanding, certification, and the underpricing of venture capital backed

IPOs. Unpublished working paper, Emory University.

Lerner, J., 1994. Venture capitalists and the decision to go public. Journal of Financial Economics 35,

293–316.

Ljungqvist, A., Richardson, M., 2003. The cash flow, return and risk characteristics of private equity.

NBER Working Paper 9454.

Ljungqvist, A., Wilhelm, W., 2003. IPO pricing in the dot-com bubble. Journal of Finance 58-2, 577–608.

Long, A., 1999. Inferring period variability of private market returns as measured by s from the range of

value (wealth) outcomes over time. Journal of Private Equity 5, 63–96.

MacIntosh, J., 1997. Venture capital exits in Canada and the United States. In: Halpern, P. (Ed.),

Financing Growth in Canada. University of Calgary Press, Calgary.

Moskowitz, T., Vissing-Jorgenson, A., 2002. The returns to entrepreneurial investment: a private equity

premium puzzle? American Economic Review 92, 745–778.

Peng, L., 2001. Building a venture capital index. Unpublished working paper, University of Cincinnati.

Reyes, J., 1990. Industry struggling to forge tools for measuring risk. Venture Capital Journal, Venture

Economics, Investment Benchmarks: Venture Capital.

Smith, J., Smith, R., 2000. Entrepreneurial Finance. Wiley, New York.

Venture Economics, 2000. Press release, May 1, 2000 at www.ventureeconomics.com.

http:www.ventureeconomics.com

	The risk and return of venture capital
	Introduction
	Literature
	Overcoming selection bias
	Maximum likelihood estimation
	Accounting for data errors

	Data
	IPO/acquisition and round-to-round samples

	Results
	Base case results
	Alternative reference returns
	Rounds
	Industries

	Facts: fates and returns
	Fates
	Returns
	Round-to-round sample
	Arithmetic returns
	Annualized returns
	Subsamples

	How facts drive the estimates
	Stylized facts for mean and standard deviation
	Stylized facts for betas

	Testing  =0
	Robustness
	End of sample
	Measurement error and outliers
	Returns to out-of-business projects

	Comparison to traded securities
	Extensions
	References


