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Abstract

By simply reinterpreting the symbols, the familiar one period mean-variance portfolio theory
can also apply to fully dynamic and intertemporal problems. This Chapter shows how. The
centerpiece is a dynamic two-fund theorem. Intertemporal investors with quadratic period
utility split their portfolios between a riskless asset and a risky asset. The riskless asset is an
indexed consol, which pays a constant real coupon every period. The risky asset is a claim
to the aggregate consumption stream. The risky asset, and all investors’ optimal portfolios
can be described as a “long run” version of a mean-variance frontier.



1 Introduction

Now we turn to one of the classic questions of finance—portfolio theory. Given a set of
available assets, i.e. given their prices and the (subjective) distribution of their payoffs,
what is the optimal portfolio? This is obviously an interesting problem, to Wall Street as
well as to academics.

We can also view this problem as an alternative approach to the asset pricing question.
So far, we have modeled the consumption process, and then found prices from marginal
utility, following Lucas’ (1978) “endowment economy” logic. We could instead model the
price process, implicitly specifying linear technologies, and derive the optimal quantities, i.e.
optimal portfolio holdings and the consumption stream they support. This is in fact the way
asset pricing was originally developed.

I start by developing portfolio theory by the choice of final payoff. This is often a very
easy way to approach the problem, and it ties portfolio theory directly into the p = E(mx)
framework of the rest of the book. Dynamic portfolio choice is, unsurprisingly, the same
thing as static portfolio choice of managed portfolios, or contingent claims. I then develop
the “standard approach” to portfolio theory, in which we choose the weights in a given set
of assets, and I compare the two approaches.

2 One period portfolio problems, choosing payoffs

2.1 Complete markets

The investor invests, and then values consumption at a later period. We sum-
marize prices and payoffs by a discount factor m. We solve first order conditions
u0(c) = λm for the optimal portfolio c = u0−1(λm). If consumption is driven by
an asset payoff x̂ and outside income e, then x̂ = u0−1(λm)−e. The investor sells
off outside income, then invests in a portfolio driven by contingent claims prices.

Complete markets are the simplest case, and they can make the portfolio problem almost
trivial. As usual, denote prices p, payoffs x. Given the absence of arbitrage opportunities
there is a unique, positive stochastic discount factor or contingent claims price m such that
p = E(mx) for any payoff x. This is a key step: rather than face the investors with prices
and payoffs, we summarize the information in prices and payoff by a discount factor. That
summary makes the portfolio problem much easier.

Now, consider an investor with utility function over terminal consumptionE [u(c)] , initial
wealth W to invest, and random labor or business income e. The last ingredient is not
common in portfolio problems, but I’ll argue it’s really important, and it’s easy to put it in.
The business or labor income e is not directly tradeable, though there may be traded assets
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with similar payoffs that can be used to hedge. In a complete market, of course, there are
assets that can perfectly replicate the payoff e.

The investor’s problem is to choose a portfolio. Let’s call the payoff of his portfolio x̂, so
its price or value is p(x̂) = E(mx̂). He will eat c = x̂+ e. Thus, his problem is

max
{x̂}

E [u(x̂+ e)] s.t. E(mx̂) =W (1)

Max{x̂} means “choose the payoff in every state of nature. In a discrete state space, this
means

max
{x̂i}

X
i

πiu (x̂i + e) s.t.
X
i

πimix̂i =W

This is an easy problem to solve. The first order conditions are

u0(c) = λm (2)

u0 (x̂+ e) = λm. (3)

The optimal portfolio sets marginal utility proportional to the discount factor. The optimal
portfolio itself is then

x̂ = u0−1(λm)− e. (4)

We find the Lagrange multiplier λ by satisfying the initial wealth constraint. Actually
doing this is not very interesting at this stage, as we are more interested in how the optimal
portfolio distributes across states of nature than we are in the overall level of the optimal
portfolio.

Condition (4) is an old friend. The discount factor represents contingent claims prices, so
condition (2) says that marginal rates of substitution should be proportional to contingent
claim price ratios. The investor will consume less in high price states of nature, and consume
more in low price states of nature. Risk aversion, or curvature of the utility function, deter-
mines how much the investor is willing to substitute consumption across states. Equation
(4) says that the optimal asset portfolio x̂ first sells off, hedges or otherwise accommodates
labor income e one for one and then makes up the difference.

Condition (2) is the same first order condition we have been exploiting all along. If the
investor values first period consumption c0 as well and discounts future utility by β, then
we know the marginal utility of first period consumption equals the shadow value of wealth,
λ = u0(c0), so (2) becomes our old friend

β
u0 (c)

u0(c0)
= m.

We didn’t really need a new derivation. We are merely taking the same first order condition,
and rather than fix consumption and solve for prices (and returns, etc.), we are fixing prices
and payoffs, and solving for consumption and the portfolio that supports that consumption.
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2.1.1 Power utility and the demand for options

For power utility u0(c) = c−γand no outside income, the return on the optimal
portfolio is R̂ = m− 1

γ /E(m1− 1
γ ) Using a lognormal iid stock return, this result

specializes to R̂ = e(1−α)(r+
1
2
ασ2) Rα

T where is the stock return and α ≡ 1
γ
μ−r
σ2

.
The investor wants a payoff which is a nonlinear, power function of the stock
return, giving rise to demands for options.
The same method quickly extends to a utility function with a “habit” or

“subsistence level”, u0(c) = (c − h)−γ. This example gives a strong demand for
put options.

Let’s try this idea out on our workhorse example, power utility. Ignoring labor income,
the first order condition, equation (2), is

x̂−γ = λm

so the optimal portfolio (4) is
x̂ = λ−

1
γm− 1

γ

Using the budget constraint W = E(mx̂) to find the multiplier,

W = E(mλ−
1
γm− 1

γ )

λ−
1
γ =

W

E
³
m1− 1

γ

´ ,
the optimal portfolio is

x̂ =W
m− 1

γ

E(m1− 1
γ )
. (5)

The m− 1
γ term is the important one — it tells us how the portfolio x̂ varies across states of

nature. The rest just makes sure the scale is right, given this investor’s initial wealth W .

In this problem, payoffs scale with wealth. This is a special property of the power utility
function — richer people just buy more of the same thing. Therefore, the return on the
optimal portfolio

R̂ =
x̂

W
=

m− 1
γ

E(m1− 1
γ )

(6)

is independent of initial wealth. We often summarize portfolio problems in this way by the
return on the optimal portfolio.

To apply this formula, we have to specify an interesting set of payoffs and their prices, and
hence an interesting discount factor. Let’s consider the classic Black-Scholes environment:
there is a risk free bond and a single lognormally distributed stock. By allowing dynamic
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trading or a complete set of options, the market is “complete,” at least enough for this
exercise. (The next section discusses just how “complete” the market has to be.)

The stock, bond, and discount factor follow

dS

S
= μdt+ σdz (7)

dB

B
= rdt (8)

dΛ

Λ
= −rdt− μ− r

σ
dz (9)

(These are also equations (17.2) from Chapter 17, which discusses the environment in more
detail. You can check quickly that this is a valid discount factor, i.e. E(dΛ/Λ) = −rdt and
E(dS/S) − rdt = −E(dΛ/Λ dS/S)). The discrete-time discount factor for time T payoffs
is mT = ΛT/Λ0. Solving these equations forward and with a bit of algebra below, we can
evaluate Equation (6),

R̂ = e(1−α)(r+
1
2
ασ2) Rα

T

where RT = ST/S0 denotes the stock return, and

α ≡ 1
γ

μ− r

σ2
.

(α will turn out to be the fraction of wealth invested in stocks, if the portfolio is implemented
by dynamic stock and bond trading.)

The optimal payoff is power function of the stock return. Figure 1 plots this function
using standard values μ − r = 8% and σ = 16% for a few values of risk aversion γ. For
γ = 0.09−0.01

0.162
= 3.125, the function is linear — the investor just puts all his wealth in the

stock. At lower levels of risk aversion, the investor exploits the strong risk-return tradeoff,
taking a position that is much more sensitive to the stock return at RT = 1. He gains
enormous wealth if stocks go up (vertical distance past RT = 1), and the cost of somewhat
less consumption if stocks go down. At higher levels of risk aversion, the investor accepts
drastically lower payoffs in the good states (on the right) in order to get a somewhat better
payoff in the more expensive (high m) bad states on the left.

The optimal payoffs in Figure 1 are nonlinear. The investor does not just passively hold
a stock and bond portfolio. Instead, he buys a complex set of contingent claims, trades
dynamically, or buys a set of options, in order to create the nonlinear payoffs shown in
the Figure. Fundamentally, this behavior derives from the nonlinearity of marginal utility,
combined with the nonlinearity of the state-prices implied by the discount factor.

Algebra. The solutions of the pair (7)-(??) are (see (17.5) for more detail),

lnST = lnS0 +

µ
μ− σ2

2

¶
T + σ

√
Tε (10)
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Figure 1: Return of an optimal portfolio. The investor has power utility u0(c) = c−γ. He
chooses an optimal portfolio in a complete market generated by a lognormal stock return
with 9% mean and 16% standard deviation, and a 1% risk free rate.

lnΛT = lnΛ0 −
"
r +

1

2

µ
μ− r

σ

¶2#
T − μ− r

σ

√
Tε (11)

with ε˜N(0, 1). We thus have

E

µ
m
1− 1

γ

T

¶
= exp

"
−
µ
1− 1

γ

¶"
r +

1

2

µ
μ− r

σ

¶2#
T +

1

2

µ
1− 1

γ

¶2µ
μ− r

σ

¶2
T

#

= exp

(
−
µ
1− 1

γ

¶"
r +

1

2

µ
1

γ

¶µ
μ− r

σ

¶2#)
T.

Using RT = ST/S0 to substitute out ε,

m
− 1
γ

T = exp

(
1

γ

"
r +

1

2

µ
μ− r

σ

¶2#
T +

1

γ

μ− r

σ2

∙
lnRT −

µ
μ− σ2

2

¶
T

¸)

= exp

(
1

γ

"
r − 1

2

µ
μ− r

σ

¶2
− μ− r

σ2

µ
r − σ2

2

¶#
T +

1

γ

μ− r

σ2
lnRT

)
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Thus,

R̂ = exp

"
r − 1

2

µ
1

γ2

¶µ
μ− r

σ

¶2
− 1

γ

μ− r

σ2

µ
r − σ2

2

¶#
T × exp

½
1

γ

μ− r

σ2
lnRT

¾
= exp

∙
r − 1

2
σ2α2 − α

µ
r − σ2

2

¶¸
T × exp {α lnRT}

= exp

∙
(1− α)

µ
r +

1

2
ασ2

¶
T

¸
×Rα

T

Implementation

This example will still feel empty to someone who knows standard portfolio theory, in
which the maximization is stated over portfolio shares of specific assets rather than over the
final payoff. Sure, we have characterized the optimal payoffs, but weren’t we supposed to be
finding optimal portfolios? What stocks, bonds or options does this investor actually hold?

Figure 1 does give portfolios. We are in a complete market. Figure 1 gives the number of
contingent claims to each state, indexed by the stock return, that the investor should buy.
In a sense, we have made the portfolio problem very easy by very cleverly choosing a simple
basis — contingent claims — for our complete market.

There is a remaining largely technical question: suppose you wanted to implement this
pattern of contingent claims by explicitly buying standard put and call options, or by dy-
namic trading in a stock or bond, rather than by buying contingent claims. How would
you do it? I’ll return to these questions below, and you’ll see that they involve a more
algebra. But really, they are technical questions. We’ve solved the important economic
question, what the optimal payoff should be. Ideally, in fact, an intermediary (investment
bank) would handle the financial engineering of generating most cheaply the payoff shown
in Figure 1, and simply sell the optimal payoff directly as a retail product.

That said, there are two obvious ways to approximate payoffs like those Figure 1. First,
we can approximate nonlinear functions by a series of linear functions. The low risk aversion
(γ = 1, γ = 2) payoffs can be replicated by buying a series of call options, or by holding the
stock and writing puts. The high risk aversion (γ = 5, γ = 10) payoffs can be replicated
by writing call options, or by holding the stock and buying put options. The put options
provide “portfolio insurance.” Thus we see the demand and supply for options emerge from
different attitudes towards risk. In fact many investors do explicitly buy put options to
protect against “downside risk,” while many hedge funds do, explicitly or implicitly, write
put options.

Second, one can trade dynamically. In fact, as I will show below, the standard approach to
this portfolio problem does not mention options at all, so one may wonder how I got options
in here. But the standard approach leads to portfolios that are continually rebalanced. As it
turns out, this payoff can be achieved by continually rebalancing a portfolio with α fraction
of wealth held in stock. If you hold, say α = 60% stocks and 40% bonds, then as the market
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goes up you will sell some stocks. This action leaves you less exposed to further stock market
increases than you would otherwise be, and leads to the concave (γ > 3.125) discrete-period
behavior shown in the graph.

Example 2: Habits

A second example is useful to show some of the power of the method, and that it really
can be applied past standard toy examples. Suppose the utility function is changed to have
a subsistence or minimum level of consumption h,

u(c) = (c− h)1−γ.

Now, the optimal payoff is

(x̂− h)−γ = λm

x̂ = λ−
1
γm− 1

γ + h

Evaluating the wealth constraint,

W0 = E(mx̂) = λ−
1
γE
³
m1− 1

γ

´
+ he−rT

λ−
1
γ =

W0 − he−rT

E
³
m1− 1

γ

´
x̂ =

¡
W0 − he−rT

¢ m− 1
γ

E
³
m1− 1

γ

´ + h

The discount factor has not changed, so we can use the discount factor terms from the last
example unchanged. In the lognormal Black-Scholes example we have been carrying along,
this result gives us, corresponding to (??),

x̂ =
¡
W0 − he−rT

¢
e(1−α)(r+

1
2
ασ2)TRα

T + h

This is a very sensible answer. First and foremost, the investor guarantees the payoff h.
Then, wealth left over after buying a bond that guarantees h,

¡
W0 − he−rT

¢
is invested in

the usual power utility manner. Figure 2 plots the payoffs of the optimal portfolios. You can
see the left end is higher and the right end is lower. The investor sells off some performance
in good states of the world to make sure his portfolio never pays off less than h no matter
how bad the state of the world.

2.2 Incomplete markets

Most of the complete markets approach goes through in incomplete markets as
well. The first order condition x̂ = u0−1(λm)− e still gives the optimal portfolio,
but in general there are many m and we don’t know which one lands x̂ ∈ X, the
space available to the investor
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Figure 2: Portfolio problem with habit utility

Well, what if markets are not complete? This is the case in the real world. Market
incompleteness is also what makes portfolio theory challenging. So, let’s generalize the ideas
of the last section to incomplete markets.

When markets are incomplete, we have to be more careful about what actually is available
to the investor. I start with a quick review of the setup and central results from Chapter
4. The payoffs available to the investor are a space X. For each payoff x ∈ X the investor
knows the price p(x). Returns have price 1, excess returns have price zero. The investor can
form arbitrary portfolios without short-sale constraints or transactions costs (that’s another
interesting extension), so the space X of payoffs is closed under linear transformations:

x ∈ X, y ∈ X ⇒ ax+ by ∈ X

I assume that the law of one price holds, so the price of a portfolio is the same as the price
of its constituent elements.

p(ax+ by) = ap(x) + bp(y).

(If not, portfolio theory would be easy and immensely profitable.)

As before, let’s follow the insight that summarizing prices and payoffs with a discount
factor makes the portfolio theory problem easier. From Chapter 4, we know that the law of
one price implies that there is a unique discount x∗ ∈ X such that

p(x) = E(x∗x) (12)
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for all x ∈ X. The discount factor x∗ is often easy to construct. For example, if the payoff
space is generated as all portfolios of a finite vector of basis payoffs x with price vector p,
X = {c0x}, then

x∗ = p0E(xx0)−1x

satisfies p = E(x∗x) and x∗ ∈ X. Equation (9) is the continuous-time version of this
equation.

If markets are complete, this is the unique discount factor. If markets are not complete,
then there are many discount factors and any m = x∗ + ε, with E(εx) = 0 ∀x ∈ X is
a discount factor. Therefore, x∗ = proj(m|X) for any discount factor m. The return
corresponding to the payoff x∗is R∗ = x∗/p(x∗) = x∗/E(x∗2). R∗ is the global minimum
second moment return, and so it is on the lower portion of the mean-variance frontier. x∗

and R∗ need not be positive in every state of nature. Absence of arbitrage means there exists
a positive discount factor m = x∗ + ε, but the positive m may not lie in X, and there are
many non-positive discount factors as well.

The canonical one-period portfolio problem is now

max
{x̂∈X}

E [u(c)] s.t. (13)

c = x̂+ e; W = p(x̂).

This is different from our first problem (1) only by the restriction x̂ ∈ X: markets are
incomplete, and the investor can only choose a tradeable payoff.

The first order conditions are the same as before. We can see this most transparently in
the common case of a finite set of basis payoffs X = {c0x}. Then, the constrained portfolio
choice is x̂ = α0x and we can choose the portfolio weights α, respecting in this way x̂ ∈ X.
The portfolio problem is then

max
{αi}

E

"
u

ÃX
i

αixi + e

!#
s.t. W =

X
i

αipi.

The first order conditions are
piλ = E [u0(x̂+ e)xi] (14)

for each asset i, where λ is the Lagrange multiplier on the wealth constraint.

Equation (14) is our old friend p = E(mx). It holds for each asset in X if and only if
u0(x̂+e)/λ is a discount factor for all payoffs x̂ ∈ X. We conclude that marginal utility must
be proportional to a discount factor,

u0(x̂+ e) = λm (15)

where m satisfies p = E(mx) for all x ∈ X.

We can also apply the same derivation as before, though the logic is a little trickier. We
know from the law of one price that there exists an m such that p = E(mx)∀x ∈ X, in fact
there are lots of them. Thus, we can state the constraint as W = E(mx̂) using any such m.
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Figure 3: Portfolio problem in incomplete markets

Now the problem (13) is exactly the same as the original problem, so we can find the first
order condition by choosing x̂ in each state directly, with no mention of the original prices
and payoffs.

The solution to the portfolio problem is thus once again

x̂ = u0−1(λm)− e.

If markets are complete, as above, the discount factor m = x∗ is unique and in X. Every
payoff is traded, so both λm and u0−1(λm)− e are in X. Hence, all we have to do is find the
Lagrange multiplier to satisfy the initial wealth constraint.

If markets are not complete, we also have to pay attention to the constraint x̂ ∈ X. We
have derived necessary condition for an optimal portfolio, but not yet a sufficient condition.
There are many discount factors that price assets, and for only one of them is the inverse
marginal utility in the space of traded assets. While it’s easy to construct x∗ ∈ X, for
example, that may be the wrong discount factor.

Figure 3 illustrates the problem for the case e = 0. X is the space of traded payoffs. x∗

is the unique discount factor in X. m = x∗ + ε gives the space of all discount factors. It
is drawn at right angles to X since E(εx) = 0 ∀x ∈ X. The optimal portfolio x∗ satisfies
u0−1(λm) = x∗ for some m. Case a shows what can go wrong if you pick the wrong m:
u0−1(λm) is not in the payoff space X, so it can’t be the optimal portfolio. Case b shows the
optimal portfolio: we have chosen the right m so that u0−1(λm) is in the payoff space X. x∗
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is the wrong choice as well, since u0−1(λx∗) takes you out of the payoff space.

As the figure suggests, markets don’t have to be completely “complete” for x̂ = u0−1 (λx∗)
to work. It is enough that the payoff space X is closed under (some) nonlinear transforma-
tions. If for every x ∈ X, we also have u0−1(x) ∈ X, then x̂ = u0−1 (λx∗) will be tradeable,
and we can again find the optimal portfolio by inverting marginal utility from the easy-
to-compute unique discount factor x∗ ∈ X. A full set of options gives closure under all
nonlinear transformations and this situation is often referred to as “complete markets,” even
though many shocks are not traded assets. Obviously, even less “completeness” than this
can work in many applications.

What can we do? How can we pick the rightm? In general, there are two ways to proceed.
First, we can search over all possible m, i.e. slide up and down the m hyperplane and look
for the one that sends u0−1(λm) ∈ X. This isn’t necessarily hard, since we can set up the
search as a minimization, minimizing the distance between u0−1(m) and X. Equivalently,
we can invent prices for the missing securities, solve the (now unique) complete markets
problem, and search over those prices until the optimal portfolio just happens to lie in the
original space X. Equivalently again, we can attach Lagrange multipliers to the constraint
x̂ ∈ X and find “shadow prices” that satisfy the constraints.

Second, we can start all over again by explicitly choosing portfolio weights directly in the
limited set of assets at hand. This approach also leads to a lot of complexity. In addition,
in most applications there are a lot more assets at hand than can conveniently be put in
a maximization. For example, we often do portfolio problems with a stock and a bond,
ignoring the presence of options and futures. In almost all cases of practical importance, we
have to result to numerical answers, which means some approximation scheme.

Third, we can simplify or approximate the problem, so that u0−1(·) is an easy function.

2.3 Linear-quadratic approximation and mean-variance analysis

If marginal utility is linear, u0(c) = cb−c, then we can easily solve for portfolios
in incomplete markets. I derive x̂ = ĉb− ê−

£
p(ĉb)− p(ê)−W

¤
R∗, where ĉb and

ê are mimicking payoffs for a stochastic bliss point and outside income, W is
initial wealth, and R∗ is the minimum second moment return. The portfolio gets
the investor as close as possible to bliss point consumption, after hedging outside
income risk, and then accepting lower consumption in the high contingent claims
price states.

The problem is that marginal utility is nonlinear, while the payoff space X is only closed
under linear combinations. This suggests a classic approximation: With quadratic utility,
marginal utility is linear. Then we know that the inverse image of x∗ ∈ X is also in the
space of payoffs, and this is the optimal portfolio.
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Analytically, suppose utility is quadratic

u(c) = −1
2
(cb − c)2

where cb is a potentially stochastic bliss point. Then

u0(c) = cb − c.

The first order condition (15) now reads

cb − x̂− e = λm.

Now, we can project both sides onto the payoff space X, and solve for the optimal portfolio.
Since proj(m|X) = x∗, this operation yields

x̂ = −λx∗ + proj
¡
cb − e|X

¢
. (16)

To make the result clearer, we again solve for the Lagrange multiplier λ in terms of initial
wealth. Denote by ê and ĉb the mimicking portfolios for preference shocks and labor income
risk,

ê ≡ proj (e|X)
ĉb ≡ proj

¡
cb|X

¢
(Projection means linear regression. These are the portfolios of asset payoffs that are closest,
in mean square sense, to the labor income and bliss points.) The wealth constraint then states

W = p(x̂) = −λp(x∗) + p(ĉb)− p(ê)

p(ĉb)− p(ê)−W

p(x∗)
= λ

Thus, the optimal portfolio is

x̂ = ĉb − ê−
£
p(ĉb)− p(ê)−W

¤
R∗, (17)

where again R∗ = x∗/p(x∗) = x∗/E(x∗2) is the return corresponding to the discount-factor
payoff x∗.

The investor starts by hedging as much of his preference shock and labor income risk as
possible. If these risks are traded, he will buy a portfolio that gets rid of all labor income risk
e and then buys bliss point consumption cb. If they are not traded, he will buy a portfolio
that is closest to this ideal — a mimicking portfolio for labor income and preference shock risk.
Then, depending on initial wealth and hence risk aversion (risk aversion depends on wealth
for quadratic utility), he invests in the minimum second moment return R∗. Typically (for all
interesting cases) wealth is not sufficient to buy bliss point consumption, W + p(ê) < p(ĉb).
Therefore, the investment in R∗ is negative. R∗ is on the lower portion of the mean-variance
frontier, so when you short R∗, you obtain a portfolio on the upper portion of the frontier.
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The investment in the risky portfolio is larger (in absolute value) for lower wealth. Quadratic
utility has the perverse feature that risk aversion increases with wealth to infinity at the bliss
point. Given that the investor cannot buy enough assets to consume ĉb, R∗ tells him which
states have the highest contingent claims prices. Obviously, sell what you have at the highest
price.

In sum, each investor’s optimal portfolio is a combination of a mimicking portfolio to
hedge labor income and preference shock risk, plus an investment in the (mean-variance
efficient) minimum second moment return, whose size depends on risk aversion or initial
wealth.

2.3.1 The mean-variance frontier

With no outside income e = 0, we can express the quadratic utility portfolio
problem in terms of local risk aversion,

R̂ = Rf +
1

γ

¡
Rf −R∗

¢
.

This expression makes it clear that the investor holds a mean-variance efficient
portfolio, further away from the risk free rate as risk aversion declines.

Traditional mean-variance analysis focuses on a special case: the investor has no job, so
labor income is zero, the bliss point is nonstochastic, and a riskfree rate is traded. This
special case leads to a very simple characterization of the optimal portfolio. Equation (17)
specializes to

x̂ = cb −
µ
cb

Rf
−W

¶
R∗ (18)

R̂ =
x̂

W
= R∗ +

cb

RfW

¡
Rf −R∗

¢
(19)

In Chapter 5, we showed that the mean-variance frontier is composed of all portfolios of the
form R∗ + α(Rf − R∗). Therefore, investors with quadratic utility and no labor income all
hold mean-variance efficient portfolios. As W rises or cb declines, the investor becomes more
risk averse. When W can finance bliss-point consumption for sure, WRf = cb, the investor
becomes infinitely risk averse and holds only the riskfree rate Rf .

Obviously, these global implications — rising risk aversion with wealth — are perverse
features of quadratic utility, which should be thought of as a local approximation. For this
reason, it is interesting and useful to express the portfolio decision in terms of the local risk
aversion coefficient.

Write (19) as

R̂ = Rf +

µ
cb

RfW
− 1
¶¡

Rf −R∗
¢

(20)
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Local risk aversion for quadratic utility is

γ = −cu
00(c)

u0(c)
=

c

cb − c
=

µ
cb

c
− 1
¶−1

.

Now we can write the optimal portfolio

R̂ = Rf +
1

γ

¡
Rf −R∗

¢
. (21)

where we evaluate local risk aversion γ at the point c = RfW .

The investor invests in a mean-variance efficient portfolio, with larger investment in the
risky asset the lower his risk aversion coefficient. Again, R∗ is on the lower part of the
mean-variance frontier, thus a short position in R∗ generates portfolios on the upper portion
of the frontier. RfW is the amount of consumption the investor would have in period 2 if he
invested everything in the risk free asset. This is the sensible place at which to evaluate risk
aversion. For example, if you had enough wealth to buy bliss point consumption RfW = cb,
you would do it and be infinitely risk averse.

2.3.2 Formulas

I evaluate the mean-variance formula R̂ = Rf + 1
γ

¡
Rf −R∗

¢
for the common

case of a riskfree rate Rf and vector of excess returns Re with mean μ and
covariance matrix Σ. The result is

Rf −R∗ =

µ
Rf

1 + μ0Σ−1μ

¶
μ0Σ−1Re

The terms are familiar from simple mean-variance maximization: finding the
mean-variance frontier directly we find that mean-variance efficient weights are
all of the form w = λμ0Σ−1 and the maximum Sharpe ratio is μ0Σ−1μ.

Formula (21) is a little dry, so it’s worth evaluating a common instance. Suppose the
payoff space consists of a riskfree rate Rf and N assets with excess returns Re, so that
portfolio returns are all of the form Rp = Rf + w0Re. Denote μ = E(Re) and Σ = cov(Re).
Let’s find R∗ and hence (21) in this environment.

Repeating briefly the analysis of Chapter 5, we can find

x∗ =
1

Rf
− 1

Rf
μ0Σ−1(Re − μ).

(Check that x∗ ∈ X, E(x∗Rf) = 1 and E(x∗Re) = 0, or derive it from x∗ = αRf +
w0 [Re − μ].) Then

p(x∗) = E(x∗2) =
1

Rf2
+

1

Rf2
μ0Σ−1μ

14



so

R∗ =
x∗

E(x∗2)
= Rf 1− μ0Σ−1(Re − μ)

1 + μ0Σ−1μ

and

Rf −R∗ = Rf − Rf

1 + μ0Σ−1μ
+

Rf

1 + μ0Σ−1μ
μ0Σ−1(Re − μ)

Rf −R∗ =
Rf

1 + μ0Σ−1μ
μ0Σ−1Re (22)

To give a reference for these formulas, consider the standard approach to finding the
mean-variance frontier. Let Rep be the excess return on a portfolio. Then we want to find

minσ2(Rep) s.t. E(Rep) = E

min
{w}

w0Σw s.t. w0μ = E

The first order conditions give
w = λΣ−1μ

where λ scales up and down the investment to give larger or smaller mean. Thus, the
portfolios on the mean-variance frontier have excess returns of the form

Rep = λμ0Σ−1Re

This is a great formula to remember: μ0Σ−1 gives the weights for a mean-variance efficient
investment. You can see that (22) is of this form.

The Sharpe ratio or slope of the mean-variance frontier is

E(Rep)

σ(Rep)
=

μ0Σ−1μp
μ0Σ−1μ

=
p
μ0Σ−1μ

Thus, you can see that the term scaling Rf −R∗ scales with the market Sharpe ratio.

We could of course generate the mean-variance frontier from the risk free rate and any
efficient return. For example, just using μ0Σ−1Re might seem simpler than using (22), and
it is simpler when making computations. The particular mean-variance efficient portfolio
Rf − R∗ in (22) has the delicious property that it is the optimal portfolio for risk aversion
equal to one, and the units of any investment have directly the interpretation as a risk
aversion coefficient.

2.3.3 The market portfolio and two-fund theorem

In a market of quadratic utility, e = 0 investors, we can aggregate across
people and express the optimal portfolio as

R̂i = Rf +
γm

γi
¡
Rm −Rf

¢
15



This is a “two-fund” theorem — the optimal portfolio for every investor is a
combination of the risk free rate and the market portfolio. Investors hold more
or less of the market portfolio according to whether they are less or more risk
averse than the average investor.

I have used R∗ so far as the risky portfolio. If you read Chapter 5, this will be natural.
However, conventional mean-variance analysis uses the “market portfolio” on the top of the
mean variance frontier as the reference risky return. It’s worth developing this representation
and the intuition that goes with it.

Write the portfolio choice of individual i from (20) as

R̂i = Rf +
1

γi
¡
Rf −R∗

¢
. (23)

The market portfolio R̂m is the wealth-weighted average of individual portfolios, or the return
on the sum of individual payoffs,

R̂m ≡
PN

i=1 x̂
iPN

j=1W
j
=

PN
i=1W

iR̂iPN
j=1W

j

Summing (??) over individuals, then,

R̂m = Rf +

PN
i=1W

i 1
γiPN

j=1W
j

¡
Rf −R∗

¢
.

We can define an “average risk aversion coefficient” as the wealth-weighted average of (in-
verse) risk aversion coefficients1,

1

γm
≡
PN

i=1W
i 1
γiPN

j=1W
j

so
R̂m = Rf +

1

γm
¡
Rf −R∗

¢
.

Using this relation to substitute Rm −Rf in place of Rf −R∗ in (23), we obtain

R̂i = Rf +
γm

γi
¡
Rm −Rf

¢
(24)

The optimal portfolio is split between the risk free rate and the market portfolio. The
weight on the market portfolio return depends on individual relative to average risk aversion.

1“Market risk aversion” is also the local risk aversion of an investor with the average blisspoint and
average wealth,

1

γm
=

1
N

PN
i=1 c

bi

Rf 1
N

PN
i=1W

i
− 1.
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The “market portfolio” here is the average of all assets held. If there are bonds in “net
supply” then they are included in the market portfolio, and the remaining riskfree rate is in
“zero net supply.” Since xi = ci, the market portfolio is also the claim to total consumption.

Since any two mean-variance efficient portfolios span the frontier, Rm andRf for example,
we see that optimal portfolios follow a two-fund theorem. This is very famous in the history
of finance. It was once taken for granted that each individual needed a tailored portfolio,
riskier stocks for less risk averse investors. Investment companies still advertise how well they
listen. In this theory, the only way people differ is by their risk aversion, so all investors’
portfolios can be provided by two funds, a “market portfolio” and a risk free security.

This is all illustrated in the classic mean-variance frontier diagram

s (R)

E(R)

More risk averse

Market Rm

Less risk averse

Frontier

Rf

Figure 4: Mean-variance efficient portfolios.

2.4 Nontradeable income

I introduce two ways of expressing mean-variance portfolio theory with outside
income. First, the overall portfolio, including the hedge portfolio for outside
income, is still on the mean-variance frontier. Thus, we could use classic analysis
to determine the right overall portfolio — keeping in mind that the overall market
portfolio includes hedge portfolios for the average investors outside income too —
and then subtract off the hedge portfolio for individual outside income in order to
arrive at the individual’s asset portfolio. Second, we can express the individual’s
portfolio as 1) the market asset portfolio, adjusted for risk aversion and the
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composition of wealth, 2) the average outside income hedge portfolio for all other
investors, adjusted again for risk aversion and wealth and finally 3) the hedge
portfolio for the individual’s idiosyncratic outside income.

The mean-variance frontier is a beautiful and classic result, but most investors do in
fact have jobs, business income or real estate. Here, I attempt some restatments of the
more interesting case with labor income and preference shocks to bring them closer to mean-
variance intuition.

One way to do this is to think of labor or business income as part of a “total portfolio”.
Then, the total portfolio is still mean-variance efficient, but we have to adjust the asset
portfolio for the presence of outside income.

To keep it simple, keep a nonstochastic bliss point, cb. Then, equation (17) becomes

x̂ = cb − ê−
£
p(cb)− p(ê)−W

¤
R∗

We can rewrite this as
ê+ x̂ = cb −

£
p(cb)− (W + p(ê))

¤
R∗

The left hand side is the “total payoff”, consisting of the asset payoff x̂ and the labor income
hedge portfolio ê (Consumption is this payoff plus residual labor income, c = x̂ + e =
x̂+ (e− ê) + ê.)

We define a rate of return on the “total portfolio” as the total payoff — asset portfolio
plus human capital — divided by total value, and proceed as before,

R̂tp =
ê+ x̂

W + p(ê)
=

cb

W + p(ê)
−
∙

cb

Rf [W + p(ê)]
− 1
¸
R∗

= R∗ +
cb

Rf [W + p(ê)]

¡
Rf −R∗

¢
R̂tp = R∗ +

1

γ

¡
Rf −R∗

¢
Now γ is defined as the local risk aversion coefficient given cb and using the value of initial
wealth and the tradeable portfolio closest to labor income, invested at the risk free rate.
Thus, we can say that the total portfolio is mean-variance efficient. We can also aggregate
just as before, to express

R̂tp,i = Rf +
γm

γi
¡
Rtp,m −Rf

¢
(25)

where Rm is now the total wealth portfolio including the outside income portfolios,

This representation makes it seem like nothing much has changed. However the asset
portfolio — the thing the investor actually buys — changes dramatically. ê is a payoff the
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investor already owns. Thus, to figure out the asset market payoff, you have to subtract the
labor income hedge portfolio from the appropriate mean-variance efficient portfolio.

R̂i =
x̂i

W i
=

p(êi) +W i

W i

µ
êi + x̂i

p(êi) +W i
− êi

p(êi) +W i

¶
(26)

=

µ
1 +

p(êi)

W i

¶
R̂tp,i −

µ
p(êi)

W i

¶
êi

p(êi)
(27)

=

µ
1 +

p(êi)

W i

¶
R̂tp,i −

µ
p(êi)

W i

¶
R̂e,i (28)

This can be a large correction. Also, in this representation the “market portfolio” R̂tp

includes everyone else’s hedge portfolio. It is not the average of actual asset market portfolios.

For that reason, a slightly more complex representation is also useful. We can break up
the “total” return to the two components, a “hedge portfolio return” and the asset portfolio
return,

Rtp =
êi + x̂i

p(êi) +W i

=
p(êi)

p(êi) +W i

êi

p(êi)
+

W i

p(êi) +W i

x̂i

W i

= (1− wi)R̂e,i + wiR̂i

Here

R̂e,i =
êi

p(êi)
; wi =

W i

p(êi) +W i
; 1− wi =

p(êi)

p(êi) +W i
.

The same decomposition works for Rtp,m. Then, substituting in (25),

(1− wi)R̂e,i + wiR̂i = Rf +
γm

γi

³
(1− wm) R̂e,m + wmR̂m −Rf

´
and hence

R̂i−Rf =
γm

γi
wm

wi

³
R̂m −Rf

´
+
γm

γi
wm

wi

(1− wm)

wm

³
R̂e,m −Rf

´
− (1− wi)

wi

³
R̂e,i −Rf

´
(29)

This representation emphasizes a deep point, you only deviate from the market portfolio
to the extent that you are different from everyone else. The first term says that an individ-
ual’s actual portfolio scales up or down the market portfolio according to the individual’s
risk aversion and the relative weight of asset wealth in total wealth. If you have more out-
side wealth relative to total, wi is lower, you hold a less risk averse position in your asset
portfolio. The second term is the hedge portfolio for the average investor’s labor income The
next terms describe how you should change your portfolio if the character of your outside
income is different from everyone else’s.
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A few examples will clarify the formula. First, suppose that outside income is nonsto-
chastic, so Re = Rf . The second terms vanish, and we are left with

R̂i −Rf =
γm

γi
wm

wi

³
R̂m −Rf

´
This is the usual formula except that risk aversion is not multiplied by the share of asset
wealth in total wealth,

γiwi = γi
W i

W i + p(ei)
.

An individual with a lot of outside income p(ei) is sitting on a bond. Therefore, his asset
market portfolio should be shifted towards risky assets; his asset market portfolio is the same
as that of an investor with no outside income but a lot less risk aversion. This explains why
“effective risk aversion” for the asset market portfolio is in (29) multiplied by wealth.

Second, suppose that the investor has the same wealth and relative wealth as the market,
γi = γm and wi = wm, but outside income is stochastic. Then expression (29) simplifies to

R̂i −Rf =
³
R̂m −Rf

´
+
(1− w)

w

h
R̂e,m − R̂e,i

i
This investor hold the market portfolio (this time the actual, traded-asset market portfolio),
plus a hedge portfolio derived from the difference between his income and the average in-
vestor’s income. If the investor is just like the average investor in this respect as well, then he
just holds the market portfolio of traded assets. But suppose this investor’s outside income
is a bond, R̂ej = Rf , while the average investor has a stochastic outside income. Then, the
investor’s asset portfolio will include the hedge portfolio for aggregate outside income. He
will do better in a mean-variance sense by providing this “outside income insurance” to the
average investor.

The market portfolio R̂m is not on the mean-variance frontier anymore. The “total”
market portfolio R̂tp,m = wmR̂m + (1− wm)R̂e,m is on the mean-variance frontier, but that
includes the average investor’s hedge portfolio for outside income. Thus, the presence of an
average level of outside income justifies multifactor models such as the Famous Fama French
three Factor model, if the additional factors are mimicking portfolios for human capital risks.

3 Choosing payoffs in intertemporal, dynamic prob-
lems

One-period problems are fun and pedagogically attractive, but not realistic. People live a
long time. One-period problems would still be a useful guide if the world were i.i.d., so that
each day looked like the last. Alas, the overwhelming evidence from empirical work is that
the world is not i.i.d. Expected returns, variances and covariances all change through time.
Even if this were not the case, individual investors’ outside incomes vary with time, age
and the lifecycle. We need a portfolio theory that incorporates long-lived agents, and allows
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for time-varying moments of asset returns. Furthermore, many dynamic setups give rise to
incomplete markets, since shocks to forecasting variables are not traded.

This seems like a lot of complexity, and it is. Fortunately, with a little reinterpretation of
symbols, we can apply everything we have done for one-period markets to this intertemporal
dynamic world.

I start with a few classic examples that should be in every financial economists’ toolkit,
and then draw the general point.

3.1 Portfolios and discount factors in intertemporal models

The identical optimal portfolio formulas hold in an intertemporal model,

βtu0(x̂t + et) = λmt (30)

x̂t = u0−1(λmt/β
t)− et. (31)

where we now interpret x̂t to be the flow of dividends (payouts) of the optimal
portfolio, and et is the flow of outside income.

Start with an investor with no outside income; his utility function is

E
∞X
t=1

βtu(ct).

He has initial wealth W and he has a stream of outside income {et}. His problem is to pick
a stream of payoffs or dividends {x̂t}, which he will eat, ct = x̂t + et.

As before, we summarize the assets available to the investor by a discount factor m.
Thus, the problem is

max
{x̂t∈X}

E
∞X
t=1

βtu(x̂t + et) s.t. W = E
TX
t=1

mtx̂t

Here mt represents a discount factor process, i.e. for every payoff xt, mt generates prices p
by

p = E
∞X
t=1

mtxt.

As before, absence of arbitrage and the law of one price guarantee that we can represent the
prices and payoffs facing the investor by such a discount factor process.

The first order conditions to this problem are (∂/∂x̂it in state i at time t)

βtu0(x̂t + et) = λmt (32)
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Thus, once again the optimal payoff is characterized by

x̂t = u0−1(λmt/β
t)− et. (33)

The formula is only different because utility of consumption at time t is multiplied by βt. If
m is unique (complete markets), then we are done. If not, then again we have to choose the
right {mt} so that {x̂} ∈ X. (We have to think in some more detail what this payoff space
looks like when markets are not complete.)

As before, this condition characterizes the solution up to initial wealth. To match it to
a specific initial wealth (or to find what wealth corresponds to a choice of λ), we impose the
constraint,

E
X
t

mtu
0−1(λmt) =W.

The corresponding continuous time formulation is

maxE

Z ∞

t=0

e−ρtu(x̂t + et)dt s.t. W = E

Z ∞

t=0

mtx̂tdt

giving rise to the identical conditions

e−ρtu0(x̂t + et) = λmt (34)

x̂t = u0−1(λmt/e
−ρt)− et. (35)

3.2 The power-lognormal problem.

We solve for the optimal infinite-horizon portfolio problem in the lognormal
iid setup. The answer is that optimal consumption or dividend is a power function
of the current stock value,

x̂t = (const.) ×
µ
St
S0

¶α

;
1

γ

μ− r

σ2

To see this analysis more concretely, and for its own interest, let’s solve a classic problem.
The investor has no outside income, lives forever and wants intermediate consumption, and
has power utility

maxE

Z ∞

t=0

x̂1−γt

1− γ
dt.

He can dynamically trade, resulting in “complete” markets.

Once we have a discount factor mt that represents asset markets, the answer is simple.
From (35)

x̂t = λ−
1
γ
¡
eρtmt

¢− 1
γ
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As before, we can solve for λ,

W = E

Z ∞

t=0

mtλ
− 1
γ
¡
eρtmt

¢− 1
γ dt

W = λ−
1
γ

Z ∞

t=0

e−
ρ
γ
t m

1− 1
γ

t dt

so the optimal payoff is

x̂t
W
=

e−
ρ
γ
t m

− 1
γ

tR∞
t=0

e−
ρ
γ
t m

1− 1
γ

t dt
(36)

The analogy to the one-period result (6) is strong. However, the “return” is now a dividend
at time t divided by an initial value, an insight I follow up on below.

We might insist that the problem be stated in terms of a discount factor. But in practical
problems, we will first face the technical job of find the discount factor that represents a given
set of asset prices and payoffs, so to make the analysis concrete and to solve a classic problem,
let’s introduce some assets and find their discount factor. As before, a stock and bond follow

dS

S
= μdt+ σdz (37)

dB

B
= rdt. (38)

(Think of S and B as the cumulative value process with dividends reinvested, if you’re
worried about transversality conditions. What matters is a stock return dR = μdt + σdz
and bond return rdt.) This is the same setup as the iid lognormal environment of section
2.1.1, but the investor lives forever and values intermediate consumption rather than living
for one period and valuing terminal wealth.

Fortunately, we’ve already found the discount factor, both in chapter 17 and in equation
(9) above, mt = Λt/Λ0 where

dΛ

Λ
= −rdt− μ− r

σ
dz. (39)

We can substitute d lnS for dz and solve (37)-(??), (algebra below) resulting in

Λt

Λ0
= e

1
2(

μ−r
σ2
−1)(μ+r)t ×

µ
St
S0

¶−μ−r
σ2

.

And thus, for power utility, (36) becomes

x̂t = (const.) ×
µ
St
S0

¶α

where again

α =
1

γ

μ− r

σ2
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Optimal consumption at date t is a power function of the stock value at that date. As you
can guess, and as I’ll show below, one way to implement this rule is to invest a constantly
rebalanced fraction of wealth α in stocks, and to consume a constant fraction of wealth as
well. But this is a complete market, so there are lots of equivalent ways to implement this
rule.

Evaluating the constant — the denominator of (36) takes a little more algebra and is not
very revealing, but here is the final answer:

x̂t
W
=
1

γ

∙
ρ+ (γ − 1)

µ
r +

1

2
γα2σ2

¶¸
e−

1
γ [ρ+

1
2
(γα−1)(μ+r)]t

µ
St
S0

¶α

(40)

Algebra:

d lnΛ =
dΛ

Λ
− 1
2

dΛ2

Λ2
= −

"
r +

1

2

µ
μ− r

σ

¶2#
dt− μ− r

σ
dz

d lnS =
dS

S
− 1
2

dS2

S2
=

µ
μ− 1

2
σ2
¶
dt+ σdz

For the numerator, we want to express the answer in terms of St. Substituting
d lnS for dz,

d lnΛ = −
"
r +

1

2

µ
μ− r

σ

¶2#
dt− μ− r

σ2

∙
d lnS −

µ
μ− 1

2
σ2
¶
dt

¸

d lnΛ =

"
−r − 1

2

µ
μ− r

σ

¶2
+

μ(μ− r)

σ2
− 1
2
(μ− r)

#
dt− μ− r

σ2
d lnS

d lnΛ =

"
−r − 1

2

µ
μ− r

σ

¶2
+

μ(μ− r)

σ2
− 1
2
(μ− r)

#
dt− μ− r

σ2
d lnS

d lnΛ =
1

2

∙
μ− r

σ2
− 1
¸
(μ+ r)dt− μ− r

σ2
d lnS

lnΛt − lnΛ0 =
1

2

∙
μ− r

σ2
− 1
¸
(μ+ r)t− μ− r

σ2
(lnSt − lnS0)

mt =
Λt

Λ0
= e

1
2(

μ−r
σ2
−1)(μ+r)t

µ
St
S0

¶−μ−r
σ2

.

e−
ρ
γ
t m

− 1
γ

t = e−
ρ
γ
t− 1

γ
1
2(

μ−r
σ2
−1)(μ+r)t

µ
St
S0

¶μ−r
γσ2

= e−
1
γ [ρ+

1
2(

μ−r
σ2
−1)(μ+r)]t

µ
St
S0

¶μ−r
γσ2
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For the denominator, it’s easier to express Λ in terms of a normal random variable.

lnΛt − lnΛ0 = −
"
r +

1

2

µ
μ− r

σ

¶2#
t− μ− r

σ

√
tε

m
1− 1

γ

t = e
−(1− 1

γ )
h
r+1

2(
μ−r
σ )

2
i
t−μ−r

σ (1−
1
γ )
√
tε

E

µ
m
1− 1

γ

t

¶
= e

n
−(1− 1

γ )
h
r+1

2(
μ−r
σ )

2
i
+ 1
2 [

μ−r
σ (1−

1
γ )]

2
o
t

= e
−(1− 1

γ )
n
r+ 1

2
1
γ (

μ−r
σ )

2
o
tZ ∞

0

e−
ρ
γ
tE

µ
m
1− 1

γ

t

¶
dt =

Z ∞

0

e−
ρ
γ
te
−(1− 1

γ )
n
r+1

2
1
γ (

μ−r
σ )

2
o
t
dt

=

Z ∞

0

e
− 1
γ

n
ρ+(γ−1)

h
r+ 1

2
1
γ (

μ−r
σ )

2
io

t
dt

=
γ

ρ+ (γ − 1)
h
r + 1

2
1
γ

¡
μ−r
σ

¢2i
Thus,

x̂t
W

=
ρ+ (γ − 1)

h
r + 1

2
1
γ

¡
μ−r
σ

¢2i
γ

e−
1
γ [ρ+

1
2(

μ−r
σ2
−1)(μ+r)]t

µ
St
S0

¶μ−r
γσ2

x̂t
W

=
1

γ

µ
ρ+ (γ − 1)

∙
r +

1

2
γα2σ2

¸¶
e−

1
γ [ρ+

1
2
(γα−1)(μ+r)]t

µ
St
S0

¶α

.

3.3 A mapping to one-period problems

The analogy in the above examples to the one-period analysis is striking. Obviously, one-
period and multiperiod models are the same in a deep sense.

To make the analogy closest, let us define an expectation operator that adds over time
using βt or e−ρt as it adds over states using probabilities. Thus, define

one period: E(x) ≡ E(x1) =
X
s

π(s)x1(s)

infinite period, discrete: E(x) ≡ E
∞X
t=1

βtxt =
∞X
t=1

X
st

βtπ(st)xt(st)

infinite period, continuous : E(x) ≡ E

Z ∞

0

e−ρtxtdt

It is convenient to take β as the investor’s discount factor, but not necessary.

With this definition, infinite horizon portfolio theory looks exactly like one period theory.
We write asset pricing as

p(x) = E
∞X
t=1

βtmtxt = E(mx).
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Here it is convenient to start with a discount factor that is scaled by βt in order to then
multiply by βt. In the canonical example which was expressed mt = βtu0(ct)/u0(c0) we now
have mt = u0(ct)/u0(c0). This has the advantage that mt is stationary.

(One problem with this definition is that the weights over time do not add up to one,
E(1) = β/(1− β). One can define E(x) = (1−β)

β

P
βtE(xt) to restore this property, but then

we must write pricing as p(x) = β/(1− β)E(mx). I choose the simpler pricing equation, at
the cost that you have to be careful when taking long run means E of constants.)

The investor’s objective is

maxE
X
t

βtu(ct) = max E [u(c)]

ct = x̂t + et

The constraint is
W = E

X
t

βtmtx̂t = E(mx̂)

In sum, we are exactly back to

max E [u(x̂t + et)] s.t. W = E(mx̂)

The first order conditions are

u0(x̂+ e) = λm

x̂ = u0−1 (λm)− e

exactly as before. (We rescaled m, which is why it’s not m/βt as in (33).)

With power utility and no outside income, we can evaluate the constraint as

W = E(mλ−
1
γm

1
γ )

so again the complete problem is

x̂t
W
=

m
− 1
γ

t

E(m1− 1
γ )

All the previous analysis goes through unchanged!

Units

We do, however, have to reinterpret the symbols.x̂/W is now a dividend stream divided
by its time-0 price. This, apparently is the right generalization of “return” to an infinite-
horizon model. More generally, for any payoff stream I think it is better to call the “return”
a “yield,”

yt =
xt

p({xt})
=

xt
E(mx)

.

Its typical size will be something like 0.04 not 1.04. Similarly, we can define“excess yields”,
which are the zero-price objects as

yet = y1t − y2t .
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The risk free payoff is thus one in all states and dates, a perpetuity

xft = 1.

risk free yield is therefore

yft =
1

p({1})
This is, in fact, the coupon yield of the perpetuity.

I think this observation alone makes a good case for looking at prices and payoff streams
rather than one period returns. In a Merton or period to period analysis, a long term bond
is a security that is attractive because its price happens to go up a lot when interest rates
decline. Thus, it provides a good hedge for a long-term highly risk averse investor. The fact
that a 10 year bond is the riskless asset for an investor with a 10 year horizon, or an indexed
perpetuity is the riskless asset for an investor with an infinite horizon, is a feature hidden
deep in value functions. But once you look at prices and payoffs, it’s just obvious that the
indexed perpetuity is the riskless asset for a long-term investor.

Thus, in place of our usual portfolios and payoff spaces, we have spaces of yields,

Y ≡ {y ∈ X : p(y) = 1} ,

Y e ≡ {ye ∈ X : p(ye) = 0} .

It’s natural to define a long-run mean / long-run variance frontier which solves

min
{y∈Y }

E(y2) s.t. E(y) = μ.

“Long run variance” prizes stability over time as well as stability across states of nature. If
we redo exactly the same algebra as before, we find that the long-run frontier is generated
as

ymv = y∗ + wye∗. (41)

Here, y∗ is the discount-factor mimicking portfolio return,

y∗ =
x∗

p(x∗)
=

x∗

E(x∗2) . (42)

If a riskfree rate is traded, ye∗ is simply

ye∗ =
yf − y∗

yf
. (43)

The mean-variance frontier of excess returns is

min
{ye∈Y e}

E(ye2) s.t. E(ye) = μ.

This frontier is generated simply by

yemv = wye∗ w ∈ <
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Incomplete markets and the long-run mean long-run variance frontier

As before, with incomplete markets we face the same issue of finding the one of many
possible discount factors m which leads to a tradeable payoff. Again, however, we can use
the quadratic utility approximation

u(c) = −1
2

¡
cb − c

¢2
U = E

∙
−1
2

¡
cb − c

¢2¸
= E

X
t

βt
µ
−1
2

¶
(cbt − ct)

2

and the above analysis goes through exactly. Again, all we have to do is to reinterpret the
symbols.

The optimal portfolio with a nonstochastic bliss point and no labor income is

ŷ = yf +
1

γ

¡
yf − y∗

¢
.

We recognize a long-run mean/long-run variance efficient portfolio on the right hand side.
Aggreagting across identical individuals we have

ŷi = yf +
γa

γi
¡
ŷm − yf

¢
.

Thus, the classic propositions have straightforward reinterpretations:

1. Each investor holds a portfolio on the long-run mean/ long-run variance frontier.

2. The market portfolio is also on the long-run mean / long-run variance frontier.

3. Each investor’s portfolio can be spanned by a real perpetuity yf and a claim to aggregate
consumption ŷm

In addition a “long-run” version of the CAPM holds in this economy, since the market
is “long-run” efficient.

Keep in mind that all of this applies with arbitrary return dynamics — we are not as-
suming iid returns — and it holds with incomplete markets, in particular that innovations to
state variables are not traded. As conventional mean-variance theory gave a useful approxi-
mate characterization of optimal portfolios without actually calculating them — finding the
mean-variance frontier is hard — so here we give an approximate characterization of optimal
portfolios in a fully dynamic, intertemporal, incomplete markets context. Calculating them
— finding x∗, y∗, the long run mean-long run variance frontier, or supporting a payoff x̂ with
dynamic trading in specific assets — will also be hard.
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4 Portfolio theory by choosing portfolio weights

The standard approach to portfolio problems is quite different. Rather than summarize
assets by a discount factor and choose the final payoff, you specify the assets explicitly and
choose the portfolio weights.

4.1 One period, power-lognormal

I re-solve the one period, power utility, lognormal example by explicitly choos-
ing portfolio weights. The answer is the same, but we learn how to implement
the answer by dynamically trading the stock and bond. The portfolio holds a
constantly-rebalanced share αt =

1
γ
μ−r
σ2
in the risky asset.

This is a classic theorem: the fraction invested in the risky asset is independent of invest-
ment horizon. It challenges conventional wisdom that young people should hold more stocks
since they can afford to wait out any market declines.

This approach is easiest to illustrate in a canonical example, the power-lognormal case
we have already studies. At each point in time, the investor puts a fraction αt of his wealth
in the risky asset. Thus the problem is

max
{αt}

Eu(cT ). s.t.

dWt = Wt

∙
αt
dSt
St
+ (1− αt)rdt

¸
cT = WT ; W0 given

I start with the canonical lognormal iid environment,

dSt
St

= μdt+ σdzt

dB

B
= rdt.

Substituting, wealth evolves as

dWt

Wt
= [r + αt(μ− r)] dt+ αtσdz. (44)

We find the optimal weights αt by dynamic programming. The value function satisfies

V (W, t) = max
{αt}

EtV (Wt+dt, t+ dt)
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and hence, using Ito’s lemma,

0 = max
{αt}

Et

½
VWdW +

1

2
VWWdW 2 + Vtdt

¾
0 = max

{αt}
WVW [r + αt(μ− r)] +

1

2
W 2VWWα2tσ

2 + Vt (45)

The first order condition for portfolio choice αt leads directly to

αt = −
VW

WVWW

μ− r

σ2
(46)

We will end up proving
V (W, t) = k(t)W 1−γ

t

and thus
αt =

1

γ

μ− r

σ2
. (47)

The proportion invested in the risky asset is a constant, independent of wealth and invest-
ment horizon. It is larger, the higher the stock excess return, lower variance, and lower risk
aversion2. Conventional wisdom says you should invest more in stocks if you have a longer
horizon; the young should invest in stocks, while the old should invest in bonds. The data
paint an interesting converse puzzle: many young people invest in bonds until they build up
a safe “nest egg,” and the bulk of stock investment is done by people in their mid 50s and
later. In this model, the conventional wisdom is wrong.

Of course, models are built on assumptions. A lot of modern portfolio theory is devoted
to changing the assumptions so that the conventional wisdom is right, or so that the “safety-
first” stylized fact is optimal. For example, time-varying expected returns can raise the
Sharpe ratio of long-horizon investments, and so can make it optimal to hold more in stocks
for longer investment horizons.

With the optimal portfolio weights in hand, invested wealth W follows

WT =W0e
(1−α)(r+ 1

2
σ2α)T

µ
S

S0

¶α

(48)

This is exactly the result we derived above. If α = 1, we obtain W = W0 (ST/S0), and if
a = 0 we obtain WT =W0e

rT , sensibly enough.

2Actually, the quantity − VW
WVWW

is the risk aversion coefficient. Risk aversion is often measured by
people’s resistance to taking bets. Bets affect your wealth, not your consumption, so aversion to wealth
bets measures this quantity. The special result is that in this model, risk aversion is also equal to the local
curvature of the utility function γ.
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Algebra The algebra for (48) is straightforward if uninspiring.

dWt

Wt
= (1− α) rdt+ α

dS

S

d lnWt =
dWt

Wt
− 1
2

dW 2

W 2
= (1− α) rdt+ α

dSt
St
− 1
2
α2σ2dt

d lnSt =
dSt
St
− 1
2

dS2

S2
=

dSt
St
− 1
2
σ2dt

d lnWt = (1− α) rdt+ α

µ
d lnSt +

1

2
σ2dt

¶
− 1
2
α2σ2dt

d lnWt =

∙
(1− α) r +

1

2
σ2α(1− α)

¸
dt+ αd lnSt

d lnWt = (1− α)

µ
r +

1

2
σ2α

¶
dt+ αd lnSt

lnWT − lnW0 = (1− α)

µ
r +

1

2
σ2α

¶
T + α (lnST − lnS0)

WT = W0e
(1−α)(r+ 1

2
σ2α)T

µ
ST
S0

¶α

The value function It remains to prove that the value function V really does
have the assumed form. This takes more algebra than intuition. Substituting
the optimal portfolio αt into( 45), The value function then solves the differential
equation

0 = WVW [r + αt(μ− r)] +
1

2
W 2VWWα2σ2 + Vt

0 =

∙
r − VW

WVWW

(μ− r)

σ2
(μ− r)

¸
+
1

2

W 2VWW

WVW

µ
VW

WVWW

(μ− r)

σ2

¶2
σ2 +

Vt
WVW

0 = r − VW
WVWW

(μ− r)

σ2
(μ− r) +

1

2

VW
WVWW

(μ− r)

σ2

2

+
Vt

WVW

0 = r − 1
2

VW
WVWW

(μ− r)2

σ2
+

Vt
WVW

, (49)

subject to the terminal condition

u(WT ) = V (WT ).

We guess a solution of the form

V (W, t) = eη(T−t)W 1−γ
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Hence,

Vt = −ηeη(T−t)W 1−γ

VW = (1− γ)eη(T−t)W−γ

VWW = −γ(1− γ)eη(T−t)W−γ−1

− VW
WVWW

=
1

γ
Vt

WVW
= − η

1− γ

Plugging in to the PDE (49), that equation holds if the undetermined coefficient
η solves

0 = r +
1

2

1

γ

(μ− r)2

σ2
− η

1− γ

Hence,

η = (1− γ)

∙
r +

1

2

1

γ

(μ− r)2

σ2

¸
and

V (W, t) = e
(1−γ)

∙
r+1

2
1
γ
(μ−r)2
σ2

¸
(T−t)

W 1−γ

Since our guess works, the portfolio weights are in fact as given by equation (47).
You might have guessed just W 1−γ, but having more time to trade and asset to
grow makes success more likely.

4.2 Comparison with the payoff approach

Having both the discount factor approach and the portfolio weight approach in hand, you
can see the appeal of the discount factor-complete markets approach. It took us two lines
to get to x̂ = (const) × Rα

T , and only a few more lines to evaluate the constant in terms
of initial wealth. The portfolio weight approach, by contrast took a lot of algebra. One
reason it did so, is that we solved for a lot of stuff we didn’t really need. We found not
only the optimal payoff, but we found a specific dynamic trading strategy to support that
payoff. That might be useful. On the other hand, you might want to implement the optimal
payoff with a portfolio of call and put options at time zero and not have to spend the entire
time dynamically trading. Or you might want to use 2 or 3 call options and then limit your
amount of dynamic trading. The advantage of the portfolio choice approach is that you
really know the answer is in the payoff space. The disadvantage is that if you make a slight
change in the payoff space, you have to start the problem all over again.

Sometimes problems cannot be easily solved by choosing portfolio weights, yet we can
easily characterize the payoffs. The habit example with u0(c) = (c− h)−γ above is one such
example. We solved very quickly for final payoffs. You can try to solve this problem by
choosing portfolio weights, but you will fail, in a revealing manner. Equation (??) will still
describe portfolio weights. We had not used the form of the objective function in getting
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to this point. Now, however, the risk aversion coefficient will depend on wealth and time.
If you are near W = h, you become much more risk averse! We need to solve the value
function to see how much so. The differential equation for the value function (49) is also
unchanged. The only thing that changes is the terminal condition. Now, we have a terminal
condition

V (W,T ) = (W − h)1−γ.

Of course, our original guess V (W, t) = eη(T−t)W 1−ξ won’t match this terminal condition. A
natural guess V (W, t) = eη(T−t)(W −f(t)h)1−γ, alas, does not solve the differential equation.
The only way I know to proceed analytically is to use the general solution of the differential
equation

V (W, t) =

Z
a(ξ)e

(1−ξ)
∙
r+ 1

2
1
γ
(μ−r)2
σ2

¸
(T−t)

W 1−ξ
t dξ

and then find a(ξ) to match the terminal condition. Not fun.

You can see the trouble. We have complicated the problem by asking not just for the
answer — the time T payoff or the number of contingent claims to buy —but also by asking for
a trading strategy to synthesize those contingent claims from stock and bond trading. We
achieved success by being able to stop and declare victory before the hard part. Certainly
in this complete market model, it is simpler first to characterize the optimal payoff x̂, and
then to choose how to implement that payoff by a specific choice of assets, i.e. put and call
options, dynamic trading, pure contingent claims, digital options, etc.

On the other hand, in general incomplete markets problems, choosing portfolio weights
means you know you always stay in the asset space x̂ ∈ X.

5 Dynamic intertemporal problems

Now we remove the iid assumption and allow mean returns, variance of returns and outside
income to vary over time.

Can we mix the one period and infinite period power lognormal?

5.1 A single-variable Merton problem

We allow mean returns, return volatility and labor income to vary over time.
This section simplifies by treating a single risky return and a single state variable.
The optimal portfolio weight on the risky asset becomes

αt =
1

γt

μt − rt
σ2t

+ ηtβdy,dR

where γt and ηt are risk aversion and aversion to the risk that the state variable
changes, defined by corresponding derivatives of the value function, and βdy,dR is
the regression coefficient of state-variable innovations on the risky return.
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We see two new effects: 1) “Market timing.” The allocation to the risky asset
may rise and fall over time, for example if the mean excess return μt − rt varies
and γt and σt do not. 2) “Hedging” demand. If the return is good for “bad”
realizations of the state variable, this raises the desirability and thus overall
allocation to the risky asset.
These results simply characterize the optimal portfolio problem without solv-

ing for the actual value function. That step is much harder in general.

Here’s the kind of portfolio problem we want to solve. We want utility over consumption,
not terminal wealth; and we want to allow for time-varying expected returns and volatilities.

maxE

Z ∞

0

e−ρtu(ct)dt s.t. (50)

dRt = μ(yt)dt+ σ(yt)dzt (51)

dyt = μy(yt)dt+ σy(yt)dzt (52)

The objective can also be or include terminal wealth,

maxE

Z T

0

e−ρtu(ct)dt+EU(WT ).

In the traditional Merton setup, the y variables are considered only as state variables for
investment opportunities. However, we can easily extend the model to think of them as state
variables for labor or proprietary income et and include ct = xt + et as well. I start in this
section by specializing to a single state variable y, which simplifies the algebra and gives
one set of classic results. The next section uses a vector of state variables and generates a
different set of classic results.

If the investor puts weights α in the risky asset, wealth evolves as

dW = WαdR+W (1− α)rdt+ (e− c) dt

dW = [Wr +Wα (μ− r) + (e− c)] dt+Wασdz

e (really e(yt)) is outside income.

The value function must include the state variable y, so the Bellman equation is

V (W,y, t) = max
{c,α}

u(c)dt+Et

£
e−ρdtV (Wt+dt, yt+dt, t+ dt)

¤
,

using Ito’s lemma as usual,

0 = max
{c,α}

u(c)dt− ρV dt+ Vtdt+ VWEt (dW ) + VyEt(dy)

+
1

2
VWWdW 2 +

1

2
Vyydy

2 + VWydWdy.
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Next we substitute for dW , dy. The result is

0 = max
{c,α}

u(c)− ρV (W, y, t) + Vt + VW [Wr +Wα (μ− r) + e− c] + Vyμy (53)

+
1

2
VWWW 2α2σ2 +

1

2
Vyyσ

2
y +WVWyασσy.

Now, the first order conditions. Differentiating (53),

∂

∂c
: u0(c) = VW

Marginal utility of consumption equals marginal value of wealth. A penny saved has the
same value as a penny consumed.

Next, we find the first order condition for portfolio choice:

∂

∂α
: WVW (μ− r) +W 2VWWσ2α+WσσyVWy = 0

α = − VW
WVWW

(μ− r)

σ2
− σy

σ

VWy

WVWW

This is the all-important answer we are looking for: the weights of the optimal portfolio.
σσy = cov(dR, dy) is the covariance of return innovations with state variable innovations, so
σσy/σ

2 = βdy,dR is the regression coefficient of state variable innovations on return innova-
tions. Thus, we can write the optimal portfolio weight in the risky asset as

α =

µ
− VW
WVWW

¶
μt − rt
σ2t

−
µ

VWy

WVWW

¶
βdy,dR (54)

=
1

γ

μt − rt
σ2t

+ ηβdy,dR (55)

In the second line, I have introduced the notation γ for risk aversion and η for “aversion”
to state variable risk. The γ here is not necessarily the power of a utility function; it is the
local curvature of the value function at time t.

The first term is the same as we had before. However, the mean and variance change
over time — that’s the point of the Merton model. Thus, Investors will “time the market,”
investing more in times of high mean or low variance. The second term is new: Investors
will increase their holding of the risky asset if it covaries negatively with state variables of
concern to the investor. “Of concern” is measured by VWy. This is the “hedging” motive.
A long term bond is a classic example. Bond prices go up when subsequent yields go down.
Thus a long-term bond is an excellent hedge for the risk that interest rates decline, meaning
your investment opportunities decline. Investors thus hold more long term bonds than they
otherwise would, which may account for low long-term bond returns. Since stocks now
mean-revert too, we should expect important quantitative results from the Merton model:
mean-reversion in stock prices will make stocks even more attractive.

(This last conclusion depends on risk aversion, i.e. whether substitution or wealth effects
dominate. Imagine that news comes along that expected returns are much higher. This has
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two effects. First there is a “wealth effect.” The investor will be able to afford a lot more
consumption in the future. But there is also a “substitution effect.” At higher expected
returns, it pays the investor to consume less now, and then consume even more in the
future, having profited by high returns. If risk aversion, equal to intertemporal substitution,
is high, the investor will not pay attention to the latter incentive. Raising consumption in
the future means consumption rises now, so VW = u0(c) declines now, i.e. VWy < 0. However,
if risk aversion is very low, the substitution effect will dominate. The investor consumers
less now, so as to invest more. This means VW = u0(c) rises, and VWy > 0. Log utility is
the knife edge case in which substitution and wealth effects offset, so VWy = 0. We usually
think risk aversion is greater than log, so that case applies.)

Of course, risk aversion and state variable aversion are not constants, nor are they deter-
mined by preferences alone. This discussion presumes that risk aversion and state variable
aversion do not change. They may. Only by fully solving the Merton model can we really
see the portfolio implications.

Completing the Merton model.

Conceptually this step is simple, as before: we just need to find the value function. We
plug optimal portfolio and consumption decisions into 53 and solve the resulting partial
differential equation. However, even a brief look at the problem will show you why so little
has been done on this crucial step, and thus why quantitative use of Merton portfolio theory
languished for 20 years until the recent revival of interest in approximate solutions. The
partial differential equation is, from (53) (algebra below)

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VWe+ Vyμy +
1

2
Vyyσ

2
y

−1
2

1

σ2VWW
[VW (μ− r) + σσyVWy]

2 .

This is not a pleasant partial differential equation to solve, and analytic solutions are usually
not available. The nonlinear terms u(u0−1(VW )) and u0−1 (VW ) are especially troublesome,
which accounts for the popularity of formulations involving the utility of terminal wealth,
for which these terms are absent.

There are analytical solutions for the following special cases:

1. Power utility, infinite horizon, no state variables. As you might imagine, V (W ) =W 1−γ

works again. This is a historically important result as it establishes that the CAPM
holds even with infinitely lived, power utility investors, so long as returns are i.i.d. over
time and there is no labor income. I solve it in the next subsection

2. Log utility, no labor income. In this case, VWy = 0, the investor does no intertemporal
hedging. Now we recover the log utility CAPM, even when there are state variables.

3. Power utility of terminal wealth (no consumption), AR(1) state variable, no labor in-
come, (Kim and Omberg 1996). Here the natural guess that V (W,y, t) = f(t)V (W )(a+
by + cy2) works.
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The Algebra: Plugging optimal consumption c and portfolio α decisions into
(53),

0 = u(c)− ρV + Vt + VW [Wr +Wα(μ− r) + e− c] + Vyμy

+
1

2
VWWW 2α2σ2 +

1

2
Vyyσ

2
y +WVWyασσy

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VWe+ Vyμy +
1

2
Vyyσ

2
y

+
1

2
VWWW 2α2σ2 +W (VW (μ− r) + VWyσσy)α

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VWe+ Vyμy +
1

2
Vyyσ

2
y

+
1

2
VWWW 2σ2

∙
VW

WVWW

(μ− r)

σ2
+

σσy
σ2

VWy

WVWW

¸2
−W [VW (μ− r) + VWyσσy]

∙
VW

WVWW

(μ− r)

σ2
+

σσy
σ2

VWy

WVWW

¸

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VWe+ Vyμy +
1

2
Vyyσ

2
y

+
1

2

1

σ2VWW
[VW (μ− r) + σσyVWy]

2

− 1

σ2VWW
[VW (μ− r) + VWyσσy] [VW (μ− r) + σσyVWy]

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VWe+ Vyμy +
1

2
Vyyσ

2
y

−1
2

1

σ2VWW
[VW (μ− r) + σσyVWy]

2 .

5.2 The power-lognormal iid model with consumption

I solve the power utility infinite-horizon model with iid returns and no outside
income. The investor consumes a constant proportion of wealth, and invests a
constant share in the risky asset.

In the special case of power utility, no outside income and iid returns, the differential
equation (53) specializes to

0 =
V
− 1
γ
(1−γ)

W

1− γ
− ρV + Vt +WVW r − VWV

− 1
γ

W − 1
2

1

σ2VWW
[VW (μ− r)]2
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To solve it, we guess a functional form

V = k
W 1−γ

1− γ
.

Plugging in, we find that the differential equation holds if

k−
1
γ =

ρ

γ
− 1− γ

γ

∙
r +

1

2

(μ− r)2

γσ2

¸
.

Hence, we can fully evaluate the policy: Optimal consumption follows

c = V
− 1
γ

W =
1

γ

∙
ρ− (1− γ)

µ
r +

1

2

(μ− r)2

γσ2

¶¸
W (56)

The investor consumes a constant share of wealth W . For log utility (γ = 1) we have
c = ρW . The second term only holds for utility different than log. If γ > 1, higher
returns (either a higher risk free rate or the higher squared Sharpe ratio in the second term)
lead you to raise consumption. Income effects are greater than substitution effects (high γ
resists substitution), so the higher “wealth effect” means more consumption now. If γ < 1,
the opposite is true; the investor takes advantage of higher returns by consuming less now,
building wealth up faster and then consuming more later. The risky asset share is, from
(54),

α =
1

γ

μ− r

σ2
. (57)

We already had the optimal consumption stream in (40). What we learn here is that we
can support that stream by the consumption rule (56) and portfolio rule (57).

The Algebra

V = k
W 1−γ

1− γ

VW = kW−γ

VWW = −γkW−γ−1

0 =
k
− 1
γ (1−γ)W (1−γ)

1− γ
− ρk

W 1−γ

1− γ
+WkW−γr −

¡
kW−γ¢1− 1

γ +
1

2

(kW−γ)2

γkW−γ−1
(μ− r)2

σ2

0 =
k
1− 1

γ

1− γ
W 1−γ − ρk

1− γ
W 1−γ + rkW 1−γ − k1−

1
γW 1−γ +

1

2

(μ− r)2

σ2
k

γ
W 1−γ

0 =
k
− 1
γ

1− γ
− ρ

1− γ
+ r − k−

1
γ +

1

2

(μ− r)2

γσ2

0 =

µ
γ

1− γ

¶
k−

1
γ − ρ

1− γ
+ r +

1

2

(μ− r)2

γσ2

k−
1
γ =

ρ

γ
− 1− γ

γ

∙
r +

1

2

(μ− r)2

γσ2

¸
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5.3 Multivariate Merton problems and the ICAPM

We characterize the infinite-period portfolio problem with multiple assets and
multiple state variables. The (conditional) multifactor efficient frontier emerges.

Now, let’s solve the same problem with a vector of asset returns and a vector of state
variables. This generalization allows us to think about how the investor’s choice among
assets may be affected by time-varying investment opportunities and by labor income and
state variables for labor income. We start as before,

maxE

Z ∞

0

e−ρtu(ct) s.t. (58)

dRt = μ(yt)dt+ σ(yt)dzt (59)

dyt = μy(yt)dt+ σy(yt)dzt (60)

det = μe(yt)dt+ σe(yt)dzt (61)

Now I use dR to denote the vector of N returns dSi/Si, so μ is an N dimensional vector. y
is a K dimensional vector of state variables. dz is an (at least) N +K dimensional vector
of independent shocks, Et(dzdz

0) = I. Thus, σ is an N × (N +K) dimensional matrix and
σy is a K × (N + K) dimensional matrix. I’ll examine the case in which one asset is a
risk free rate, rt Since it varies over time, it is one of the elements of yt. The conventional
statement of the problem ignores outside income and only thinks of state variables that drive
the investment opportunity set, but since labor income is important and all the results we
will get to accommodate it easily, why not include it.

Now, if the investor puts weights α on the risky assets, wealth evolves as

dW = W (α0dR) +W (1− 10α)rdt+ (e− c) dt

dW = [Wr +Wα0 (μ− r) + (e− c)] dt+Wα0σdz.

The Bellman equation is

V (W,y, t) = max
{c,α}

u(c)dt+Et

£
e−ρdtV (Wt+dt, yt+dt, t+ dt)

¤
,

and using Ito’s lemma as usual,

0 = max
{c,α}

u(c)dt− ρV dt+ Vtdt+ VWEt (dW ) + Vy0Et(dy)

+
1

2
VWWdW 2 +

1

2
dy0Vyy0dy + dWVWy0dy.

I use the notation Vy0 to denote the row vector of derivatives of V with respect to y. Vy
would be a corresponding column vector. Vyy0 is a matrix of second partial derivatives.
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Next we substitute for dW , dy. The result is

0 = max
{c,α}

u(c)− ρV (W, y, t) + Vt + VW [Wr +Wα0 (μ− r1)− c] + Vy0μy (62)

+
1

2
VWWW 2α0σσ0α+

1

2
Tr(σ0yVyy0σy) +Wα0σσ0yVWy

This is easy except for the second derivative terms. To derive them

E(dz0Adz) =
X
i,j

dziAijdzj =
X
i

Aii = Tr(A).

Then,
dy0Vyy0dy = (σydz)

0Vyy0(σydz) = dz0σ0yVyy0σydz = Tr(σ0yVyy0σy).

We can do the other terms similarly,

dWVWy0dy = (Wα0σdz)0VWy0(σydz) =Wdz0σ0αVWy0σydz

= WTr(σ0αVWy0σy) =WTr(α0σσ0yVWy) =Wα0σσ0yVWy

VWWdW 2 = VWW (Wα0σdz)0(Wα0σdz) =W 2VWWdz0σ0αα0σdz

= W 2VWWTr (σ0αα0σ) =W 2VWWTr (α0σσ0α) =W 2VWWα0σσ0α

(I used Tr(AA0) = Tr(A0A) and Tr(AB) = Tr(A0B0). These facts about traces let me
condense a (N +K)× (N +K) matrix to a 1× 1 quadratic form in the last line, and let me
transform from an expression for which it would be hard to take α derivatives, Tr(σ0αα0σ),
to one that is easy, α0σσ0α).

Now, the first order conditions. Differentiating (62), we obtain again

∂

∂c
: u0(c) = VW

Differentiating with respect to α,

∂

∂α
: WVW (μ− r1) +W 2VWWσσ0α+Wσσ0yVWy = 0

α = − VW
WVWW

(σσ0)
−1
(μ− r)− (σσ0)−1 σσ0y

VWy

WVWW

This is the all-important answer we are looking for: the weights of the optimal portfolio.
It remains to make it more intuitive. σσ0 = cov(dR, dR0) = Σ is the return innovation
covariance matrix. σσ0y = cov(dR, dy0) = σdR,y0 is the covariance of return innovations with
state variable innovations, and (σσ0)−1 σσ0y = Σ−1σdR,y0 = β0dy,dR is a matrix of multiple
regression coefficients of state variable innovations on return innovations. Thus, we can
write the optimal portfolio weights as

α = − VW
WVWW

Σ−1(μ− r1)− β0dy,dR
VWy

WVWW
(63)
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The first term is exactly the same as we had before, generalized to multiple assets. We
recognize in Σ−1(μ− r1) the weights of a mean-variance efficient portfolio. Thus we obtain
an important result: In an iid world, investors will hold an instantaneously mean-variance
efficient portfolio. Since we’re using diffusion processes which are locally normal, this is
the proof behind the statement that normal distributions result in mean-variance portfolios.
Mean variance portfolios do not require quadratic utility, which I used above to start thinking
about mean-variance efficiency. However, note that even if α is constant over time, this means
dynamically trading and rebalancing, so that portfolios will not be mean-variance efficient
at discrete horizons. In addition, the risky asset share α will generally change over time,
giving even more interesting and mean-variance inefficient discrete-horizon returns.

The second term is new: Investors will shift their portfolio weights towards assets that
covary with, and hence can hedge, outside income or changes in the investment opportunity
set. Investors will differ in their degree of risk aversion and “aversion to state variable risk”
so we can write the optimal portfolio as

α =
1

γ
Σ−1(μ− r1) + β0dy,dRη (64)

where again

γ ≡ −WVWW

VW

is the investor’s risk aversion, and

η = − VWy

WVWW

is the investor’s “aversion to state variable risk.”

Multifactor efficiency and K + 2 funds.

We can nicely interpret this result as a generalization of mean-variance portfolio theory,
following Fama (1996).The Merton investor minimizes the variance of return subject to mean
return, and subject to the constraint that returns have specified covariance with innovations
to state variables. Let’s form portfolios

dRp = α0dR+ (1− α01)rdt

The suggested mean, variance, covariance problem is

min vart(dR
p) s.t. EtdR

p = E; covt(dR
p, dy) = ξ

min
{α}

α0σσ0α s.t.r + α0 (μ− r1) = E ; α0σσ0y = ξ

Introducing Lagrange multipliers λ1, λ2, the first order conditions are

σσ0α = λ1 (μ− r1) + σσ0yλ2

α = λ1 (σσ
0)
−1
(μ− r1) + (σσ0)

−1
σσ0yλ2 (65)

This is exactly the same answer as (63)!
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Figure 5: Multifactor effcient portfolio and “indifference curve.”

Figure 5 illustrates. As the mean-variance frontier is a hyperbola, the mean-variance-
covariance frontier is a revolution of a hyperbola. Fama calls this frontier the set of mul-
tifactor efficient portfolios. (Covariance with a state variable is a linear constraint on re-
turns, as is the mean. Thus, the frontier is the revolution of a parabola in mean-variance-
covariance space, and the revolution of hyperbola in mean-standard deviation-covariance
space as shown. I draw the prettier case with no risk free rate. With a risk free rate, the
frontier is a cone.) As shown in the picture, we can think of the investor as maximizing
preferences defined over mean, variance and covariance of the portfolio, just as previously
we could think of the investor as maximizing preferences defined over mean and variance of
the portfolio.

The first term in (63) and (65) is the mean-variance frontier, or a tangency portfolio.
(Set λ2 = 0 and equation (65) derives this result.) Thus, we see that typical investors do
not hold mean-variance efficient portfolios. They are willing to give up some mean-variance
efficiency in return for a portfolio that hedges the state variable innovations dy.

What do they hold? Mean-variance portfolio theory led to the famous “two fund” theo-
rem. This generalization leads naturally to aK+2 fund theorem. Investors splits their wealth
between the tangency portfolio and K mimicking portfolios for state variable innovation risk.
To see this, let’s write the investor’s optimal portfolio return, not just its weights.

dRi = αi0dR+ (1− αi01)rdt;

= rdt+ αi0(dR− 1rdt)

In the latter expression, I split up the investor’s portfolio into a risk free investment and an
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investment in a zero cost portfolio. Following (64), we can split up this portfolio return

dRi = rdt+
1

γi
dRT + ηi0dRH

dRT = (μ− r1)0Σ−1 (dR− r1dt) (66)

dRH = βdy,dR (dR− r1dt) (67)

We recognize dRT as a zero-cost investment in a mean-variance efficient or tangency portfolio.
The dRH portfolios are zero cost portfolios formed from the fitted values of regressions of
state variable innovations on the set of asset returns. They are mimicking portfolios for
the state variable innovations, projection of the state variable innovations on the payoff
space. They are also “maximum correlation” portfolios, as regression coefficients minimize
residual variance, min{βdy,dR} var

¡
dy − βdy,dRdR

¢
. Of course, any two K+2 independent

multifactor-efficient portfolios will span the multifactor efficient frontier, so you may see
other expressions. The key is to find an interesting set of portfolios that span the frontier.

The ICAPM and the market portfolio.

It’s always interesting to express portfolio theory with reference to the market portfolio.
The average investor must hold the market portfolio. The market portfolio is the average of
individual portfolios, weighted by wealth αm =

P
iW

iαi/
P

iW
i. Thus, summing (64) over

investors,

αm =
1

γm
Σ−1(μ− r1) + Σ−1σdR,dy0η

m (68)

The ICAPM solves for the mean excess return μ− r1,

μ− r1 = γmΣαm − σdR,dy0η
mγm

The market portfolio return is

dRm = αm0dR+ (1− αm01)rdt

Thus, we recognize
Σαm = cov(dR, dR0)αm = cov(dR, dRm)

and we have The ICAPM:

μ− r1 = γmcov(dR, dRm)− cov(dR, dy0)γmηm

mean excess returns are driven by covariance with the market portfolio and covariance with
each of the state variables. The risk aversion and state-variable aversion coefficients give the
slopes of average return on covariances.

This expression with covariance on the right hand side is nice, since the slopes are related
to preference (well, value function) parameters. However, it’s traditional to express the right
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hand side in terms of regression betas, and to forget about the economic interpretation of
the λ slope coefficients. This is easy to do:

μ− r1 = βdR,dRmλm − βdR,dy0λdy (69)

βdR,dRm =
cov(dR, dRm)

σ2dRm

;

βdR,dy0 = (cov(dy, dy0)−1cov(dy, dR0))0

λm =
σ2dRm

γm
;

λdy = cov(dy, dy0)
ηm

γm

Now we have expected returns as a linear function of market (total wealth) betas, and betas
on state variable innovations (or their mimicking portfolios).

Don’t forget that all the moments are conditional! The whole point of the ICAPM is
that at least one of the conditional mean or conditional variance must vary through time.

More Portfolio Implications

Return to the market portfolio in (71) or (68). The first term — and only the first
term — gives the mean-variance efficient portfolio. Thus, the market portfolio is no longer
mean-variance efficient. Referring to Figure 5, you can see that the optimal portfolio has
slid down from the vertical axis of the nose-cone shaped multifactor efficient frontier. The
average investor, and hence the market portfolio, gives up some mean-variance efficiency in
order to gain a portfolio that better hedges the state variables.

This prediction is the source of much portfolio advice from the ICAPM, for example,
why the ICAPM interpretation of the Fama-French 3 factor model, is used as a sales tool
for value-stock portfolios. If you find a mean-variance investor, an investor who does not
fear the state variable changes and so has η = 0; this investors can now profit by deviating
from market weights. He should slide up the nose-cone shaped multifactor efficient frontier
in Figure ??, in effect selling state-variable insurance to other investors, and charging a fee
to do so.

Precisely, we can rewrite the optimal portfolio for a mean-variance investor as

dRi =
γm

γi
dRm − γm

γi
ηm0dRH (70)

where dRH are the state-variable mimicking or hedge portfolios from (67). This expres-
sion tells us, quantitatively, how the mean-variance investor should deviate from the market
portfolio in order to profit from the ICAPM. As you can see, the investor should buy (or
sell) some of the hedge portfolios in addition to the market portfolios. An estimate of the
ICAPM will tell us the slope coefficients (of average returns on covariances) γm, ηm.

To get to (70), start with the optimal portfolio for a mean-variance investor,

dRi
i = rdt+

1

γi
(μ− r1)0Σ−1 (dR− r1dt)

44



This equation alone is not very inspiring — we have just written down the condition for mean-
variance efficiency. The point of the ICAPM or any other model is to help us to identify a
mean-variance efficient portfolio. The market portfolio return is

dRm = rdt+ αm0 (dR− r1dt)

dRm = rdt+

∙
1

γm
(μ− r1)0Σ−1 + ηm0βdy,dR

¸
(dR− rdt) (71)

We can solve (71) for the part we’re looking for

(μ− r)0Σ−1 (dR− rdt) = γm (dRm − rdt)− γmηm0βdy,dR (dR− rdt) (72)

Thus, the portfolio weights for our mean-variance efficient investor are

dRi =
γm

γi
dRm − γm

γi
ηm0βdy,dR (dR− rdt)

dRi =
γm

γi
dRm − γm

γi
ηm0dRH

The trouble of course is that everybody can’t be a mean-variance investor, or the ICAPM
would not hold. This advice must hold for the measure zero set of truly mean variance
investors, and among those only the ones who have not already optimized. There are no
portfolio implications of the ICAPM for the average investor. The average investor must
hold the market portfolio! If this advice is successful, we should question why there are so
many mean-variance investors out there if the equilibrium is truly a multifactor equilibrium!

More generally, however, we express the individual’s portfolio in terms of the market
portfolio rather than the tangency portfolio. Expressing is portfolio in terms of the market
portfolio, and using (72)

dRi = rdt+

µ
1

γi
(μ− r1)0Σ−1 + ηi0βdy,dR

¶
(dR− rdt)

dRi = rdt+
γm

γi
(dRm − rdt) +

µ
ηi0 − γm

γi
ηm0
¶
dRH

The investor starts with the market portfolio and then buys or sells the state variable hedge

portfolios as his risk aversion and aversion to state variable risk differs from that of the
market average.

This is a lovely expression. It emphasizes that as many investors should want to buy as
to sell the hedge portfolios. Also, it emphasizes that hedge portfolios do not have to be priced
to be interesting. A hedge portfolio that is not priced — for which ηm = 0 — still shows up in
every investor’s portfolio. Half are long, and half are short. It’s not interesting for the last
remaining mean-variance investor, but they are a vanishing breed. Getting the shorts to
sell to the longs, and charging a fee along the way, is a much more interesting business than
pursuing ephemeral state variable risk premia for mean variance investors. For example,
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idiosyncratic labor income risk is not priced. Yet there should be far more labor income
hedging in asset markets than is currently practiced.

Completing the Merton model.

Again, we still need to compute the levels of risk aversion and “state variable aversion”
from the primitives of the model, the utility function and formulas for the evolution of stock
prices. Conceptually this step is simple, as before: we just need to find the value function.
Alas, the resulting partial differential equation is so ugly that work on this multivariate
model has pretty much stopped at the above qualitative analysis. From (53), the equation
is

0 = u(u0−1(VW ))− ρV + Vt + VWWr − VWu0−1 (VW ) + Vy0μy +
1

2
Tr(σ0yVyy0σy)

+Wα∗0
£
(μ− r1)VW + σσ0yVWy

¤
+
1

2
VWWW 2α∗0σσ0α∗

where

α∗ = − VW
WVWW

(σσ0)
−1
(μ− r1)− (σσ0)−1 σσ0y

VWy

WVWW
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