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Abstract 

What are the shocks that drive economic fluctuations? I examine technology 

and money shocks in some detail, and briefly review the evidence on oil price and 

credit shocks. I conclude that none of these popular candidates accounts for the 

bulk of economic fluctuations. I then examine whether “consumption shocks,” 

reflecting news that agents see but we do not, can account for fluctuations. I find 

that it may be possible to construct models with this feature, though it is more 

difficult than is commonly realized. If this view is correct, we will forever remain 

ignorant of the fundamental causes of economic fluctuations. 

1 Introduction 

What shocks are responsible for economic fluctuations? Despite at least two 

hundred years in which economists have observed fluctuations in economic 

activity, we still are not sure. 

For example, a session of prominent macroeconomists at the 1993 AEA 

meetings addressed the question “What caused the 1990 recession?” (Blan- 

chard (1993), Hall (1993), and Hansen and Prescott (1993)). They examined 

a long list of candidates-factor prices, especially oil, monetary policy, gov- 

ernment purchases, tax increases, technology shocks, bank regulation, inter- 

national factors, and sectoral shifts. They came up empty-handed. Prescott 

and Hansen claimed technology shocks, but interpreted these broadly enough 

to encompass any of the above and more (see below). Blanchard and Hal! 
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favored “consumption shocks.” Since consumption is an endogenous variable, 
the ultimate source of variability must be news about future values of any of 
the above. But what news and about what future event is not identified. 

It is tempting to offer up a mixture of shocks in a spirit of compromise, 
so that recessions are sums of many small negative impulses, or to speculate 
that different shocks caused different historical episodes. However, there are 
good reasons to try to limit ourselves to a small number of recurring shocks. 
Business cycles are “all alike” in many ways. Investment and durables fall 
by more than output, hours fall by about as much as output, nondurable 
consumption by much less than output. Different shocks are unlikely to pro- 
duce such similar responses. For example, if a shock (say a credit crunch) 
is temporary, it should cause a small reduction in consumption and a big 
decline in investment. If it is permanent (say a tax increase), it should cause 
a much larger decline in consumption and may not change investment at 
all. The need to produce roughly similar dynamics severely constrains the 
dynamic structure of the shocks and hence argues for a common source. 
Similarly, shocks in different places-preferences, technology, money, govern- 
ment spending, etc.-yield different correlations between series. In explicitly 
dynamic models, it is no longer true that any source of aggregate-demand 
decline is as good as another and kicks off the same dynamic pattern. 

After an extensive review of technology and money shocks, and a brief 
review of oil and credit shocks, I conclude that we have not found large, 
identifiable, exogenous shocks to account for the bulk of output fluctuations. 
Monetary policy shocks account for at most 20% of the variation in out- 
put. Statistics that focus on predictability find almost no contribution of 
technology shocks to business-cycle output variation. Shocks to consump- 
tion and output-endogenous variables-always explain a robust 50&70% of 
output variation. Furthermore, specification uncertainty, choice of statistic, 
and sampling variation are as much of the story as point estimates. Plau- 
sible variations can generate numbers from 0 to 100% for both money and 
technology shocks. 

I then ask whether we can account for fluctuations by “consumption 
shocks,” news consumers see but we do not see. This is an attractive view, 
and at least explains our persistent ignorance of the underlying shocks. But 
it is not as easy as it seems to specify a consistent dynamic model in which 
consumption shocks generate business-cycle fluctuations. 

My review of the evidence for various shocks stresses four themes: 
Theme 1: Despite the fact that empirical work assessing the contribution 

of shocks is often conducted in an atheoretical context, one’s view of the 
propagation mechanism, or economic theory, is crucially important for iden- 
tifying shocks and evaluating their effect on output. The results can change 
drastically as one views the data from the perspective of different theoretical 



frameworks, or as one imposes more theory on the estimation. 

Theme 2: The statistic one chooses is crucially important as well. Vari- 

ance decompositions, variance of Hodrick-Prescott filtered output, variance 

of Beveridge-Nelson filtered output, etc. all can give drastically different 

results. 

Theme 3: Economic agents have a lot more information than we do. 

What is a shock to us may be known by them. 

Theme 4: There are “level’ variables, including the consumption/output 

ratio, M2 velocity, term spreads, and hours, that indicate the state of the 

economy, and hence can forecast long-horizon output with huge (60% or 

more) R2. 

1 .l Some warnings 

(1) Exogeneity. We traditionally search for exogenous shocks. Any VAR 
mechanically accounts for 100% of the variance of output by unforecastable 

movements in endogenous variables. To say that such a shock causes fluctu- 

ations just leads to the question, “Why did the endogenous variable move?” 

and a search for a deeper, exogenous shock. There is also an econometric rea- 

son to search for exogenous shocks: only responses to an exogenous variable 

can measure the effects of policy-induced changes in that variable. 

Exogenous shocks are rare, however, and the imperialistic march of eco- 

nomics makes events truly outside the economic system rarer every day. We 

are used to thinking of government policy as exogenous, but a glance at 

the newspaper shows that policymakers watch the economy and economic 

forecasts obsessively. Monetary VARs recognize that policy responds to the 

economy and try to isolate the exogenous shocks as residuals to a policy rule. 

But why should a policymaker deliberately introduce a random component 

to his decisions? Any maximization objective in a nonstrategic environ- 

ment leads to deterministic rules for setting controls as a function of state. 
The Fed always describes its actions as responses to events, not randomized 

experiments.l 

Technology shocks sound nicely exogenous. However, the growth litera- 

ture is working hard to make technology endogenous, and the real business- 

cycle literature seems to have abandoned the technology interpretation of the 

residual, anyway. Prices are of course endogenous economic variables. Only 

‘Of course, neither we nor economic agents have enough information to forecast policy 
perfectly. Residuals to an agent’s forecasting model can count as exogenous shocks, if only 
unanticipated money matters. Unfortunately, we have even less information than agents, 
so the innovation measured by our forecasting model is not likely to be the same as the 
innovation measured by agents’ models. Furthermore, if anticipated money matters, or in 
investigating other shocks, then responses to shocks that really reflect superior information 
may not be meaningful. 
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the weather remains exogenous, 2 but business cycles seem to have nothing 
to do with the weather. 

It would be nice to point to recognizable eve&s, of the type that are 
reported in newspapers, as the source of economic fluctuations, rather than 
to residuals from some equation. This search has been even more fruitless. 
Of course, Monday-morning quarterbacks always attribute fluctuations to 
a long list of events, typically an undigested summary of business-section 
headlines. But the fingers pointed at these events are seldom attached to a 
serious explanation of how the headline events are quantitatively capable of 
producing a large and protracted decline in output, or why similar headlines 
often do not have any effects. Finally, in expectational models, times when 
the Fed does nothing but was expected to do something are just as much a 
shock as times in which it did something unexpected; but these events rarely 
wind up in the newspaper. In the context of expectational models, it is 
not embarrassing that residuals to a forecasting equation are the underlying 
shocks. 

(2) Propagation. Many papers try to study “shocks” without specifying 
much about the “propagation mechanism.” The study of shocks and prop- 
agation mechanisms are of course not separate enterprises. Shocks are only 
visible if we specify something about how they propagate to observable vari- 
ables. More importantly, we can not really believe that a shock affects the 
economy unless we understand how it does so. 

Real business-cycle models produce artificial time series, so we can use a 
lot of information about the propagation mechanism to identify and quan- 
tify the importance of its shocks. Dynamic monetary economics is at a much 
more primitive stage. The response patterns of cash-in-advance models are 
so far from the data that they are not much used in the empirical analysis 
of monetary shocks. Many other monetary models do not give any explicit 
dynamic predictions. Therefore, empirical researchers typically fish for VAR 
specifications to produce impulse-responses that capture qualitative mone- 
tary dynamics, for example as described in Friedman (1968). Other shocks, 
such as oil price, credit, etc., are not associated with well-spelled-out dynamic 
theories of their effects on the economy, so identification and evaluation is 
even more tenuous. For this reason, shock identification is often based on 
simplified stylized features rather than the predictions of explicit models - 
“demand” shocks have no long-run effect on output, “monetary” shocks are 
represented by unforecastable movements in the federal funds rate, and so 
forth.3 

(3) who cares ? The answer to the question, “What exogenous shocks ac- 

2For the moment. Advocates of economic policy to affect global warming and chaos 
theorists are trying hard to make the weather endogenous as well! 

“I do not mean to sound critical. These identifying procedures are the state of the art. 
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count for output fluctuations ?” has more limited implications than is usually 
recognized. 

First, it may not have immediate policy implications. For example, sup- 
pose that oil prices have small direct effects on the economy, but they in- 
duce monetary policymakers to cause recessions. (Darby 1982 argues for 
this view.) In this case, oil prices are the exogenous shock, and the Federal 
Reserve is just part of the propagation mechanism. However, to say “oil 
shocks account for fluctuations” is a misleading description; monetary policy 
caused the recessions. We do not have to worry about Middle East politics 
to insulate the economy from fluctuations, we have to worry about the Fed. 

Second, the point of most shock accounting papers is really a comparison 
of broad classes of as-yet-incomplete models of the propagation mechanism. 
They want to answer questions such as “Can any competitive equilibrium 
model account for fluctuations in output, or will we need monetary, sticky 
price, or noncompetitive models I” But it’s hard to come up with some be- 
havior that a whole class of models, as yet not investigated, is incapable of 
producing. Furthermore, most classes of model are not, in fact, tied to spe- 
cific shocks. Technology shocks could account for all of the fluctuations in 
output, yet do so through channels specified by imperfectly competitive mod- 
els. Monetary shocks could account for fluctuations, through an intertem- 
poral market-clearing mechanism (say a real business-cycle model with a 
cash-in-advance constraint) as well as through a sticky price mechanism. 

Thus shock accounting does not really say that much about the plausibil- 
ity of broad classes of economic model. They say even less about modeling 
methodoZogies, which is really at stake. I do not think Prescott would feel 
vindicated if the profession converged on the view that technology shocks ac- 
count for 80% ( or all) of output fluctuations, yet do so through fluctuations 
in the aggregate supply curve of an IS-LM model! 

(4) Information advantages. Shock identification procedures are sensitive 
to the fact that economic agents and policymakers base their forecasts on 
more variables than we include in our VARs. The weather forecast Granger- 
causes the weather, but shooting the weatherman will not produce a sunny 
weekend. 

(5) Linearity. The central question in this paper is whether each candi- 
date shock can explain a large fraction of output variance (either variance of 
growth rates or forecast error variance). A lot of assumptions go even into 
this statement of the question. 

First, are recessions different from other times? In virtually all economic 
models and in VAR representations, booms and busts are just different draws 
from the same distribution. Recessions may represent an interesting combina- 
tion of large negative shocks, but they are not draws from a different process. 
In thinking qualitatively about the economy, however, we often study reces- 
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sions as if they were a distinct phenomenon. The above cited AEA session 
was not organized around “What accounts for the forecast error variance of 
output?” but “What caused the last recession?” 

Second, does the economy respond to shocks in an importantly nonlinear 
way? Most qualitative discussions reflect such a belief, for example, the need 
for a “booster shot” to keep the economy from “sliding into a recession.” 
But real business cycle models and VAR techniques are decidedly linear, and 
there is little solid evidence for important nonlinear structure in the data. 

With these warnings and the themes they motivate in mind, I turn to a 
quantitative examination of the evidence for some shocks. 

2 Monetary shocks 

Shocks to the quantity of money or other measures of Federal Reserve policy 
have long been suspected of influencing output. The central question for us 
is: How much output variation is due to monetary shocks? Even if the Fed 
can influence output, it does not follow that most fluctuations in output are 
in fact due to monetary policy shocks. 

Ideally, we would address this question by using a well-specified model 
that identifies monetary shocks and predicts the economy’s response, as real 
business-cycle models do for technology shocks. However, we do not have 
empirically successful models of this sort, so most evidence for the effects 
of monetary shocks comes via vector autoregressions (VARs). Three issues 
guide our evaluation of these VARs. 

(1) Shape of impulse-responses. In the absence of an empirically useful 
dynamic monetary theory, at least we can require the impulse-response func- 
tions to conform to qualitative theory such as Friedman (1968). Most VARs 
do not conform to this standard. Prices may go down, real interest rates go 
up, and output may be permanently affected by an expansionary shock. It is 
not very convincing to claim that money accounts for Z% of the variance of 
output in such a VAR, since we have no idea how money produces its alleged 
effect. 

(2) Shock identification. Th’ is is obviously a crucial decision, but theory 
offers little help. First, one has to pick which variabZe to use as an indicator 
of money-supply disturbances. I will examine the popular choices: Ml, M2, 
the federal funds rate, and nonborrowed reserves. 

Second, one must specify the ordering, or which variables are contempo- 
raneously unaffected by shocks to other variables. The monetary variable 
often goes first-it is assumed not to be contemporaneously affected by any 
of the other variables. This is sometimes justified by the (false) assumption 
that the Fed and the money-supply process do not respond to within-period 
values of the other variables. Of course, the opposite assumption that mon- 
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etary aggregates do not contemporaneously affect economic variables is even 
worse! Nonrecursive identification schemes are also possible. The true shocks 
may be linear combinations of the innovations to several different variables. 
These schemes take linear combinations of the impulse-response functions, 
so they can have a major effect on the results, even when the error variance- 
covariance matrix is diagonal. 

The results often depend on the identification scheme. In practice, re- 
searchers clearly experiment with orderings and present the scheme that gives 
the “best” results. If “best” means “responses that most closely correspond 
to the predictions of monetary theory” this is not so bad, and can almost be 
defended as a theory-based identification procedure. 

(3) Speci.cation. Much VAR evidence also turns out not to be robust 
to variable definitions, lags, unit root structure, trends, variables included 
in the VAR, at what horizon variance decompositions are calculated, and 
sampling error. (See Todd 1993.) My b aseline VARs use log-levels, quarterly 
data and one year of lags. I have corroborated most results in monthly data 
and with two years of lags. Most but not all results are robust. 

A preview of the results: I examine M2, Ml, federal funds and nonbor- 
rowed reserve shocks in turn. A common pattern emerges. In simple VARs, 
each monetary shock seems to account for a large fraction of output varia- 
tion. When more variables are introduced and as the specification is refined 
(fished) so that th e responses are broadly consistent with monetary theory, 
we find that monetary shocks explain lower and lower fractions of output 
variance. In the end, I find evidence that monetary policy can affect the 
economy roughly the way Friedman said it would, though with suspiciously 
long lags, but I do not find evidence that monetary policy shocks did account 
for more than at most 20% of the variance of output, and likely much less. 

2.1.1 A simple M2, y,p VAR 

I start with a simple VAR consisting of the logs of M2, output, and the price 
level, in the spirit of the first VARs run by Sims (1980). In the impulse- 
response functions, Figure 1, M2 shocks are persistent and lead to substantial 
rises in output and then prices. However, the output response is surprisingly 
drawn out. It peaks two to three years after the shock, and output seems to 
be permanent. The price response is also very sluggish.4 

40f course, one should be cautious in evaluating estimated long-horizon responses in 

this (any) VAR. Since the VAR is run in levels, and I happened not to estimate explosive 

roots in this VAR, the estimated responses to all shocks are transitory, but take 100-200 

years to die out. Many of the VARs I estimate below have impulse responses that oscillate 

with periods of 20-40 years. For this reason, the graphs stop at a 5-year response. 
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Table 1 shows variance decompositions for this VAR, and Table 2 summa- 
rizes output variance decompositions for all of the M2 VARs. The M2 shock 
accounts for dramatic fractions of the variance of output at long horizons, 
increasing from 32% at a one-year horizon to 82% (!) at a S-year horizon. 
The M2 shock also accounts for 21% of quarterly output growth and 45% 
annually. Note how sensitive the results are to the horizon. This is far from 
an innocuous choice! This VAR is not sensitive to the order of orthogonal- 
ization (as long as one maintains some recursive scheme), or to the inclusion 
of trends. 

Table 1: 

I 

Shock and Horizon 
1 Qtr. 1 Year 2 Year 3 Year , 

Var. of M2 y P ~42 Y P ~42 Y P ~42 Y P 
M2 100 0 0 99 1 0 98 0 2 94 1 5 

Y 1 99 0 32 68 0 70 30 0 82 17 1 
P 1 3 96 0 7 92 1 17 83 3 24 73 

Variance decomposition from M2 - y - p VAR. Table entries are percent of horizon step 
ahead forecast error variance of the row variable explained by the column shock. VARs 
in log-levels with 4 lags, orthogonalized in the given order (M2, y,p). Quarterly data 
1959:1-1992:4. 

Table 2: 

Forecast Error g2 VAR Ay 
VAR 1Q 1Y 2Y 3Y 1 1Q 1Y 

m2 Y P 1 32 70 82 21 45 
CYP 18 60 78 77 29 47 
m2ffcyp 1 20 39 41 11 21 
m2 ff c e. y p; c. 0 16 28 25 11 21 
(s.e. of above) (8) (11) 
ffcypm2 0 5 12 14 4 6 
m2 ff c h/pop y p, trend 0 8 11 7 7 5 

Summary of output variance decompositions in M2 VARs. All VARs run in log-levels 
with 4 lags, unless otherwise indicated. 

However, we obtain very small output effects if we view this VAR through 
the eyes of a simple rational expectations or cash-in-advance model in which 
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money can have only one-period effects,5 or if non-neutral effects of money 
must come through price shocks as in Lucas (1973). M2 shocks account for 
1% of one-quarter ahead output variance and price shocks for less than 0.5%; 
price shocks account for less than 10% of output variance at any horizon, in 
any orthogonalization. 

Also in line with a traditional monetarist view, virtually all M2 variance 
(9499%) is due to M2 shocks. However, M2 shocks explain tiny fractions 
of price variance (O-3%); virtually all of the variance of prices is due to 
price shocks. Since price shocks do not have large effects on M2, we cannot 
understand this feature as Fed accommodation. Inflation is certainly not 
always and everywhere a monetary phenomenon in this VAR! These facts 
are common to most of the VARs that follow, so I concentrate on the central 
question of this paper, output variance decompositions. 

2.1.2 Level variables 

VARs are all about forecasting. The best long-horizon output forecasting 
variables are ‘level’ variables: stationary variables that tell you if output is 
‘below trend’ and hence must grow over several quarters. M2 velocity is such 
a level variable. It is stable over time (real M2 and output are cointegruted). 
Hence, if velocity is high, output must grow or M2 must decline to reestablish 
velocity. As it turns out, real output does the adjusting. 

Figure 2 plots M2 velocity to make this point. In the left-hand panel, 
we see that M2 velocity is stable over time. Its fluctuations are surprisingly 
correlated with the level of the federal funds rate. Thus, M2 velocity will 
forecast output much as the funds rate does. However, variations in M2 
velocity are tiny (note the vertical scale). 6 The right-hand panel plots real 
M2 and output. As you can see, the level of real M2 does not stray far from 
that of output and M2 leads output, especially in the late 1970s and 1980s. 

But there are many other level variables, including the consumption/output 
ratio, hours or unemployment rate, and term spreads. Figure 3 presents sev- 
eral of these level variables. As the Figure shows, they are all highly corre- 
lated, and any one seems to pick out NBER peaks and troughs as well as the 
others. 

In particular, consumption and output are cointegrated, and consumption 

5 “Simple” here means that agents can find out the value of aggregates with a one- 

quarter lag. 

‘The interest elasticity of M2/(py) is only about -0.02. Here is an OLS regression, 

1959:1-1992:4: 

ln(M2) = -5.07 + l.O021n(py) - O.O251n(ff) 

Since most of M2 pays interest, and since M2 velocity seems not to respond to the trend 

in interest rates, it is probably not wise to interpret the correlation between M2 velocity 

and interest rates in traditional money-demand terms. 
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tends to lead output over the cycle. Figure 4 presents the impulse-response 
function of a c y p VAR, and Table 2 includes the output variance decompo- 
sition. The response is almost identical to that of the M2 VAR; consumption 
also explains dramatic (60-78%) fractions of output forecast error variance, 
and essentially the same fractions of output growth!7 Thus, it seems that 
the level variable feature, rather than anything deep about money, explains 
the dramatic output forecast error variance decomposition. 

The natural response is to include other variables, especially level vari- 
ables, in the VAR, see whether money retains marginal forecast power. 

2.1.3 A 5-variable VAR 

I first run a 5-variable VAR with M2, federal funds, consumption, output, 
and prices. Figure 5 presents the impulse-response function, and Table 2 
includes the output variance decomposition. 

This impulse-response function starts to look more like a monetary VAR 
should. M2 shocks have an initial liquidity effect on nominal interest rates, 
and then an inflation effect. They have a hump-shaped effect on output and 
send prices upward. The implied real interest rate response is calculated as 
the nominal interest rate response less reinflation response, and is labeled 
“real? in Figure 5 and subsequent Figures. It also shows a transitory liq- 
uidity effect. However, the responses are still surprisingly drawn out, and 
money still seems to have a permanent effect on output and certainly on 
consumption. 

As the impulse-responses start to look more reasonable, the output vari- 
ance decomposition starts to fall. At every horizon and in differences, M2 
shocks account for about half of the variance of output than they did in the 
M2 y p VAR. This is still a sizable fraction, however, 20-40% rather than 
4OW30%. 

2.1.4 Imposing velocity and c/y stability 

Next, I impose the fact that M2 velocity and the consumption/output ratios 
are stable. To do this, I run the VAR in error-correction form, i.e., I run 
growth rates of all variables except federal funds on their lags and the lagged 
log c/y and log IM2/(py) ratios. ’ Figure 6 presents the impulse-response func- 
tion and Table 2 includes the output variance decomposition. The responses 

7The rest of the variance decomposition, not shown, is also similar. Consumption 

shocks account for 87-99% of consumption variance, and only prices account for prices. 
“It is important that the imposed cointegrating vectors m - y - p and c - y really 

are stationary, or one estimates explosive roots. For this reason, the error-correction 

VAR uses total GDP for output, and consumption + 0.65 times government purchases for 

consumption. 
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look even more like monetary responses should. We now get transitory re- 
sponses of consumption, output, and interest rates (the long-run output and 
consumption responses are less than one standard error from zero) along with 
the right signs of all the other variables. 

The variance decompositions, reported in Table 2, show that the fractions 
of output variance explained have dropped by another half to a third. The 
forecast error variances due to M2 are 16%, IS%, and 25% at 1, 2, and 3- 
year horizons, and ll%, 217 f o o one-quarter and one-year output variance. 
Furthermore, standard errors are large; a 20 confidence interval extends to 
nearly zero percent of output variance explained. 

2.1.5 Using long-run restrictions to identify monetary policy shocks 

A further refinement: perhaps one should identify a money-supply shock as 
a combination of federal funds and money innovations rather than one or 
the other alone. A money-supply shock should work up the money demand 
curve. To this end, and in order to impose the desirable feature that money- 
supply shocks should have transitory effects on real variables, I identify a 
money-supply shock as that combination of M2 and federal funds shocks 
that has exactly no long-run effect on output (and hence consumption, since 
they are assumed cointegrated). Since the long-run effect of an M2 shock 
on output is small and statistically insignificant in the previous VAR, this 
should be a small refinement to the results.g 

It is. The money supply responses plotted in Figure 7 subtract some of 
the ff responses from the M2 responses. Hence the liquidity effect on interest 
rates is deeper and more prolonged and the output effects somewhat larger. 
By the orthogonalization assumption, money-supply (ms) shocks now have 
exactly zero long-run effect on output and hence consumption. 

Table 3 presents the output variance decomposition, along with its mean 
and standard error in a 1000 replication bootstrap using the estimated VAR 
and reshuffling residuals. At a one-year horizon, the variance decomposition 
is essentially the same as before. 14% of output variance is explained by ms 

shocks rather than 16% by M2 shocks; the standard error is about the same 
(7%), and the mean of the variance decomposition in the bootstrap is about 
the same as the point estimate. However, at 2 and S-year horizons, we obtain 
a very different result. In the point estimate, ms explains a whopping 42 and 
46% of output variance, compared with 28 and 25% for M2. However, the 
large estimates are associated with large standard errors (17%). Worse, the 
mean (across replications) 2 and S-year variance decomposition is only about 
26%, about the same as M2. Similarly, the mean response of output to the 

‘Money demand shocks may reveal permanent changes in output and so induce output 

responses that do not die out. 
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money-supply shock peaks at 0.5, about the same value as the M2 shock, 
while the point estimate shown in Figure 7 peaks at 0.8. One can take the 
means as easily as the point estimates as consistent estimates of the true 

variance decomposition. 

Table 3: 

Fraction of output forecast error variance due to M2 and money-supply shocks. “Mean” 

and “standard error” are calculated from a 1000 draw bootstrap. 

There are two reasons for this strange sampling behavior. First, the ff 
responses are much less precisely estimated than the M2 responses. The 
ms responses are a linear combination of the M2 and ff responses and so 
inherit some of the larger sampling variation of the ff responses. Second, 
long-run responses are notoriously hard to estimate, since they involve sums 
of coefficients or an estimate of the spectral density at frequency zero. Even 
if the true long-run response is zero, the unconstrained estimate will not be 
zero in every sample. Forcing it to be equal to zero in each sample is the 
heart of the sampling problem. (Canova, Faust and Leeper (1993) discuss 
the difficulties of long-run VAR identification in detail.) 

In summary, though the long-run restrictions are an attractive refine- 
ment, the sampling distribution is substantially worse when they are imposed. 
When we take this fact into account, the VAR with long-run restrictions does 
not provide solid evidence for an effect of monetary shocks larger than the 
15-25%, with 7-12s standard errors, provided by the M2 VAR. 

2.1.6 More variables and orthogonalization 

Plausible variations can destroy the pretty pattern of the impulse-response 
functions and bring the variance decomposition down below 10%. This spec- 
ification uncertainty is perhaps a reason even stronger than sampling uncer- 
tainty to doubt the 15-25s figure given above. 

For example, I also include hours per capita and a trend in the VAR. 
Detrended hours are also a business-cycle ‘level’ variable: output is high when 
hours are high. (See Rotemberg and Woodford 1994.) Figure 8 shows the 
output response. M2 shocks now die out after 5 years, and have a transitory 
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and much shorter effect on output. But prices go off in the wrong direction. 
Table 2 includes the output variance decomposition. M2 shocks now account 
for less than 10% of the variance of output at any horizon. 

The five-variable VAR is sensitive to the order of orthogonalization. Fig- 
ure 9 presents the response of output when M2 is orthogonalized last (all 
shocks can affect M2 within a quarter), and Table 2 again presents the out- 
put variance decomposition. The liquidity/inflation effects disappear, M2 
has permanent output effects, and no price effect. M2 shocks again account 
for less than 10% of the variance of output. My procedure of choosing the 
ordering to produce the “right” pattern of responses is not innocuous. 

2.2 Ml 

Ml corresponds more closely to the idea of a non-interest-paying transac- 
tions balance. Figure 10 presents Ml velocity and the federal funds rate. In 
contrast to M2, Ml velocity responds sensibly to the rise in the federal funds 
rate. The interest elasticity is between lo -0.15 and -0.35 depending on spec- 
ification, compared to -0.03 for M2. However, Ml velocity does not respond 
to cyclical variations in the federal funds rate, at least until the mid-1980s. 
Ml does not lead output, either directly or via an interest elasticity and the 
fact that interest rates lead output. As a result, it is less useful than M2 for 
forecasting output and contributes less to output variance, as we will see. 

However, these facts do not mean we should throw Ml out. The theory 
of money demand refers to a transactions balance for which one pays at least 
an interest spread; if Ml shocks explain less output variance than M2 shocks, 
so much the worse for M2. One can simply read this fact as another case in 
which imposing theory sharpens (lowers) our estimates. 

2.2.1 A simple Ml y p VAR 

Figure 11 presents the responses to an Ml shock in a Ml y p VAR. The 
pattern looks broadly similar to M2. Money shocks are less persistent and 
may even have transitory, though still drawn out, effects on output. Prices 
are if anything even more sluggish. The responses are smaller. (For visual 

“I estimated the following regressions from 1959:l - 1992:4: 

In(ml) = -3.71+ 0.8lln(py) - O.l5ln(ff) 

and, imposing a unit income elasticity, 

In(ml/py) = -5.69 - 0.341n(ff) 
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clarity, each graph has its own vertical scale.) Output rises to a peak of 0.7 
after 1-2 years instead of 1.4 after 2-3 years. 

Table 4 presents output variance decompositions for Ml VARs. Since the 
responses are smaller, the variance decompositions are smaller. Ml shocks 
explain less than 20% of output variance, compared to up to 80% for M2 
in the same specification. In other respects, the decomposition is similar to 
M2: Ml shocks are still largely exogenous, price shocks account for essentially 
none of output variance and all of price variance. 

Table 4: 

Forecast error g2 1 Var Ay 
VAR l& 1Y 2Y 3Y 1Q 1Y 
MI Y P 3 16 20 20 11 19 

Percent of output variance explained by Ml shocks. 

Unlike the simple M2 y p VAR, this VAR is sensitive to ordering and 
trends. Table 4 presents variance decompositions with Ml ordered last and 
when a trend is included. Now less than 10% of output variance is explained 
by Ml shocks at any horizon. These changes destroy the pretty impulse- 
response pattern as well. 

2.2.2 A five-variable VAR 

Figure 12 presents the responses in a Ml c y p VAR, the same specification 
that provided such nicely shaped responses for M2. Here, the responses look 
nothing like what we expect of a monetary shock. As shown in Table 4, the 
fractions of output variance explained are tiny. 

2.2.3 Imposing cointegrating vectors and long-run restrictions 

As with M2, we may get better-looking response functions by imposing long- 
run restrictions. Though the level of interest rates is probably stable in the 
long-enough run, it has moved slowly in our sample. Thus, Ml velocity 
does not appear stationary. Rath er, Ml demand, Ml - p - y - Q ff, is a 
better candidate for a stationary variable. I also include c - y as a stationary 
variable. As a result of the slow movement of federal funds, the specification 
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with stationary levels of interest rates leads to explosive responses. Therefore, 
I run a VAR of differences of Ml, If, c, y, p on their lags and the lagged value 
of c - y and Ml - p - y - 0.75 ff. I use -0.75 for the interest elasticity of 
Ml demand, rather than -0.35 as suggested by the OLS regression presented 
above. -0.35 minimizes the sum of squared residuals, but the resulting Ml - p 
- y - 0.35 ff series still has a trend in our sample. The higher interest elasticity 
produces a series without a trend, and hence nonexplosive responses.” 

The top panel of Figure 13 presents responses to Ml shocks from this 
VAR. The bottom panel presents responses to money-supply shocks, iden- 
tified above as the combination of Ml and ff shocks that leave output un- 
changed in the long run. These responses are consistent with what we expect 
for monetary shocks. Ml or MS shocks lead to a short liquidity effect, and 
then a permanent rise in federal funds. (The level of ff is not stationary in 
this specification, so there is no reason for this response to return to zero.) 
Ml or MS shocks lead to brief, transitory output and consumption responses 
and to increases in prices. Th e real rate shows a short liquidity effect as well. 
Since inflation eventually stops, the nonstationarity of ff is accounted for by 
a long-run increase in the real interest rate. The brevity of Ml shocks/ non- 
neutral effects is noteworthy, since it more closely corresponds with theory. 

Table 4 includes the variance decomposition. Despite (or maybe because 
of) the attractive pattern of impulse responses, Ml or Ml money-supply 
shocks account for trivial fractions of output variance, around 5% at all 
horizons. 

2.3 Federal funds 

Bernanke and Blinder (1988) and Sims (1988), following a suggestion of Mc- 
Callum (1983), argue that federal funds rate forecast errors measure mon- 
etary policy shocks better than monetary aggregates. Strongin (1992) and 
Christian0 and Eichenbaum (1995) use nonborrowed reserves with much the 
same effect, which I examine in the next section. 

The idea is that there are shocks to money demand, observed by the 
Fed but not by us (or we could produce a monetary aggregate-supply shock 
directly). The Fed accommodates such shocks by smoothing interest rates 
and allowing borrowed reserves to increase, as they do in accommodating 
seasonal demand shocks. The resulting demand-driven increases in monetary 
aggregates do not affect output or prices. Fed policy changes can be seen when 
there is a change in the Fed Funds rate, nonborrowed reserves (Christian0 
and Eichenbaum) or the nonborrowed reserve ratio (Strongin). Furthermore, 

I’If all of this seems a little strained, it is. The point is to find a specification that 

produces the “right” pattern of impulse-responses, not to follow the dicta of atheoretical 

time-series specification. 
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the Fed has closer control of the federal funds rate and reserves, where Ml 
and M2 are controlled more indirectly. 

This search for policy shocks is not as innocuous as it may seem. To a 
monetarist, shocks to the right aggregate are all that matter, no matter how 
that shock is produced. Friedman and Schwartz (1963) do not blame the 
great depression on a policy shock that lowered monetary aggregates, but on 
the Fed’s failure to expand the base as the money multiplier collapsed. 

On a practical level, the federal funds rate is also a ‘level’ variable that 
is likely to forecast long-term output, as seen in Figure 3 above. We might 
expect it to do well in a VAR. 

2.3.1 Simple ff y p VARs 

The top panel of Figure 14 presents the responses to ff shocks in a simple ff y 
p VAR. Federal funds shocks are persistent. A rise in federal funds gives rise 
to an initial six-month rise in output and then a permanent decline. Last, 
there is a “price puzzle.” In response to a contractionary federal funds shock, 
prices increase for 2 years, and only come back to where they started after 5 
years. 

Table 5 presents output variance decompositions. Federal funds shocks 
explain between 6 and 32% of output forecast error variance, as the horizon 
lengthens, and 24-28% of output growth variance at l-quarter and l-year 
horizons. 

Table 5: 

Forecast error g2 VAR Ay VAR 
1Q 1Y 2Y 3Y 1Q 1Y 
6 6 20 32 24 28 ff y p 

0 15 37 50 21 31 YPff 
0 14 30 38 20 27 y p ff; trend 

7 4 25 38 20 27 tbls y p 
0 11 41 54 20 39 y p tbls; trend 

0 13 26 20 12 16 cypcpM1ff 
0 11 21 16 11 15 c Ml ff; y p cp trend 

0 3 3 2 3 3 c h/pop Y P CP Ml ff 

Percentage of output variance explained by federal funds rate shocks. All VARs in log 
levels with 4 lags. 

This VAR turns out to be somewhat sensitive to ordering and trends. The 
middle panel of Figure 14 presents the response to federal funds shocks when 
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they are orthogonalized last. This deepens the output response, removes the 
troublesome initial rise in output, and reduces the price puzzle somewhat. 
Summing and squaring the larger output response, we find a much larger 
output variance decomposition. 50% of the S-year output forecast error is due 
to the ff shock, though somewhat more modest fractions at shorter horizons- 
14% and 30% at l- and 2-year horizons, and 20-27% in growth rates. 

The bottom panel of Figure 14 includes a trend in the VAR. Now the 
price puzzle is reduced even more, to a 2-year pause before prices start to 
decline. However, the output response is not as deep. This improvement in 
the shape of the VAR lowers the variance decomposition by about a third, 
as shown in Table 5. 

Nothing is particularly special about the federal funds rate in this VAR. 
The second block of Table 5 includes results that use the one-month T-bill 
rate in place of the federal funds rate. The variance decomposition and 
response functions (not shown) are almost identical to those of federal funds. 

2.3.2 Larger VARs 

We need to put the federal funds shock in competition with other level vari- 
ables as above. I follow Christian0 and Eichenbaum, and Evans (1995) in 
adding an index of sensitive commodity prices to the VAR and orthogonal- 
izing federal funds last. The price puzzle may be due to the fact that the 
Fed watches commodity prices and contracts on news of future inflation. As 
a result, part of the contractionary ff shock reflects news of rises in prices. 
By including commodity prices, we may control for an important part of the 
Fed’s information set. (The warning about left-out variables and information 
sets is clearly at work here!) More practically, these modifications reduce the 
price puzzle and so produce better-looking pictures; this alone may be enough 
justification. I also include Ml to see how a monetary aggregate responds to 
the federal funds shock. 

The top panel of Figure 15 presents the responses to federal funds shocks 
from this six-variable VAR. The responses are fairly sensible: there is a 
transitory output effect. Prices as measured by the GDP deflator still go 
slightly the wrong way for a year; however the commodity price index falls 
immediately and attains its permanent value after only two years. The funds 
shock produces a large, though transitory, decline in Ml. The real rate 
response, implied by the H and price responses, has a single peak in the 
wrong direction, as a result of the small remaining price puzzle. A real rate 
calculated from the commodity price index shows a pure short-run liquidity 
effect. 

The variance decomposition, Table 5, produces about the same numbers 
as the five-variable M2 VAR. 13-20% of output forecast error variance, and 
12-16% of output growth is due to the federal funds shock. The figures are 
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only slightly lower if a trend is included in the VAR. 
This VAR is also sensitive to other variables. The bottom panel of Figure 

15 shows what happens when log hours per capita are included. In this case, 
the shape of the response functions is still interpretable as monetary policy. 
In fact, as with the Ml VARs, the brevity of the output response is attractive. 
But the variance decompositions (Table 5) now drop precipitously to less than 
5% at any horizon. 

2.4 Nonborrowed reserves 

Christian0 and Eichenbaum (1995) use nonborrowed reserves to identify a 

monetary policy shock. Strongin (1992) uses the ratio of nonborrowed to total 

reserves. Strongin presents a detailed analysis of Fed operating procedures 
to suggest that this variable separates policy shocks from accommodated 
money-demand fluctuations. Since the nonborrowed reserve ratio is highly 

correlated with the federal funds rate (see Figure 3), we might expect similar 
results. 

In fact, the results using the nonborrowed reserve ratio are almost identi- 
cal to the federal funds results. Figure 16 presents responses to nbr/tr shocks 
in three-variable VARs. The pattern is almost identical to federal funds, Fig- 
ure 16. With nbr/tr first, there is a small output movement in the wrong 
direction followed by a sustained decline and a big price puzzle. With nbr/tr 
last, the output decline is continuous, and the price puzzle is reduced. 

The output variance decompositions summarized in Table 7 are also al- 
most identical to their federal funds counterparts. With nbr/tr orthogonal- 
ized last, its shocks explain up to 52% of output variance at a three-year 
horizon and a substantial 32% of annual output growth. 

Table 6: 

Forecast error g2 VAR Ay 

VAR 1Q 1Y 2Y 3Y 1Q 1Y 
nbr/tr y p 7 4 20 34 23 34 
y p nbf/tr 0 9 36 52 16 32 
c y p cp Ml nbf/tr 0 10 28 28 11 18 
c y p cp Ml nbf/tr; trend 0 10 27 27 11 18 
c h/ pop y p cp Ml nbr/tr 0 4 8 5 4 6 

Percent of output variance explained by nonborrowed/total reserve shocks. All VARS in 

log levels with 4 lags. 

Figure 17 presents responses from the usual five-variable VAR. The pat- 
tern is almost exactly the same as the federal funds pattern and conforms 
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roughly to the pattern we expect of a monetary shock. As before, the output 
variance decomposition declines, to a maximum of 28% at two- and three- 
year horizons, and 18% of annual output growth. Adding hours has the same 
effect as with federal funds. The impulse-response pattern is not that badly 
affected, but nbr/tr shocks now account for less than 8% of the variance of 
output. 

2.5 Long-horizon output forecasts 

In each of the above VARs, adding consumption substantially reduced the 
fraction of output variance explained by the monetary shocks. Here I look at 
the relative forecast power of consumption and monetary variables directly 
to see if consumption drives the monetary variables out. 

Table 7 compares forecasts of 3-year output growth using federal funds, 
the real M2/output ratio, and the consumption/output ratio.” The top 
panel starts with single variable regressions. All variables significantly fore- 
cast output growth. The R2 are high, as often happens in multiperiod fore- 
casts with serially correlated right-hand variables. The consumption/output 
ratio has the highest t-statistic and, more importantly, R2 = 0.63. 

The second panel of Table 7 presents multiple regressions, which are the 
horse race. The first row compares federal funds and M2, out of curiosity 
over which is the “better” monetary variable. Recalling the correlation of 
federal funds and M2 from Figure 2, the fact that both are individually 
significant in the multiple regression suggests that they capture the same 
information about output growth. The second row, though, which compares 
the fed funds spread and M2, suggests that the spread does have significant 
information beyond that contained in M2. (In a VAR, the spread gives very 
similar results as the level.) 

The third and fourth rows run a horse race between federal funds and 
the consumption/output ratio. The fed funds variables are insignificant, and 
the coefficients are substantially lower than in the single-variable regressions. 
The consumption coefficient and significance are hardly affected by the in- 
clusion of either fed funds variable. Thus, consumption drives out federal 
funds as a forecaster of output. The fifth row runs a similar race between the 
real M’L/output and consumption/output ratios. Again, whether measured 
by the coefficient or the t-statistics, consumption drives out M2. 

Figure 18 also suggests that consumption does a better job of forecasting 
output growth than the monetary variables. Not only is the R2 higher, but 

“All the regressions contain a trend. This significantly improves the forecast perfor- 

mance of the interest-rate variables. There is a secular decline in output growth, visible 

in Figure 18. The interest-rate spreads have no trend, so are not significant and have tiny 

R2 in regressions with no trend, while the interest-rate levels do better simply because 

they have some trend. 
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Table 7: 

I. Single Regressions 

g 

II. Multiple Regressions 

ff fi-10~ WPY C/Y R2 

coef. 1 0.19 0.54 0.31 

t. 0.43 1.42 

coef. -0.73 0.20 0.35 

t. -5.40 1.04 

coef. -0.01 1.70 0.63 

t. -0.06 7.32 

coef. -0.14 1.64 0.63 

t. -0.45 6.23 

coef. 0.16 1.62 0.64 

t. 0.87 6.45 

OLS forecasting regressions of three-year log output growth. All regressions include a time 
trend, yt+s - yt = [Y + yt + 132, + ct+s. Standard errors corrected for error overlap and 
heteroskedasticity. 
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the consumption forecasts also seem contemporaneous with output growth, 
where the fed funds rate forecast lags. 

2.6 Summary of VAR results 

In each case, I started with a simple system, and the monetary shock seemed 
to explain large fractions of output variation at long horizons, up to 82% for 
M2. However, the response functions of these simple VARs did not conform 
to even qualitative monetary theory. 

By adding more variables, playing with orthogonalization and imposing 
cointegration structure, I was able to find specifications in which point es- 
timates did capture reasonable monetary dynamics. In each case, the frac- 
tions of output variance declined as the responses started to look better. The 
largest credible point estimates were in the 20@25% range at two- to three- 
year horizons. Even this result is tenuous; adding hours to the VARs drove 
the explained fractions of output variance down to less than 10% by making 
the output responses briefer, consistent with monetary theory. Consumption 
seems to drive out all of the monetary variables in a long-horizon forecasting 
horse race. 

Furthermore, all the VARs explained very little output variance at hori- 
zons less than a year, where a short-run non-neutrality is most likely to show 
up. Viewing the results through the majority of current explicit monetary 
models, which do not predict protracted non-neutralities, we again obtain 
less than 10% of output variance explained by monetary shocks. 

Thus these VARs do provide evidence that monetary shocks can tem- 
porarily raise output, lower interest rates, and eventually raise prices. How- 
ever, they do not reliably indicate that a large fraction of postwar U.S. output 
variance is in fact due to monetary policy shocks. 

Even the largest figures are certainly an overstatement, for several rea- 
sons. (1) Other real variables can help forecast output and drive down the 
contribution of monetary variables. (2) Th e e and private agents are likely F d 
to have information advantages, so that M2 or federal funds move in antic- 
ipation of news about the economy that we do not include in a VAR.l” In 
addition, monetary aggregates and the economy undoubtedly react to each 
other within a period. For both reasons, the identification of a money-supply 

13Sims (1992) puts it nicely: “...b ecause interest rates and money are closely linked to 
investment portfolio decisions, they tend to react quickly to new information, as other asset 
market variables do. Money and interest rates have strong predictive value for aggregate 
activity for the same reason that stock prices do... One can imagine, in other words, 
that the historical pattern of monetary tightness preceding recessions is misleading. High 
interest rates might ‘produce’ contractions in activity the way the cock’s crow produces 
the sunrise.” This is at heart the same point made by King and Plosser (1984) as well as 
Tobin (1970): money that really responds to output can look like it causes output. 
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shock is tenuous. (3) Very little theory is used to restrict the form of the 
VAR. Believing that money even accounts for 15-25% of output variation 
at a 223-year horizon (and virtually zero at a l-quarter horizon) requires 
us to understand how it produces such a response. (4) Once we recognize 
sampling uncertainty and (more importantly) specification uncertainty (the 
reader can easily see how much fishing went into producing good-looking 
impulse responses), the range of estimates consistent with the data is very 
large. 

2.7 Systematic monetary policy 

Variance decompositions can answer the question “How much output vari- 
ance is due to monetary policy shocks ?” This is a different question than 
“How much output variance is due to monetary policy?” unless one imposes 
the view that systematic policy has no effect whatsoever. 

For example, many economists believe that postwar output is more stable 
than prewar output because the Fed learned to systematically offset real 
shocks. Similarly, output might be much more variable if the Fed stopped 
accommodating seasonal and other shifts in money demand (such as after 
the 1987 stock-market crash). If so, a negative fraction of output variance is 
due to monetary policy. 

These examples presume that systematic or anticipated monetary policy 
can have real effects. But variance decompositions and impulse-responses are 
poorly suited to addressing these issues. Variance decompositions cannot be 
negative! When we read an impulse-response function as a measure of the 
effects of a monetary shock, we implicitly assume that anticipated money 
has no real effect.i4 If anticipated money has real effects, then the response 
function measures the response of y to the current m shock and the path of 
future m’s that the shock sets in motion.*’ 

Does anticipated money matter. ? It is hard to swallow the persistent 

14And that the VAR has isolated shocks to agents’ informaton sets. 

15To make this point explicitly, suppose that the “structural” model is 

%4(~)Yt = aymu(l)(mt - Et-l(m)) + ayma(~)mt + tyt 

a,,(L)w = Gny(L)Yt + tmt 

(1) 

Inverting this model to find the moving average representation, the y response to the m 

shock is 
~ymu(~)%m(~) + qma(~) 

yt = (-h + uyy(L)umm(L) - uyma(l)umy(l)tmt~ 
As you can see, the parameters a,,(L) and amy (L) affect this response. In the special 

case that y does not respond to anticipated m,uyma(l) = 0, so the true response is the 
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responses of output to monetary shocks found above as delayed responses 
to unanticipated money. However, since the monetary variables also have 
protracted responses to the shocks, the output responses are consistent with 
a view that money has short-lived effects on output, if anticipated money 
does matter. 

If we accept this view, then the study of systematic monetary policy 
(accomodation of seasonal and other shifts in money demand, systematic 
stabilization of other shocks), or monetary institutions (deposit insurance, 
lender of last resort) may be more important to macroeconomics than an 
assessment of how much output can be further stabilized by making monetary 
policy more predictable. It may not be the answers that are wrong; We may 
simply be asking the wrong question. 

3 Technology shocks 

The real business-cycle literature is dominated by the assumption that “tech- 
nology shocks” drive economic fluctuations. A typical production function 
IS 

and A, is the shock.16 Of course, the models are capable of producing re- 
sponses to many shocks, including government spending, financing, and mon- 
etary shocks (when appropriate frictions are introduced.) However, tech- 
nology shocks-shocks to current period marginal productivity-are cen- 
trally important for obtaining realistic artificial time-series in current models. 
Other shocks have not been found to contribute much to output variation or 
cyclical comovement in the real business-cycle paradigm. 

Obviously, technology contains some stochastic element, so the crucial 
question is “How much variation in output can technology shocks explain?” 
Prescott (1986) p resents a famous calculation that 70% of the volatility of 
GNP is due to technology shocks. Thus calculation is made by calibrating 
a model economy, i.e., choosing values for preference and technology pa- 
rameters and for the variance and autocorrelation of the technology shock. 
Then, “70%” refers to the variance of Hodrick-Prescott filtered model output 
divided by Hodrick-Prescott filtered actual output. 

same as the impulse-response, 

which is independent of the money-supply rule. 
“Up until now, we have been using the word “shock” for “innovation”; all “shocks” were 

unpredictable. The real business-cycle literature uses the word “shock” to describe the 
Solow residual At even if it is predictable. I will conform to this unfortunate terminology. 
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This calculation is obviously sensitive to the calibrated value of the vari- 

ance of the technology shock and possibly other parameters as well. Double 

the standard deviation of the technology shock, and you double the predicted 

standard deviation of output. The fraction can come out over 100% if YOU 

are not careful! It is not a variance. 

Eichenbaum (1991) uses GMM to quantify the sampling uncertainty of 

the calibration procedure and finds that the estimate of UU~~(Y~~~~~/UU~Y~~~~) 

is 0.78 with a standard error of 0.64! S ensibly enough, virtually all of this 

uncertainty comes from uncertainty in the calibrated variance and autocor- 

relation of the technology shock. 

I will concentrate on a different source of “whimsy” (Eichenbaum’s ter- 

minology), how the point estimates are affected by the choice of statistic. 

To start with, Eichenbaum only considers sampling variation given a set 

of moments that we pick model parameters to match. The fractionist output 

variance explained is also obviously sensitive to the calibration procedure: 

if one included only var(y) in the list of moments to be matched, then the 

calibration procedure will “explain” 100% of the variance of output by picking 

a suitable variance of the technology shock. 

Furthermore, consider the effect of correlation between output and pro- 

duct,ivity. Real business-cycle models have one shock and many series. They 

are stochastically singular, i.e., functions of each time series are perfectly cor- 

related. In the data, they are not. Instead of counting model variance/data 

variance, we could insist that the model explain only the variance of a single 

dynamic factor of output, Solow residuals, labor, consumption, investment, 

etc., or the projection of output on Solow residuals. These calculations will 

yield smaller numbers. 

,4s an extreme example, Gordon (1993) ar g ues that when one accounts for 

measurement error in capital and hours, there is no correlation left between 

productivity and output. He exploits the model’s prediction of an almost 

perfect correlation (see below) to conclude that productivity shocks expZain 

0% of the variance of output. Gordon’s productivity series still have plenty of 

variance and so might still produce a high number using Prescott’s statistic. 

The next section shows how statistics that focus on the predictability of 

output can give numbers much smaller than Prescott’s, 

3.1 P orecmtability and calculations that technology shocks explain very 

little 

3.1.1 A simple VAR 

1 start with a simple characterization of the data. Blanchard and Quah 

(1989), Shapiro and Watson (1988) and Cochrane (1994) present VARs that 

decompose output into permanent and transitory shocks. Figure 19 presents 
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the impulse-response function of a consumption-output VAR in this spirit 
(it is closest, obviously, to Cochrane 1994, but the message of other specifi- 
cations is similar). I regress log consumption and output growth on the log 
consumption/output ratio and two lagged growths.” In the left-hand panel 
of Figure 19 the shocks are identified by forcing the long-run output response 
of the transitory shock to zero, following Blanchard and Quah. It happens 
that this orthogonalization is almost exactly the same as the conventional 
y-first orthogonalization. Orthogonalizing with consumption first, shown in 
the right-hand panel of Figure 19, produces a similar picture. 

The impulse-response functions reveal a large transitory component to 
output. As shown in Table 8, the transitory shock accounts for 89% of the 
variance of output growth and 89%, 73%, and 63% of the 1, 2, and S-year 
output forecast error variance, respectively. 

Table 8: 

Shock and Horizon 
1 Year 2 Years 3 Years Differences 

Var of perm trans perm trans perm trans perm trans 
consumption 78 22 86 15 90 10 77 23 

output 12 89 27 73 37 63 11 89 

Variance decomposition. Table entries give the percent of the forecast error variance of 
the row variable due to the column shock at the indicated horizon. The VAR consists of a 
regression of AC and Ay on c-y and two lags of AC and Ay. The shocks are orthogonalized 
so that the transitory shock has no long-run effect on output. 

We can compare the implied c-y VAR representation predicted by models 
to Figure 19 and Table 9 to see how well the models reproduce the second 
moments of consumption and output. This use of the VAR does not require 
us to find structural interpretations of the shocks, which is a contentious 
issue. (See Hansen and Sargent 1991, Lippi and Reichlin 1993, Blanchard 
and Quah 1993, Cassou and Mittinik 1990, and Cochrane 1994 for some of 
the identification debate.) 

r7The VAR uses log nondurable plus services consumption and log private GDP - GDP 
less government purchases - for output. The use of private GDP is a minor refinement, 
suggested by King, Plosser, Stock, and Watson (1991). The consumption/private GDP 
ratio is more stable than the consumption/GDP ratio, and hence better forecasts business- 
cycle variation in output. Also, models are designed to explain private-sector GDP. 
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3.1.2 A model, and Blanchard and Quah’s small number 

Now, let us see what impulse-response function a standard model does pre- 
dict. Figure 20 shows the response to a 1% technology shock of the King, 
Plosser, and Rebel0 (1988) model with linear utility for leisure as in Hansen 
(1985) and Rogerson (1988). The model is 

mazE~/?t(zn(ct) + q1 - N,))s.t. 
t=1 

Y,(A,N,)‘T;-” = C, + It 

A-t+1 = (1 - S)& + & 

lnAt = g + InAt_l + et 

Parameters are calibrated as in Campbell (1992) to produce a nonstochastic 
steady state with growth g= 2% and rate of return = 6%. (1~ = 213,s = 
0.1, N = l/3. 

It turns out that consumption and output are invertible functions of the 
technology shock, so a c-y VAR should recover the technology shock and 
should find no other shock. Thus, the responses to a technology shock are 
also the model’s predictions for the VAR impulse-response function. 

Comparing Figure 20 and Figure 19, this standard real business-cycle 
model produces time series that look something like the permanent shock in 
the data. The transitory shock and its response are absent from the model’s 
impulse-response function. In this way, we reproduce Blanchard and Quah’s 
result: 

Small fractions of the variance of output are due to technology (permanent) 

shocks. 

From the above variance decomposition, about 12%, 27%, and 37% at 1, 
2, and S-year horizons, and 11% in annual growth rates. (Mechanically, the 
number rises to 100% as the horizon increases.) 

3.1.3 Predictability and a small number inspired by Rotemberg 

and Woodford 

The essential message of the c-y VAR is that output contains a large pre- 

dictable component. This is good news. If a recession is a period in which 
output is “below trend,” we must expect output to grow more in the fu- 
ture, and vice-versa in a boom. The predictability of long-run output growth 
verifies that there are such periods. The left-hand panel of Table 9 makes 
this predictability point directly: regressions of output growth on the con- 
sumption/output ratio yield R2 values up to 0.4 at a two-year horizon. R2 
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Table 9: 

output Solow Residual 

Horizon 1Q 1Y 2Y 3Y 1Q 1Y 2Y 3Y 

coefficient 0.15 0.85 1.37 1.53 0.23 0.83 1.07 1.07 

t-statistic 3.76 6.64 6.71 5.62 7.93 9.95 8.55 6.61 

R2 0.06 0.31 0.45 0.48 0.27 0.60 0.53 0.45 

Regressions of output growth and Solow residual on consumption/output ratio, yt+,, -yt = 
p(c, - yt) + ~t+h. c = log nondurable plus services consumption. y = log (g&-government 
purchases). Solow residual = y - 1/3*ln(k) - 2/3*1 IZ (h ours), Ic inferred from gross fixed 
investment with 5 = 0.1. Coefficients estimated by OLS; t-statistics corrected for serial 
correlation due to overlapping data and for conditional heteroskedsticity. 

above 0.6 can be obtained by adding a trend, as in Figure 18, interest rates, 

unemployment, hours, or other variables. 

This observation suggests another calculation: define the “business-cycle” 

component of output as the forecastable or transitory component of output. 

Since model output is basically unforecastable, we expect to find that the 

model explains small fractions of the variance of the business-cycle com- 

ponent of output. This point is emphasized by Rotemberg and Woodford 

(1994); it can also be seen in the flat model spectral densities reported by 

Watson (1993). 

One such calculation is the ratio of &period forecastable output growth 

to that predicted by the model 

If we divide both numerator and denominator by var(yt+k - yt) and cali- 
brate the model (variance of technology shock) so that uar(yt+k - yl)model = 

var(yt+lc - yt)dh, the above statistic is the same as the ratio of long-horizon 

R2 
R2 = v4GYt+l, - Yt) 

k 
var(!h+k - Yt) ’ 

in the data and in the model. Table 10 presents forecasting R2 in the data 
(from Table 9) and in several models. The table just presents the R2; the 
results of division are obvious. 

For the standard model (identified by the technology process at = at_l +ct 

in the table), output forecasting R2 is pitifully small. In the data, we see the 

substantial forecast R2. Dividing the two, we obtain: 
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Table 10: 

VARIBN)I 
Model 1 1Q 1Y 2Y 3Y VAd(A$’ 

Data (c-y VAR) ) 0.06 0.31 0.45 0.48 I 17.0 
std. model: at = at-l + ct 3.53-06 l.lE-05 1.7E-05 2.OE-05 0.0007 

differenced estimate 0.997 0.45 0.14 0.09 2.6 

trend estimate 0.74 0.42 0.39 0.44 19.2 

random walk a + smooth news 0.12 0.36 0.51 0.58 20.6 

news from a, y, c, hrsVAR 0.76 0.57 0.46 0.44 70.6 

Long-horizon output growth forecast R2 and ratio of Beveridge-Nelson detrended output 

variance to variance of output growth. 

Technology shocks explain 0.002~ o or less of business-cycle variation in 

Output! 

3.1.4 Beveridge Nelson detrending in place of the Hodrick Prescott 
Filter 

What if Prescott had detrended output using the Beveridge-Nelson detrend- 
ing method in place of the Hodrick-Prescott filter? The Beveridge-Nelson 
(1981) trend is defined as the level output will reach when all dynamics have 
worked themselves out.18 It formalizes the idea that the cyclical component 
is the part that is forecast to die out. The Beveridge-Nelson trend is visually 
indistinguishable from the Hodrick-Prescott trend in the plots of data and 
trend used to justify Hodrick-Prescott detrending (see Cochrane I994 for a 
plot of the B-N trend, and Prescott 1986 for the HP filtered trend). 

The variance of Beveridge-Nelson detrended data is var(Y,-Zimk_+coE,Yt+k) 
and so is the limit of the numerator of the long-horizon Rz. The denominator 
of long-horizon Ri explodes as k -+ m, however. For that reason, the last 
column of Table 10 presents the variance of Beveridge-Nelson detrended out- 
put divided by the variance of output growth. Dividing the “model” number 
by the “data” number, we obtain the fraction of Beveridge-Nelson detrended 
output due to technology shocks. (This calculation is still a little generous 
to technology shocks. I allow the calibrator to freely and counterfactually 

‘“Formally, the Beveridge-Nelson trend is 

trend 
Yt = li~+,(Ety~+rc - IcE(Ay))= yt + gEt(Apt+j) - E(A~) 

j=l 
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assume a large variation of Solow residuals in order to match output growth 
variance. 

For the standard model, the Beveridge-Nelson detrended output has a 
variance 0.07% that of output growth. In the data, Beveridge-Nelson de- 
trended output variance is 17 times the variance of output growth. Dividing 
the two, we find again that 

Technology shocks explain 0.002% or less of Beveridge-Nelson detrended 

output variance! 

A seemingly minor change in the detrending method produces a dramatic 
change in the result. The standard model, while a useful stochastic growth 
model, does not seem to produce any business cycles! 

3.2 Endogenous dynamics; a small number inspired by Chris- 
tiano 

Output and technology are so close in Figure 20 that they are barely dis- 
tinguishable. All the dynamics of output come from the assumed dynamics 
of the shock. (Christian0 1988 and Eichenbaum 1993 emphasize this point.) 
This observation suggests that we define the fraction of output variance ex- 
plained by the model as the variation generated by the propagation mecha- 
nism, rather than simply assumed in the external shocks. 

To quantify this point, Table 11 presents the correlation of long-run out- 
put growth with Solow residual growth and the ratio of the variance of output 
growth to the variance of the Solow residual in the data and several mod- 
els. As the table shows, the correlation between output and Solow residual is 
nearly perfect in this standard model, and there is essentally no amplification 
of shocks. 

The model explains essentially 0% of output fluctuations. 

3.3 Forecastable technology shocks 

Of course, all of the above calculations depend on the structure and parame- 
terization of the real business-cycle model as well as the nature of its shocks. 
A first repair is obvious enough that it is worth pursuing here: since output 
dynamics look a lot like shock dynamics, put in some interesting technology 
shock dynamics. 

This path is not as innocuous as it seems. Hall (1990) and Evans (1992) 
attack the idea that Solow residuals represent technology shocks by show- 
ing that they are forecastable by a number of variables, including military 
spending, government purchases, and monetary aggregates. Table 9 shows 
that Solow residuals are about as predictable as output from the c/y ratio, 
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Table 11: 

Model 

Data 

1Q 1Y 2Y 3Y 

Correlation: corr(yt+k - yt, al+k - ut) 

0.85 0.79 0.75 0.74 
Std. model at = at_1 + ct l-(2E-06) l-(6E-06) l-(9E-06) l-( lE-05) 

Differenced estimate 0.95 0.99 0.99 0.99 

Trend estimate 0.69 0.93 0.97 0.98 

Random walk a + smooth news 0.90 0.91 0.92 0.92 

News from a, y, c, hrs VAR 0.97 0.96 0.97 0.98 

Data 
Amplification: VAR(yt+k - Y~)/VAR(Q+~ - at) 

1.68 2.01 1.96 1.91 

Std. model at = at-r + ct 0.98 0.98 0.99 0.99 

Differenced estimate 1.30 1.27 1.13 1.07 

Trend estimate 1.89 2.17 2.20 2.21 

Random walk a + smooth news 1.40 1.44 1.40 1.33 

News from hrs VAR a, y, c, 2.46 2.20 2.05 1.92 

Correlation of long-run output growth with Solow residual, and ratio of output growth 

variance to Solow residual variance. 

but Rotemberg and Woodford (1993) argue that changes in technology should 
not be forecastable. On a priori grounds, then, these authors argue that we 
should not try to repair the technology shock view by allowing forecastable 
technology shocks. 

Of course, some components of government spending (infrastructure, mil- 
itary, R&D, NASA, etc.) may actually cause increases in technology. Pro- 
ponents of such spending certainly advocate this view loudly enough! Also, 
government spending, even in wars, must respond to forecasted tax revenues, 
and monetary policy may accommodate predicted expansions in real activity. 
Since policymakers and private agents have more information than our VAR, 
spurious Granger-causality is likely. Finally, many real business-cycle advo- 
cates have abandoned the pure technology shock view of the Solow residual 
(see below), in which case forecastable movements are more plausible. I take 
a pragmatic view and investigate the consequences of forecastable technology 
shocks; purists are free to disregard the results. 

What dynamic structure should we put in for the technology shock? A 
natural idea is to use the structure found in the data. To this end, I ran two 
autoregressions of Solow residuals on lagged Solow residuals: 

Differences : AU, = p + 2 pjAat--3 + Q 
j=l 
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and 

Levels with trend : at = a0 + bt + f: ppt-j + ct. 
j=l 

(As one would expect, a specification in levels without a trend produced 
almost exactly the same result as with differences. Below, I consider multi- 
variate Solow residual forecasts.) 

Figure 21 presents the estimated impulse-responses for the Solow resid- 
uals, together with the responses of output, consumption, and labor when 
technology shocks with the estimated dynamics are fed through the RBC 
model. The differenced specification produces a very persistent shock, while 
the trend specification produces a transitory shock. You still get out what 
you put in: the shape of both output responses is essentially that of the 
shock response. The stationary shock is amplified somewhat as investment 
rises to smooth the transitory shock forward, and labor supply increases to 
take advantage of transitorily higher wages. The transitory shock produces 
a transitory output response, like the response to the transitory shock in the 
data; the permanent shock produces a permanent output response like that 
of the permanent shock in the data. 

Tables 10 and 11 include forcastability and correlation/amplification statis- 
tics for these models, marked “Differenced estimate” and “Trend estimate.” 
As we might suspect from the graph, the permanent technology shock pro- 
duces low output R2 once the initial rise in output has passed, high cor- 
relation of output and technology shock, and small amplification. It only 
explains about 2.6/17 = 15% of Beveridge-Nelson detrended output vari- 
ance. The stationary shock does much better: the forecast R2 are similar 
to those found in the data, and shocks are amplified. It explains a little 
more than all of Beveridge-Nelson detrended output variance. Thus, we can 
get transitory output variation and amplification out of a real business-cycle 
model by assuming a transitory technology shock. 

The data will not be helpful in determining which shock process is correct, 
however. The stationary shock process has a very slowly declining response 
function, so no test could tell it from the unit root shock process. Conversely, 
the examples warn us to beware empiricists who make seemingly innocuous 
detrending assumptions; they have major effects on the properties of the real 
business-cycle model. We may not know much about unit roots, but in this 
case, we do care. 

Table 10 and 11 show that the transitory shock model still predicts far 
too much correlation, so almost all output dynamics are due to the assumed 
shock dynamics. Most importantly, there is now no stochastic growth, no per- 
manent shock as found in the data. Making the assumed shock process have 
a response that does not go to zero does not help much. The series are still 
correlated, output has the same response as the shock, and correspondingly 
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less forecastability and amplification. 

The real business-cycle model needs more shocks. The problem we are 

having is that it is hard to match a single shock model to a multiple shock 

world. To decide how much of the variance of output is due to technol- 

ogy shocks, it would help to have some model of the other shocks. Real 

business-cycle modelers have tended to ignore the stochastic singularity in 

their model’s predictions, citing measurement error. However, it seems that 

one of the babies ~ either transitory, business-cycle dynamics or stochastic 

growth ~ gets thrown out with the bath water by doing so. Below, I examine 

whether news about future technology shocks can serve as an extra shock. 

3.4 P d t’ f t’ ro UC ton unc zon, labor-hoarding 

The estimated technology shock depends on the assumed form of the pro- 

duction function. Labor and capital hoarding have recently been examined, 

in part to explain the forecastability of Solow residuals. (Burnside, Eichen- 

baum, and Rebel0 1993, Eichenbaum 1993, Sbordone 1993.) For example, 

suppose the production function is 

yt = (A,N,E,)“(IC,U,)l-” 

where E represents effort and U represents capital utilization. The Solow 

residual is now (AtEt)aUt-a, so variables that Granger-cause endogenous ef- 

fort and capital utilization will Granger-cause the residual, even maintaining 

the assumption that they do not Granger-cause the true technology shock 

At. 
Indeed, Burnside, Eichenbaum, and Rebel0 find that when variable effort 

is added, the model predicts forecastable Solow residuals. They also find 

that adding labor effort drops the Prescott-style calculation of the explained 

variance of output from 80% to 31%. Eichenbaum (1993) finds even stronger 

results when capital hoarding is introduced. 

These calculations suggest that variations on the structure and parame- 

terization of the RBC model have large effects on the estimated importance 

of technology shocks. 

3.5 Interpreting technology shocks 

Much of the controversy over real business cycles stems from common-sense 

resistance to the idea that variations in the state of knowledge drive fluctu- 

ations. In particular, ancient Rome aside, it is hard to interpret declines in 

technology and some authors argue against forecastability or dynamic struc- 

ture in technology. 

From the point of view of measurement, anything that causes output to 

vary given capital and labor will result in a Solow residual and hence will be 
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identified as a “technology shock.” Labor or capital hoarding, money, taxes, 
or any other friction that causes output to be less than N”K_a will have 
the same effect. Plosser (1989) g ar ues for this interpretation of technology 

shocks. Recently, Hansen and Prescott (1993) seem to have adopted the 
latter interpretation. 

Every nation has a set of rules and regulations that govern the 
conduct of business. These have consequences for the incen- 
tives to adopt more advanced technologies and for the resources 
required to operate existing ones. . ..Systems that divert en- 
trepreneurial talent from improving technologies to rent-seeking 
activities...[and] changes in the legal and regulatory system within 
a country often induce negative as well as positive changes in 
technology. 

In a separate discussion, they liken technology shocks to small perturba- 
tions in all the factors that make the United States a better place in which 
to do business than India. In short, technology shocks are changes in the 
ineficiencies induced by policy! 

In cataloguing views on the source of fluctuations, real business-cycle the- 
orists are now fishing in the same pond as all other macroeconomists, though 
with a well-specified rod consisting of explicit dynamic models. Any of the 
items in the list on the first page of this paper would cause a measured “tech- 
nology shock.” In fact, the thrust of much recent real business-cycle research 
has been to include explicitly tax and other stochastic, real distortions. This 
is good news for the real business-cycle methodology, since it now can pro- 
duce explicit dynamic models with the kind of distortions economists have 
been interested in for generations. Eventually, we should be able to make 
calculations like the above to quantify the impact of government spending, 
taxation, monetary and credit shocks in the context of explicit dynamic mod- 
els. However, it is obviously bad news for the view that technology shocks, 

narrowly defined, as the source of fluctuations: it says that the calculations 
we have made do not bear on the issue. 

3.6 Summary 

Table 12 summarizes a few calculations of the importance of technology 
shocks. We started with Prescott’s calculation that 70% of the variance 
of output is explained by technology shocks. However, this calculation turns 
out to be subject to enormous sampling error. Perhaps more importantly, 
the statistic one uses turns out to matter very much. The fact that standard 
stochastic growth models produce little output forecastability and output dy- 
namics very close to shock dynamics suggests numbers as low as 0%. Modifi- 
cations to the production function can have a similar effect. Mean-reverting 
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(i.e., forecastable) technology shocks can give rise to mean-reverting and 

hence forecastable output, but this fix is controversial and puts us in danger 

of losing stochastic growth. Finally, the concept of technology shocks seems 

to have melted away. It is now interpreted so broadly that it can stand for 

essentially any distortion that causes a measured Solow residual. With this 

interpretation, it is ~ucuo’us to say that technology shocks cause fluctuations. 

Table 12: 

Author Statistic or Observation Fraction 

Prescott 
u2(HP filtered ymodel) 
u*(HP filtered ydata) 

Eichenbaum Sampling error 78% +/- 64% 

Blanchard-Quah c”(y) from perm. shock 

Rotemberg-Woodford c’(Et(y,+k)-yt)model 
~2(Et(yt+~)-_yt)data 

Christian0 q$, 1 - corr(y, u) 

Beveridge-Nelson B-N trend, not HP filter 

Gordon corr(shock, output) 

Burnside, Eichenbaum, 

Rebel0 Labor hoarding 

70% 

1Y 2Y 3Y 

12%27%37% 

0.002% 

tiny 

0.003% 

0 

31% 

Summary of calculations of the contribution of technology shocks to output variability. 
Author gives the inspiration for the calculation: numbers are my calculations, not theirs. 

4 Some new contenders 

4.1 Oil prices and reallocation 

Hamilton (1983) suggested that oil 

sions. Every postwar recession was 

price shocks account for postwar reces- 

preceded by an oil price increase. VARs 

suggest that oil prices are econometrically exogenous, and, since the big in- 

creases are due to OPEC or the Texas Railroad Commission, exogeneity rings 

true. However, big technology, monetary, and federal funds shocks also occur 
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around the beginning of every postwar recession and can appear exogenous 
in VARs. 

I run two simple VARs using the producer price index for crude petroleum. 
The first VAR just includes output, the second includes both output and 
consumption, in the style of the monetary VARs examined above. Figure 22 
presents the responses of output to the oil price shocks, and Table 13 presents 
the output variance decompositions. As the figure shows, innovations in oil 
prices do produce sustained output declines. However, the magnitude of the 
declines is much smaller than the declines produced by output or consump- 
tion shocks. Summing and squaring, less than 10% of the variance of output 
is explained by oil price shocks. (Oil prices account for 80% or more, and 
usually 99%, of oil price variance, confirming Hamilton’s exogeneity tests.) 
The problem is simple. There are only a few large oil price changes. Yes, 
they were followed by recessions, but the rest of the fluctuations in output are 
not preceded by oil price changes, and the severity of the recessions does not 
occur in strict proportion to the oil price innovation. Given this evidence, 
it does not seem worth the space required to sort out whether this small 
contribution remains when put into competition with monetary variables or 
technology shocks. 

Table 13: 

Horizon 
VAR 1Q 1Y 2Y 3Y Differences 
Oil, y 1 4 7 8 4 
Oil, y, c 0 0 2 5 1 

Output variance decomposition, oil price VA&. Table entries give the percentage of 

output variance accounted for by oil price shocks. 

The biggest sticking point for oil price advocates is the propagation mech- 
anism. Imported oil is a small fraction of GDP, so traditional production the- 
ory suggests that even large increases in its price should have small effects 
on output. A general equilibrium model might generate a larger response, 
for example if labor supply declines when there is an oil shock. But Kim 
and Loungani (1992) construct such a model and find that oil shocks only 
account for 18% of the variance of output with a CES production function. 
Finn (1993) constructs a real business-cycle model with varying capital uti- 
lization that explains the forecastability of Solow residuals from energy price 
increases. She also finds 7-19% of output variance explained. Furthermore, 
standard models predict symmetric effects, so that real oil price declines 
should cause booms. 
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Of course, the small input problem applies to money as well. The cost of 
holding reserves plus cash (the money “imported” into the economy) is the 
interest cost, on the order of l/10% of GDP. Thus, viewing money services as 
an input to production, the same classical theory says that variations in the 
money stock should have tiny effects on output. In response to this problem, 
theorists are working hard on models with frictions in which variat,ions in 
this small money stock CUR. have large effects. Similarly, work is underway 
on models in which oil price changes can have large and possibly asymmetric 
effects on output. Hamilton (1988) examines a two-period multisector model 
with fixed costs to reallocating labor across sectors. Atkeson and Kehoe 
(1993) add putty-clay capital whose energy usage is built in forever once 
installed. Rotemberg and Woodford (1993) d a vacate imperfectly competitive 

models. 
An emerging empirical literature supports some of these stories. Bresna- 

han and Ramey (1992) show that when oil prices rise, plants that produce 
small cars operate at capacity; plants that produce large cars are idle. Over 
the long run, more small car plants are created, but a short-run decline in 
output and employment results. Davis and Haltiwanger (1990) show that 
job churning is countercyclical. 

4.2 Credit shocks 

There is much descriptive evidence that problems in credit allocation are part 
of economic fluctuations. Bernanke (1983) argued that the disappearance of 
bank intermediaries, rather than a scarcity of the medium of exchange, ac- 
counted for falling output in the great depression. Wojnilower (1980) (1985) 
argues that the beginning of recessions, like prewar financial panics, were 
often accompanied by “credit crunches” in which there was much nonprice 

rationing of credit. 
However, credit shocks do not seem to explain a large part of postwar 

U.S. output fluctuations. As Bernanke’s (1994) review makes clear, most 
credit research is aimed at demonstrating a credit channel or amplification 
mechanism for open market operations or other shocks. Credit shocks may 
have been important in prewar recessions accompanied by banking panics, 
and it is perhaps a success story of postwar macroeconomic policy that such 
shocks have been avoided or that the economy has been insulated from their 
effects. 

Current empirical work on credit imperfections (for example, Fazzari, 
Hubbard, and Peterson 1988, Gertler and Gilchrist 1991, or Kashyap, Stein, 
and Wilcox 1993) essentially documents a small firm residual in investment. 
The smallest of firms either pay a few percent more for credit than estimated 
betas or q predict, or they face constraints whose shadow values are of the 
same magnitude. This evidence mirrors evidence in finance that small firm 
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stocks pay a few percentage points more risk premiums than the static CAPM 

and regression beta estimates predict. Since small firms are small, it is hard 

to imagine that these effects are central reasons why large firms or aggregate 

output goes down in recessions. In a nice survey, Ramey (1993) shows that 

monetary aggregates drive credit indicators out of VARs similar to those 

discussed above. (However, Bernanke 1994 responds by arguing that wide 

monetary aggregates ma.y be good indicators of credit conditions.) 

5 Consumption or news shocks 

We have examined popular candidates for shocks, and found little solid ev- 

idence that they account for the bulk of business-cycle fluctuations. Shocks 

to consumption, output, or other endogenous variables dominate most calcu- 

lations. Other contenders, such as government spending or financing shocks, 

are not quantitatively plausible. 

One response to this observation is to advocate models with nonlinear 

dynamics, chaos, etc. Such models can enormously amplify small shocks or 

display dynamics with no external shocks at all. However, standard economic 

models seem very resistant to chaos. So far, either very stylized environments 

or extreme parameter values must be invoked (see Boldrin and Woodford 

1990 for a survey). 

Since we can not seem to find observable exogenous shocks, how about 

unobservable shocks? Surely agents have much more information than we do. 

Suppose they get bad news about the future. Then, consumption declines 

and sets off a recession. We economists, like Hall (1993) and Blanchard 

(1993), conclude that consumption shocks or declines in consumer confidence 

“caused” the recession. 

One might doubt that agents in the economy can forecast so much better 

than economists. We too are consumers, and we spend more time reading 

the paper and poring over the data than most. But this argument forgets 

aggregation. Each person has information about his own prospects, most 

of which is idiosyncrat,ic. Total consumption aggregates all this information 

about aggregate activity. Ask a consumer about next yea.r’s GDP and he 

will answer “I don’t know.” Rut he may know that his factory is closing, 

and hence he is consuming less. This idiosyncratic shock is correlated with 

future GDP. Summing over consumers, aggregate consumption can reveal 

information about, future aggregate activity, although neither consumers in 

the economy nor economists who study it can name what the crucial pieces 

of information are. 
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5.1 Response to a simple news shock 

To make consumption shocks more than an exercise in residual-naming, we 
need to specify what news is about and verify that the series we see behave 
as they do. Unfortunately, standard intertemporal models do not produce 
consumption-led recessions. One might think that good news about the 
future would increase consumption through the wealth effect and set off a 
surge in investment to build up the capital stock to the new higher desired 
level. (See Fama 1992 for an articulation of this view.) But increasing both 
consumption and investment requires an increase in output. In standard 
equilibrium models, output does not respond to such shifts in “demand.” 
If consumption increases, investment must go down; if the rate of return 
rises enough to make investment increase, it must come at the expense of 
consumption. 

To be specific, Figure 23 plots the response of the King, Plosser, Rebel0 
model to news that a 1% permanent technology shock will happen in one year. 
Consumption rises instantly, and then varies slowly due to intertemporal 
substitution effects. Labor declines. There is no current technology shock, 
and capital has not changed, so there is no wage-rate increase to induce more 
labor supply. At higher consumption levels, consumers choose to work less. 
Since labor diminishes, and technology and capital are unchanged, current 
output (Y - (AN)“K-“) 1 g a so oes down. Investment, the residual between 
declining output and rising consumption, declines so much I could not fit 
it on the graph. The boom only comes when the technology shock actually 
happens. 

Thus, news of a future improvement in technology sets off a recession 
(or, perhaps more appropriately, a binge and a vacation) in the standard real 
business-cycle model. This behavior is robust to parameterization and to 
variations on the model, including adjustment costs to investment, varying 
labor effort, and varying capital utilization (I tried all three). In the remain- 
der of this section, I explore several ways of getting around this problem and 
implementing the consumption shock view. 

5.2 Smooth news + technology shocks 

Recall that the data show more than one shock. Large fractions of the vari- 
ance of output are attributed to shocks that are orthogonal to consumption. 
Perhaps we do not need “consumption-led” recessions after all. Perhaps a 
model with a news shock and a technology shock can mimic the consumption- 
output VAR of Figure 23. 

To pursue this idea, I modify the standard real business-cycle model to 
include a random walk technology shock as well as a shock that carries news 
of a small but very persistent long-term rise in technology. Letting at denote 
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the log technology shock and zt the news variable, the shock process is 

with parameter values 8(L) = 1 + L + L2 + . . + L12,p = 0.8,0, = 1,o.s = 
0.05, E(QS,) = 0. 

The left panel of Figure 24 presents responses to the news shock S,. The 
shock is constructed to forecast a long slow increase in technology, which 
can be seen in the figure. Output, labor supply, and consumption behave as 
smoothed versions of the news shock discussed above. 

The right-hand panel of Figure 24 presents the impulse-response function 
of the implied consumption/output VAR. The VAR shocks are orthogonal- 
ized so that a transitory shock has no permanent effect on output. As in 
the estimated c-y VAR, Figure 19, there is a strong transitory component to 
output. Consumption responds very little to this transitory shock. The per- 
manent shock causes a delayed rise in output, as in the data, though the rise 
here is slower. Consumption rises more slowly in response to the permanent- 
shock than in the data. 

The VAR successfully hides the fact that consumption and output move in 
opposite directions in response to the news shock. Consumption and output 
both rise in response to both permanent and transitory VAR shocks. The 
VAR shocks do not recover the original news and technology innovations 
but linear combinations of them. In fact, model consumption and output 
innovations have a 0.61 correlation coefficient, which is higher than 0.41 
found in the data. 

Table 14 presents the variance decomposition of the implied c-y VAR. 
As in the data, transitory shocks account for the vast majority of output 
fluctuations at one-to three-year horizons, while the variance of consumption 
is mostly due to the permanent shock. Table 15 presents the implied coef- 
ficients and R2 in long-horizon output forecasting regressions, based on the 
c - y ratio. As in the data, Table 15, the coefficients are positive (low output 
relative to consumption means high future output growth). The coefficients 
rise with horizon, as does the R2, up to a maximum of about 0.4. The rise is 
a little slower in this example than in the data, but the pattern is the same. 
As shown in Table 3, the entire time-t information set (not just c - y) gives 
even higher long-horizon R2, up to 0.6, and a Beveridge-Nelson detrended 
output variance almost exactly that of the data. And this model does display 
stochastic growth. 

5.3 News from a VAR 

Instead of dreaming up joint processes for news and technology, an alternative 
procedure (suggested by King and Watson 1993) is to send the RBC model 
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Table 14: 

Shocks and Horizon 

1 Year 2 Years 3 Years 

Variance of perm trans perm trans perm trans 

C 74 26 70 30 71 29 

Y 5 95 10 90 25 75 

Decomposition of variance from c-y VAR implied by real business-cycle model with smooth 

news about future technology shocks. The VAR shocks are orthogonalized so that the 

transitory shock has no long-run effect on output. 

Table 15: 

Horizon l/4 1 2 5 7 

b 0.03 0.23 0.65 1.98 2.68 

R2 0.001 0.02 0.08 0.28 0.39 

Coefficients and R2 in regression of horizon output growth on consumption/output ratio, 

Ylt+k - Yt = a + P(Q - Ytlt) + tt+k! implied by King, Plosser, Rebel0 model with smooth 

news and random walk technology shocks. 
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technology shock forecasts from a VAR. One VAR that gives plausible results 

(not all do) uses Solow residuals, output, consumption, and hours, estimated 

in log levels. The top panel of Figure 25 presents the response of Solow 

residuals to each shock in the VAR. As you can see, there are permanent and 

transitory components and an interesting dynamic structure. 

Now, feed this shock structure through the real business-cycle model, and 

what comes out? The bottom panel of Figure 25 presents the response to the 

t,echnology innovation (remember, there are four more shocks in this model!) 

and the response function of the consumption/output VAR implied by the 

model. That VAR has a pattern similar to that found in the data, Figure 

19. 

5.4 Comments on the approach 

These models are obviously not the last word. Certainly, the number and 

dynamic specification of the news shocks and the parameterization and struc- 

ture of the real business-cycle model can be varied to make the model’s im- 

plied c-y VAR fit more closely to that seen in the data. 

One hungers for a theorem, which I don’t know how to prove or disprove: 

given a particular stochastic growth model, can one always dream up a model 

for information about technology shocks to generate an arbitrary c-y VAR? 

Or is there some discipline in the exercise? 

One can also imagine changes to the structure of the model that would 

make it easier to generate business-cycle dynamics from consumption shocks. 

The proportional technology shock in the real business-cycle model is care- 

fully crafted to give a wealth effect, raising consumption, and a transitorily 

higher wage, to induce higher labor supply. It is not necessary that news 

be of such a variable; in fact, as we have seen, it hurts the model to be so. 

Thus, news about, say government spending shocks, that have wealth effects 

but no intertemporal substitution effects, rnay much more easily generate 

business-cycle-type dynamics. 

However, there are differences between model and data that news shocks 

cannot repair. News shocks cannot remove the stochastic singularity from 

every VAR. For example, with a production function Yt = (AtNt)aIij-” and 

utility u(C,) + ~(1 - N,), one first-order condition states that 

?I(1 - Iv,) = 
u’(Ct)N 

cyy 
t 

Given two of output, labor, and consumption, this equation determines the 

third exactly. Hence, a VAR with consumption, output, and labor will have 

two shocks, not three. 
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5.5 Summary 

News shocks can repair some of the defects of the technology shock view dis- 
cussed above. The model with news shocks predicts a substantial transitory 
movement in output; it captures both growth and cycles, and it removes the 
stochastic singularity in the c-y VAR. Since output moves on news with no 
contemporaneous change in the technology shocks, output and technology 
are no longer perfectly correlated. An econometrician faced with data from 
this economy would conclude that “consumption shocks” are an important 
source of transitory variation in output. 

Of course, “technology shocks” still are the driving variable in a fun- 
damental sense. However, as before, one can interpret these shocks broadly. 
News that taxes are likely to be raised, or that some other long-lasting distor- 
tion is likely to come about, will function as well as news of true productivity. 

6 Conclusions 

I find that none of the popular candidates for observable shocks robustly 
accounts for the bulk of business-cycle fluctuations in output. What does 
this mean? 

One of the new candidates, such as oil-reallocation, credit shocks, or 
nonlinear dynamics, may be flushed out and deliver an explanation for fluc- 
tuations. New propagation mechanisms, such as noncompetitive models or 
a lending channel, may help us to see that traditional technology money or 
other shocks do in fact have large and frequent effects. Since these models 
are in their infancy, it is hard to speculate what they will provide. 

On the other hand, real business-cycle theorists may refine their mod- 
els to produce more business-cycle-type (forecastable) dynamics and more 
amplification of technology shocks. Dynamic monetary theory and shock 
identification may improve so that monetary policy shocks can credibly ac- 
count for a large fraction of output variation. 

The other possibility is that consumption and output move on news that 
we do not see. This view at least explains our persistent ignorance, but it 
means that we may forever be ignorant of the true shocks that drive fluctu- 
ations. The surprise is that this view is not true by construction. Models 
that explain business-cycle dynamics with news shocks must be constructed 
and matched to data just like other models. Real business-cycle models do 
not easily generate business-cycle dynamics with shocks that do not affect 
current period marginal productivity. 
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