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Conventional models of production under uncertainty specify that output

is produced in fixed proportions across states of nature. I investigate a

representation of technology that allows firms to transform output from one

state to another. I allow the firm to choose the distribution of its random

productivity from a convex set of such distributions described by a limit on

a moment of productivity scaled by a natural productivity shock. The model

produces a simple discount factor that is linked to productivity and that can

be used to price a wide variety of assets, without regard to preferences. (JEL
G12)
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Production possibilities in uncertain environments are usually
modeled by augmenting standard production functions to include
shocks. For example, we may write

y(s)="(s)f(k) (1)

where y(s) is output in state s, k is capital, and "(s) is random
productivity. The firm chooses capital k, then nature chooses the state
s, that is, productivity "(s), giving random output y(s).
Figure 1 illustrates the production set implied by this technology for

a two-period two-state world. A farmer has seeds W at time 0. The
farmer may plant them as k, or sell them as y(0)=W�k. At time 1, the
field generates wheat y(s)="(s)f(k) according to the state s, which can
take on two values s=h or s= l. The implied production set smoothly
transforms wheat in spring to a bundle of contingent wheat in fall, but it
has a kink across the states of nature. No matter how high the contingent
claim price of wheat is in the low state relative to the high state, the
farmer can do nothing to produce more in the low state at the expense
of production in the high state.
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Figure 1
Standard production possibility set in a two-state two-date world
The technology is y(s)="(s)f(k) for s=h,l, and y(0)=W �k.

This paper explores a representation for technology under uncertainty
in which the firm has a smooth choice over the state-contingent pattern
of its output. Figure 2 illustrates the idea. Now, the farmer can also
take actions that shift output from one state s=h to another state s= l.
If the relative contingent claim price of state l rises, for example, the
farmer can produce more in state l and less in state h, leaving sales at
time 0, y(0)=W�k, unchanged.
I explore smooth production sets generated by adding a choice of

the productivity distribution "(s) to the conventional description of
technology (1), constraining the random variable " to lie in a convex
set with a smooth boundary. Most of this paper explores a parametric
example, that random productivity " is constrained by
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Figure 2
Smooth production possibility set
The firm can change the distribution of output across states of nature, that is, the pattern
of y(h) versus y(l).

where ✓ are a set of weights, and ↵�0 is a curvature parameter. We can
think of the weights ✓ as natural or underlying random productivity.
The firm may obtain higher productivity than natural in some states,
by accepting lower than natural productivity in other states. I consider
below whether we need the ✓ weights and how to measure and identify
them.
Let m denote a stochastic discount factor, equivalent to contingent

claim prices p scaled by probabilities ⇡, m(s)=p(s)/⇡(s). If a firm
maximizes contingent claim value

maxE [m"f(k)]
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subject to (2), the first-order condition for choice of "—choosing "(s) in
every state of nature s—leads to

m=�
"↵

✓1+↵
, (3)

where � is a constant that includes the Lagrange multiplier on the
constraint (2). In a dynamic extension of the model, we link the
stochastic discount factor to productivity growth

mt+1=�t

✓
"t+1

"t

◆↵✓✓t+1

✓t

◆�(1+↵)

, (4)

where �t is a similar constant known at time t. The firm chooses
to produce more in states of nature with high contingent claim
prices or stochastic discount factors—higher marginal utility in general
equilibrium—and in states in which natural productivity ✓ is larger.
Why is this representation of technology useful or interesting? My

direct interest is the construction of production-based asset pricing
models. These are models that link asset prices and returns to real
economic variables through producer first-order conditions. Rather than
focus on understanding firm behavior, the determinants of random
productivity ", given asset prices as summarized by a discount factorm, I
am interested in turning the first-order conditions around to measure the
stochastic discount factor from observed quantity choices. For example,
once we infer the stochastic discount factor from productivity data via
(4), we can relate risk premiums E(Re) to the covariance of excess
returns Re with the discount factor, E(Re)=�cov(Re,m)/E(m), and
we can understand the prices p of payo↵s x from p=E(mx). When
we generalize production technologies, variables beyond productivity
including output, investment, hours, and disaggregated production data
enter the discount factor and contribute to this understanding.
This production-based approach ties the discount factor to marginal

rates of transformation, ignoring and thus holding for any set of
preferences. While a full understanding of the economy requires
general equilibrium—understanding preferences, investors’ probability
assessments, and the consumer-facing market structure—one can at
least tie asset prices to the production side of the economy, and study
production technology and behavior in isolation. One can determine
whether the cyclical relations between asset prices or returns and firm
data make economic sense, while others work on preferences and market
structure.
As the name implies, this approach to production-based asset pricing

is deliberately parallel to the standard consumption-based asset pricing
approach. The consumer first-order conditions are

mt+1=�
u0(ct+1)

u0(ct)
.
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With the usual power utility, and including the possibility of a preference
shock �, u(c)=(c/�)1�� , we have

mt+1=�

✓
ct+1

ct

◆��✓�t+1

�t

◆�(1��)

. (5)

In consumption-based asset pricing, we infer the stochastic discount
factor from consumption data, or its proxies, via (5). We then
understand risk premiums and asset prices by the covariance of payo↵s
with this discount factor.
This consumption-based approach infers the stochastic discount factor

from marginal rates of substitution, ignoring and thus holding for
any technology. While a full understanding of the economy requires
general equilibrium—understanding production technology and its
shocks, where cash flows come from—one can at least tie asset prices
to the consumer-investor side of the economy, and study preferences,
expectations, and consumer-facing market structure in isolation. One
can determine whether the cyclical relations between asset prices or
returns and consumer data make economic sense, while others work
on production technology, and assembling production and consumption
together in general equilibrium models.
While the approaches are parallel, production-based asset pricing

is additionally attractive because business cycles are essentially a
phenomenon of production—declines in investment, durable goods
output, and employment—and much less visible in consumption. Indeed,
formula (4) and its generalizations below have the form of many ad hoc
macro-asset pricing models that tie asset returns to a discount factor
created from productivity growth, investment growth, output, hours,
and other production data, surveyed below. Thus, this production-based
theory can provide foundations for many existing models in this class
and the empirical success they already document.
Figure 1 illuminates why this direct approach to production-based

asset pricing model is not possible using standard representations of
technology extending (1). A kink in the production set across states of
nature means that many di↵erent contingent claims prices are consistent
with any production point the firm might choose. There is no marginal
rate of transformation.
Much production-based asset pricing nonetheless uses standard

technologies of the form (1). Firm first-order conditions in this case
still contain useful information for asset pricing. The firm invests
optimally, producing a fixed-coe�cients bundle of contingent claims.
The first-order condition for that investment says that the physical
return on investment should be correctly priced by the stochastic
discount factor m, 1=E

⇥
mRI(k)

⇤
, with RI(k)="fk(k) in a simple two-

period example. We can therefore price asset payo↵s that are perfectly
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spanned by investment returns, and we can check for arbitrage between
asset and investment returns. This literature, surveyed below, has had
considerable empirical success. But in this framework, we cannot infer
anything about other returns, and we cannot back out a general discount
factor, without making additional preference assumptions.
Since I add the choice of productivity " to these representations

of technology, all their predictions remain intact. This paper is a
generalization of investment-return models, not an alternative to them.
The approach in this paper and its relatives, surveyed below, is

thus distinctive in that by allowing and modeling a marginal rate
of transformation across states, we can read the stochastic discount
factor that prices a wide class of returns from production data directly,
without preference assumptions, in exact analogy to the standard
consumption-based model.
The word “production-based” is also sometimes used to describe any

model that links its discount factor or pricing factors to production data,
though the economic logic may involve consumer optimization or general
equilibrium. I use it here to describe models that use of marginal rates
of transformation alone.
I delay a discussion of the literature until after the main body of the

paper. It will be much easier to understand how this paper relates to
other papers in the production-based enterprise after the reader has a
better idea of what is in this paper.
Though production-based asset pricing is my motivation and the focus

of this paper, this representation of technology also should be useful in
many other applications. Study of firms’ choices of risk exposure, and
how those choices respond to asset prices, including commodity futures
and derivatives, is an attractive idea.
The presence of random natural productivity ✓ raises some practical

Di�culties, just as preference shocks � would do if we allowed them. If
we allow free shocks, we can explain anything, so allowing shocks means
we need to think about their identification and measurement.
We need shocks somewhere, however. If neither preferences nor

technology had shocks, asset prices would be constant.
Basic correlations in the data argue that we need underlying

technology shocks ✓ as well, perhaps, as preference shocks. If there
were no such shocks, then firms would produce more (higher ") in
high discount-factor states. We usually associate high discount factors—
high marginal utility—with low consumption, low stock prices, and
recessions. But output is low in recessions, not the other way around.
Thus, the fact that stock prices, output, and consumption all comove
positively suggests that the bulk of such fluctuations must come from
underlying technology shocks, not preference or equivalent irrational
probability shocks.
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This conclusion is not ironclad. Productivity may rise in recessions,
when output and stock markets fall, or when other risk factors fall.
Not all macroeconomic variables and asset returns move in lockstep:
we live in a multifactor world. But the logic is strong enough that
we should keep natural productivity shocks in the model for now and
think quantitatively about their need and how to identify them. Natural
productivity shocks also act as a change-of-measure variable allowing us
to treat probabilities flexibly.
Why is a smooth representation of production possibilities, such

as (2), reasonable? First, producers do seem to have some ability to
control the pattern of their output across states of nature, that is, the
distribution of the productivity shocks they face. A farmer may plant
wheat in fields that do better in rainy or dry weather, choose seeds that
prosper in di↵erent weather conditions, and so forth. Electric utilities
may invest in equipment that produces electricity most e�ciently given
today’s prices and regulatory treatment of coal, oil, gas, nuclear, solar,
etc., or it may choose to invest in a variety of equipment, or more costly
and flexible-fuel equipment that can adapt to di↵erent circumstances.
Firms generically face questions of e�ciency versus resilience. Choose
one cheapest supplier or spread orders around multiple suppliers in
di↵erent countries. Keep extra inventories around or order them just
in time. “Real options” in management studies exactly this sort of
production decision. Given that bankruptcy, adjustment costs, and
reorganization costs are real, financial decisions, such as hedging input
prices and equity versus debt financing, a↵ect state-contingent outputs.
In Spring 2020, decisions not to keep an inventory of face masks and
ventilators around, and decisions to take on a lot of debt rather than
equity finance are leading to much regretted state-dependence in output.
The ability to produce during the pandemic state of nature is suddenly
receiving great attention in industry and government, and hopefully
better choices of " will emerge before the next one hits.
This ability to transform output across states of nature is not

unlimited. Technology will naturally have kinks across states of nature
completely unrelated to the production process. But technology will
naturally not have kinks across many other states of nature that are
related to the production process.
Second, smooth production sets can occur when one aggregates

standard production functions. Below, I explore a model in which a firm
has access to several di↵erent technologies or processes, each of which has
a di↵erent, but fixed, distribution of shocks. By varying its input across
the di↵erent processes, the firm can change the distribution of the shock
in the aggregate production function that relates the firm’s total output
to its total input. This approach is analogous to the classic result that
an aggregate of production functions that demand fixed combinations
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of inputs can be smooth (Houthakker 1955). I apply the same logic to
multiple outputs across states of nature.
Likewise, as one can span a full set of contingent claims by varying

investment over time in two securities, as in Black-Scholes option pricing,
so one could span contingent claims by time-varying physical investment
in multiple fixed-coe�cient technologies.
Since each firm, industry, or economy is an aggregate of an immense

number of microscopic production activities, this aggregation view
suggests a rich set of possibilities for transforming output across
states. But aggregation theory is useful when we have detailed micro
data that we wish to aggregate. The philosophy in this paper is
to specify aggregated, and therefore smooth, firm, industry, sector,
or economy production functions directly, corresponding to our data
sources. This philosophy mirrors the specification of representative
consumer preferences without spending a lot of time on aggregation
in consumption-based asset pricing.
Third, one may simply view the lack of kinks as being the most natural

production set and question the logic and evidence for such kinks. That
is how we approach the choice of inputs and the study of nonstochastic
multiple-output production functions. If we wish to model a farmer’s
choice to produce wheat versus corn, or to produce more today and
less tomorrow, we start with a smooth production set. So if we wish
to study wheat in rainy weather versus wheat in sunny weather, why
would we start by assuming their proportions are immutably fixed? A
reader of Debreu 1959, say, encountering the idea of contingent claims,
would surely start by writing down a smooth production set, mirroring
smooth preferences across goods and states, and mirroring smooth
technologies across inputs, outputs, and over time. Static production
theory in textbooks beautifully mirrors static preference theory. Why
not production under uncertainty?
Historically, it seems that aggregate production functions with kinks

across states of nature are not the result of such consideration and
evidence. Instead, shocks were simply tacked on to deterministic
intertemporal functions familiar from growth theory. Real business cycle
models, such as Kydland and Prescott 1982 and King, Plosser and
Rebelo 1988, use technologies of the form (1). None considers the
possibility of a smooth production set across states of nature. That
choice is entirely understandable. A smooth production set introduces
complications. And these authors didn’t need to generalize. Tacking
productivity shocks onto standard intertemporal technologies was good
enough for their uses. But that historical accident does not carve the
decision in stone or argue for kinks and against smoothness. Here too,
adding productivity choice generalizes rather than contradicts these
models. One can always pick the underlying shock process ✓ so that
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the firm’s equilibrium choice " is the same as that specified in these
models.

1. Production Functions and Discount Factors

Our goal is to write plausible and tractable aggregate production
functions that allow transformation across states. There are many ways
to write general concave functions that are di↵erentiable across states
of nature. However, it seems productive instead to incorporate standard
production theory and forms that have proved useful in the past, as far
as possible.
For that reason, I specify a production function that describes the

firm’s ability to transform goods over time in a conventional way, but
adds to it the ability to transform output across states. Additionally,
I focus on and explore a particular constant elasticity of substitution
(CES) functional form for this choice: output y is given by a standard
production function combining capital k and labor n,

y="f(k,n) (6)

y(s)="(s)f [k,n(s)],

where " satisfies

E

⇣"
✓

⌘1+↵
�
1 (7)

X

s

⇡(s)


"(s)

✓(s)

�1+↵

1. (8)

The second equation in each group expresses random variables as
functions of finite states s=1,2...S. The finite state examples are easier
to keep track of, but the analysis is valid for continuously distributed
random variables.
The firm can choose its productivity " from the convex set of random

variables described by (7). Nature hands the firm an underlying or
natural productivity ✓, and the firm may choose "=✓. But the firm can
choose a higher value "(s) in some states s, if it accepts a lower value
"(s0) in some other state s0. The parameter ↵ controls the firm’s ability
to transform across sates of nature. As ↵!1, productivity necessarily
converges to the natural shock ✓. As ↵ decreases, it is easier for the firm
to transform output from one state to another. (Previous drafts of this
paper used ↵ in place of 1+↵. I change notation here to more clearly
mirror the risk aversion coe�cient of power utility.)
An alternative way to think of (7) is that we generalize a certainty

production function y✓f(k,n) to a CES aggregate of output across
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states on the left-hand side,

E

⇣y
✓

⌘1+↵
� 1

1+↵

f(k,n).

Defining "=y/f(k,n), this is the same formulation as (7). This
expression is perhaps more theoretically satisfying, as it describes a
convex and smooth set of inputs and outputs. However, I find the idea of
“picking productivity” maintains better the connection to well-studied
production theory, so I use the former expression. The  allows for
free disposal, but with positive state prices the firm will always choose
equality.
Figure 3 plots the production set (8) in a two-state example, s={h,l}

with ✓(h)=2, ✓(l)=1 and ⇡ (h)=0.5. For ↵=1, one sees how (8) induces
a convex set of possible {"(h),"(l)} possibilities, and with them a convex
set of y(s)="(s)f(k) possibilities, as graphed in Figure 2. As we raise
↵, the curve is more convex, and as we lower ↵, the curve is flatter.
Thus, higher ↵ means that in response to a given contingent claim price
vector, the firm will deviate less from the initial ✓, while for lower ↵ it will
deviate more. The parameter ↵ plays a similar role to the risk aversion
coe�cient of utility theory. The natural shock ✓ biases the production
set toward state h in this case.
Probabilities do not naturally enter production technologies. A

farmer’s ability to produce more in a rainy state and less in a dry
state, by moving planting to a field that does better in rainy weather,
does not have any natural connection to the probability that the rainy
state occurs. Yet it is very convenient to sum across states of nature
by some probability measure, and essentially mandatory to do so with
continuously distributed random variables. Thus, the probabilities in (7)
and (8) are arbitrary. They are not necessarily (say) the firm manager’s
subjective probabilities, as the probabilities in the consumer first-order
condition are the consumer’s subjective (rational or not) probabilities.
This arbitrariness of probabilities is one reason to include the shock

✓. One might wish for the simplicity of a model without natural
productivity shocks, but then the probabilities themselves become
the weights. Those probabilities might di↵er arbitrarily from true or
empirical probabilities used in analysis. Thus, the weights ✓1+↵ can serve
as transformation between the probability weights, unrelated to actual
probabilities, that define technological opportunities, and whatever
probabilities we wish to use in analysis. The parameters ✓ and ⇡ are
not separately identified, so any change in one can be made up by the
other. In that sense the probabilities really do not enter the production
set.
This seeming arbitrariness is a virtue. We do not have to worry about

rational or irrational, conditional versus unconditional, true versus
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Figure 3
Shock choice sets
Each line represents the set of {"(h),"(l)} that the firm can choose from, satisfying
E[("/✓)1+↵]1. The base case is ↵=1, ✓=(2,1), and ⇡(h)=0.5. The dashed lines vary ↵
to ↵=0.5 and ↵=2.

sample, real versus risk-neutral probabilities, agents who see more than
we do, and so forth.
To solidify these observations, we could start by generalizing a

technology y=f(k) to a CES aggregate over states
 
X

s

⇢(s)y(s)1+↵

! 1
1+↵

=f(k)

where ⇢(s) are a set of weights unrelated to probabilities. This expression
describes a concave production set of outputs. Divide by f(k), and we
have a constraint on productivity "=y/f(k). Given any convenient set
of set of probabilities ⇡, define

1

✓(s)1+↵
=
⇢(s)

⇡(s)
,
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and we recover the original specification (2).

2. The Simplest Model

Now let us place this constraint in a model of the firm. Fix f(k,n)=1 to
focus on the random variable choice, and consider a firm that maximizes
the value of output, now just ". The firm’s problem is

max
"

E(m")s.t. E

⇣"
✓

⌘1+↵
�
1. (9)

To be clear, with finite states s, the latter expression means

max
{"(s)}

X

s

⇡(s)m(s)"(s) s.t.
X

s

⇡(s)

✓
"(s)

✓(s)

◆1+↵

1.

The variable m is the stochastic discount factor, or contingent claim
price divided by probability, m(s)=p(s)/⇡(s), so the objective is the
same as maximizing contingent claim value. The firm chooses the
random variable "(s) in each state of nature s. Thus, a first-order
condition operates state-by-state inside the expectation.
Introducing a Lagrange multiplier � on the productivity-choice

constraint, the first-order condition is

m(s)=�(1+↵)
"(s)↵

✓(s)1+↵
(10)

in each state of nature s. This first-order condition directs the firm to
rearrange output toward states of nature with high discount factors or
contingent claim prices, and toward states where it is easier to produce
with high ✓.
In standard theory of the firm, we solve for choices given prices, for "

given m. We do that by imposing the constraint in (9) to eliminate the
Lagrange multiplier �, which yields1

"↵

✓↵
=

m✓
n
E
h
(m✓)

1+↵
↵

io ↵
1+↵

. (11)

1 From (10),

m✓=�(1+↵)
"↵

✓↵

(m✓)
1+↵
↵ =[�(1+↵)]

1+↵
↵

✓
"

✓

◆1+↵

E


(m✓)

1+↵
↵

�
=[�(1+↵)]

1+↵
↵ .

Substitute out �(1+↵) in the top equation and rearrange to get (11).
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This condition expresses even more clearly the idea that the firm should
produce more in states with high contingent claim prices m and high
natural productivity ✓. (The point of this equation is to determine "
given the other variables, so one might reexpress it with just " on the left-
hand side to emphasize that point. I find the given expression prettier,
as it describes how " is distorted away from ✓.)
However, our objective is a production-based asset pricing model:

we want to infer what contingent claims prices m must have been in
order to produce observed choices ". Equation (10) already gives us a
discount factor that can price all zero-cost portfolios or excess returns.
For that goal, we need an m⇤ such that 0=E(m⇤Re) for any excess
return Re. The level or scale of m⇤ is irrelevant. If 0=E(m⇤Re), then
0=E [(2m⇤)Re]. Thus, the discount factor

m⇤=
"↵

✓1+↵
(12)

immediately prices all zero-cost portfolios. The analogy to the
consumption-based m⇤=c��/�1�� with utility u(c)=(c/�)1�� is
attractive. (For symmetry, I include a preference shock � here, discussed
below.)
When using discount factors for zero-cost portfolios, it is often useful

to normalize the discount factor so the mean discount factor and implied
risk-free rate E(m)=1/Rf are reasonable. This normalization leads to

m⇤=
"↵

✓1+↵
/


RfE

✓
"↵

✓1+↵

◆�
. (13)

This problem does not lead to a full characterization of the discount
factor, because we have not given the firm any ability to transform
output over time. Equation (11) gives the same choice " for a discount
factor 2m as it does for a discount factor m, so we cannot invert (11) to
learn the level of the discount factor from ". Next, we will add time.
Expressions (10)-(13) relate random variables. They hold ex post

state by state. The (s) notation in (10) emphasizes this fact. It is
often convenient to give a name and number to states of nature. For
example, s could denote inches of rainfall. Then (10) relates functions.
The expression m(s) is the function relating inches of rainfall to the
discount factor, and (10) describes how that function comprises the
functions "(s) and ✓(s), or it describes the firm’s optimal choice function
"(s) in terms of the functions m(s) and ✓(s). Thinking this way is
particularly convenient when one wants to construct a model, not just
infer a discount factor from data. One typically specifies that s is a vector
that follows a stationary Markov process, fully capturing all information.
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3. A Two-Period Model

Next, we add the conventional f(k) part of production theory, which
allows the firm to transform output over time as well as across states.
In this formulation the intertemporal and risk aspects of the problem
separate so equations like (12) and (13) continue to describe risk
premiums. The intertemporal problem adds a single investment return
which establishes the level of the discount factor m and the level of
returns. Add capital and the possibility to invest at time 0. The firm
maximizes contingent claim value,

max
{k,"}

E [m "f(k)]�k s.t. E

⇣"
✓

⌘1+↵
�
1. (14)

The firm chooses capital k before the shock is realized. It chooses the
value of productivity " in each state of nature, for example, "(s) for each
s.
Again, introducing a Lagrange multiplier � on the productivity-choice

constraint of (14), the first-order conditions are

@

@k
: 1=E [m "fk(k)] (15)

@

@"
:mf(k)=�(1+↵)

"↵

✓1+↵
. (16)

Equation (15) is the familiar condition that the discounted value of
the production accruing to an additional unit of investment should equal
its marginal cost. Equivalently, the firm should invest until the physical
investment return is correctly priced. We can write (15) 1=E(mRI)
with RI ⌘"fk(k) denoting the (random) investment return. This first-
order condition is the same as it is in the standard case that the firm
has no " choice. By observing " and k, we can learn one return RI , and
we can learn any returns that can be priced by arbitrage with RI . But
we cannot learn about other returns or payo↵s.
Equation (16) is the same as the productivity choice first-order

condition of the simplest model without capital (10). A little more "(s)
in state of nature s would raise the firm’s objective by ⇡(s)m(s)f(k),
at the cost of lowering output in some other states. From (16), discount
factor (12), m⇤="↵/✓1+↵, and its scaled version (13) that describe
zero-price portfolios are unchanged with the addition of f(k) to the
production technology. Thus, this two-period model only adds the level
of the discount factor to the previous description.
Now, let us incorporate (15) and fully solve for the discount factor.

The level of the discount factor is determined in this model by the
condition (15) that the discount factor prices the investment return:

1=E [m"fk(k)]=E


�(1+↵)

f(k)

"↵

✓1+↵
"fk(k)

�
=�(1+↵)

fk(k)

f(k)
.
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Equation (16) then becomes

m=
1

✓fk(k)

⇣"
✓

⌘↵
=

1

"fk(k)

⇣"
✓

⌘1+↵
=

1

RI

⇣"
✓

⌘1+↵
. (17)

The three forms on the right-hand side are equivalent. The reader may
find that one or the other is more elegant.
Since any asset or claim to a payo↵ x is a bundle of contingent claims,

we can write asset prices as price =E(mx), for example,

price =E


1

"fk(k)

⇣"
✓

⌘1+↵
x

�
.

The discount factor (17) is not the inverse of the investment return,
m 6=1/RI =1/["fk(k)]. The discount factor (17) adjusts that investment
return as the firm has chosen to distort its productivity " from the
underlying shock ✓. The investment return RI ="fk(k) is not risk-
free. The model determines the risk-free rate indirectly, through the
investment return together with the productivity " first-order condition
that determines risk premiums. From (17), the risk-free rate is

1

Rf
=E(m)=

1

fk(k)
E


"↵

✓1+↵

�
=E


1

RI

⇣"
✓

⌘1+↵
�
.

This model separates the economics of intertemporal transformation
and risk premiums. The first-order condition (15) governs the allocation
of output over time, the tradeo↵ at the margin of an initial k for
a risky bundle "f(k), and it determines the overall level of returns,
the level of the discount factor. First-order condition (16) governs the
allocation of output across states of nature and thus risk premiums. As
we generalize the production technology f(k), this simple calculation
(12) for characterizing risk premiums remains essentially unchanged,
while the investment returns and therefore the characterization of the
overall level of returns becomes more complex.

3.1 Production theory versus asset pricing

In the theory of the firm, we solve such first-order conditions to give the
producer’s choices {k,"} in terms of prices, that is, the discount factor
m. To this end, we solve the pair of first-order conditions to give one
equation describing k and another describing ", each in terms of m and
✓. The resultant expression for optimal capital k is2

1=
n
E
h
(m✓)

1+↵
↵

io ↵
1+↵

fk(k) (18)

2 From the first form of (17), write m✓fk(k)="↵/✓↵. Using the constraint E[("/✓)1+↵]=1,
we have (18). Use (18) to substitute for fk(k) in the first form of (17) to obtain (19).
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while the optimal productivity " is given by

"↵

✓↵
=

m✓
n
E
h
(m✓)

1+↵
↵

io ↵
1+↵

. (19)

Equation (19) expresses the same intuition as the first-order condition
(16), produce more in high discount factor and high " states, in purer
form. It is the same expression as in the one-period model, (11).
Looking at (19), the choice "=✓ emerges if m/1/✓. In this case,

we do have that m=1/["fk(k)]=1/RI , that is, the discount factor or
contingent claim price vector equals the inverse of the firm’s investment
return. The "=✓ case does not emerge under risk neutrality or state
prices proportional to probabilities, m=�= constant.
Though my motivating application is production-based asset pricing,

a theory of the firm with choice of productivity shocks would be
interesting as well. However, the genius of consumption-based asset
pricing is that we can infer discount factors from consumer first-order
conditions without even solving the full consumer partial-equilibrium
problem—without writing the budget constraint, income stream, and
finding consumption in terms of prices and incomes, as, for example,
rational expectations permanent income models do—and certainly
without solving the whole general equilibrium. Here, production-based
asset pricing follows the same path. We can infer the discount factor,
or at least a discount factor for zero-cost portfolios, directly from firm
first-order conditions without solving for the constraint as in (19), and
without solving the full partial-equilibrium output, labor, and capital
plan as in (18), let alone general equilibrium.

4. Labor

Adding labor changes the calculations in interesting ways. Adding other
variable inputs, e↵ort, prices (such as a di↵erent price of investment
versus output goods), and other refinements and extensions of the period
production function has similar e↵ects.
First, a disappointment: one might think that a firm that can

adjust inputs after observing a shock can produce more or less
output in response to that shock and thus achieve a marginal rate of
transformation. That intuition is false. Producing more in one state
does not make it more di�cult to produce in another. The ability to
produce more or less after a shock is observed does not allow the firm to
transform output across states of nature. (Belo 2010, footnote 4 makes
this point.)
To see this point, write the production function as

y(s)="(s)f [k,n(s)]
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where n(s) is labor input or e↵ort in state s. Without productivity
choice, the firm’s problem is

max
{k,n(s)}

X

s

⇡(s)m(s){"(s)f [k,n(s)]�w(s)n(s)}�k,

where w can represent the wage, or the cost of providing e↵ort. The
first-order conditions are

m(s)["(s)fn [k,n(s)]�w(s)]=0 (20)

X

s

m(s)"(s)fk [k,n(s)]=1. (21)

Condition (20) does not help us to identify the discount factor m(s),
as m(s) cancels from that equation. The firm sets "(s)fn [k,n(s)]=w(s)
separately in each state. This observation gives us no information linking
states.
The contingent claim price is not the output price. The contingent

claim price applies equally to output and wages. The wage is w(s)
relative to output in each state. Written in terms of contingent claims
prices p(s)=m(s)/⇡(s), the first-order condition is not p(s)fn [k,n(s)]=
w(s); that’s a di↵erent p(s), an output price not a contingent claim price.
Intuitively, the action of hiring more labor in one state does not change
the firm’s options in another state, so this margin does not identify
contingent claim prices.
Variable labor does, however, act like an additional productivity shock

✓, so it gives us a measurable source of such shocks and will be important
in quantitative exercises. To see these e↵ects in the simplest model,
return to the one-period model of Section 2. Now let the firm maximize

max
{",n}

E{m["f(n)�wn]} s.t. E
⇥
("/✓)1+↵

⇤
1. (22)

The labor decision and the wage are both stochastic; that is, w(s) and
n(s) are random variables, and the labor decision takes place after the
firm observes the state of the world s. The first-order conditions are now
the pair

"fn(n)=w

mf(n)=�(1+↵)"↵/✓1+↵.

With a standard power functional form of f(n)=n�, the first-order
conditions become

"�n��1=w (23)

mn�=�(1+↵)"↵/✓1+↵. (24)
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We can construct a discount factor for zero-cost portfolios from (24):

m⇤=
"↵

✓1+↵n�
. (25)

Comparing this result to (12), we add labor n�. Labor n appears in the
discount factor formula just like another shock ✓.
Alternatively, we may substitute from the first-order condition (23)

to express the labor choice n as a function of wage w. From (23), the
labor choice is

n�=
⇣"�
w

⌘ �
1��

. (26)

Substituting for n� in (24), and solving for m,

m=


�(1+↵)

�
�

1��

�
"↵�

�
1��

✓1+↵
w

�
1�� . (27)

Thus, we have a discount factor for zero-cost portfolios

m⇤=
"↵�

�
1��

✓1+↵
w

�
1�� . (28)

Expression (28) using wages is a little more elegant than (25) using
labor input, as now the discount factor is expressed as a function of
the single choice variable " and external circumstances w and ✓. High
" will induce the firm to hire more labor, so " and n are really not
two separate influences in (25). In (28) labor changes the e↵ective
coe�cient on productivity ". A measurement of the coe�cient on
" with constant wages is not the pure coe�cient of transformation
across states. However, the labor end of macroeconomics discourages
the use of measured spot wages as equal to marginal products of labor,
so the formulation using actual labor inputs may be more successful
empirically.
The discount factors (25) and (28) have important lessons going

forward. The production-based discount factor is not necessarily just
productivity raised to a power. Here, wages or labor inputs appear
as additional pricing factors in a discount factor formula. Additional
material inputs or adjustment costs can appear similarly.
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Solving (27) for ", and using the constraint to find the Lagrange
multiplier �, we can express the productivity choice as3

"1+↵

✓1+↵
=

⇣
m✓

1
1�� w� �

1��

⌘ 1+↵
↵� �

1��

E

⇣
m✓

1
1�� w� �

1��

⌘ 1+↵
↵� �

1��

� . (30)

The firm chooses larger productivity in states with higher discount
factors, higher natural productivity shocks, and lower wages. Wages act
like the natural productivity shocks.

5. Intertemporal Production

Next, we generalize the idea to a standard intertemporal context. The
firm’s objective is

maxE
1X

t=1

⇢t�1⇤t(yt�it),

where ⇢t�1⇤t is the stochastic discount factor, with mt+1=⇢⇤t+1/⇤t,
⇤0=1, y is output and i is investment. I start with y=f(k), and then
generalize to add labor y=f(k,n) and adjustment costs to investment.
It is more convenient in this dynamic setting to write the problem in
terms of the level of the discount factor ⇤, rather than the cumulated
growth rate m.
Now, how do we extend the productivity choice constraint? We can

approach this question in several ways.

5.1 A sum constraint

A natural way to extend the idea to a dynamic model is to write the
constraint

E

"
(1�⇢)

1X

t=0

⇢t
✓
"t+1

✓t+1

◆1+↵
#
1. (31)

3 From (27), we have

m✓
1

1�� w
� �

1�� =

"
�(1+↵)

�
�

1��

#
"
↵� �

1��

✓
↵� �

1��
.

✓
m✓

1
1�� w

� �
1��

◆ 1+↵
↵� �

1�� =

"
�(1+↵)

�
�

1��

# 1+↵
↵� �

1�� "1+↵

✓1+↵
. (29)

Taking the expectation and using the productivity choice constraint gives

E

2

4
✓
m✓

1
1�� w

� �
1��

◆ 1+↵
↵� �

1��

3

5=

"
�(1+↵)

�
�

1��

# 1+↵
↵� �

1��
.

Substituting this result back into (29), we have (30).
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This formulation parallels the extension of power utility from a one-
period setting E

�
c1��

�
to an intertemporal setting E

P1
t=1�

t(ct)
1�� .

As in that case, however, this formulation allows the firm to substitute
productivity over time, trading "t for "t+1, as well as across states of
nature. I turn below to ideas that separate time versus risk.
Using a simple production technology y="f(k), the firm’s time-zero

contingent claim problem is now

maxE
1X

t=1

⇢t�1⇤t ["tf(kt)�it]

s.t. kt+1=(1��)kt+it, k0, (32)

together with (31). I scale the discount factor by the same time constant
⇢ as appears in the constraint (31). This is just a convenience to
produce stationary solutions, as we often scale �t⇤t so we can write
u0(ct)=⇤t. Otherwise, we obtain growth in either the discount factor or
productivity, which is fine but adds extra terms in powers of ⇢. Growing
✓ can also make up any di↵erence in growth rates.
The first-order conditions, varying investment and then productivity,

are

⇤t=Et{⇢⇤t+1 ["t+1fk(kt+1)�(1��)]} (33)

⇤t+1f(kt+1)=�(1+↵)(1�⇢)
"at+1

✓1+↵
t+1

, (34)

where � is the Lagrange multiplier on the productivity-choice constraint
(31).
Condition (33) is the familiar intertemporal condition. It says to

invest so that the one-period return from physical investment RI
t+1⌘

"t+1fk(kt+1)�(1��) is correctly priced by the discount factor. In this
equation and below, keep in mind that capital kt+1 is known at time t.
Equation (34) ties the discount factor to productivity, just as the

consumption-based discount factor is tied to consumption, ⇤t=u0(ct).
It says to raise productivity in states with high contingent claim prices,
in states in which it is easier to do so, and in states with higher output,
since productivity multiplies output.
Dividing adjacent periods, Equation (34) leads to a discount factor

for one-period returns comprising productivity growth and capital or
productivity growth and output,

mt+1=
⇢⇤t+1

⇤t
=⇢

✓
"t+1

"t

◆↵✓✓t+1

✓t

◆�(1+↵) f(kt)

f(kt+1)
(35)

=⇢

✓
"t+1

"t

◆1+↵✓yt+1

yt

◆�1✓✓t+1

✓t

◆�(1+↵)

. (36)
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This expression is nicely analogous to the consumption-based discount
factor proportional to consumption growth ⇤t+1/⇤t=(ct+1/ct)�� . It
leads to a multifactor macro-asset pricing model.
We can eliminate the multiplier � to express productivity choice as

before,4

"at
✓↵t

=
⇤t✓tf(kt)

n
E
P1

t=0(1�⇢)⇢t [⇤t+1✓t+1f(kt+1)]
1+↵
↵

o ↵
1+↵

. (37)

This problem also allows a recursive statement, which is an easier basis
for numerical solution of more complex models. Write the constraint (31)
recursively as

W 1+↵
t ⌘Et(1�⇢)

1X

j=1

⇢j�1

✓
"t+j

✓t+j

◆1+↵

=Et

"
(1�⇢)

✓
"t+1

✓t+1

◆1+↵

+⇢W 1+↵
t+1

#

(38)
with W0=1. At time t, the firm picks for each state at t+1 values for
"t+1 and Wt+1, subject to the constraint (38). The recursive problem is
then

V (kt,Wt,"t)= max
{kt+1,"t+1,Wt+1}

{"tf(kt)� [kt+1�(1��)kt]}

+Et


⇢⇤t+1

⇤t
V (kt+1,Wt+1,"t+1)

�

subject to (38), k0, and W0=1. The first-order and envelope conditions
of this recursive statement give the same results (33) and (34). See the
Internet Appendix for algebra.
This recursive statement also allows us to think about the problem

starting from time t, and its conditional information set. The problem
is the same, with the constraint equal to W 1+↵

t rather than one, as
reopening a consumer problem at time t is the same, with conditional
expectations and time-t wealth in the constraint.
An arbitrage argument o↵ers insight. Since the constraint links date

and time, we can synthesize any return, by producing a little more
dyt+1 in the states of nature described by that return, at the cost of

4 From (34),

[⇤t✓tf(kt)]
1+↵
↵ =[�(1+↵)(1�⇢)]

1+↵
↵

✓
"t

✓t

◆1+↵

.

Imposing the constraint,

E
1X

t=0

(1�⇢)⇢t [⇤t+1✓t+1f(kt+1)]
1+↵
↵ =[�(1+↵)(1�⇢)]

1+↵
↵ .

Substituting in (34) gives (37).
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producing a little less dyt, as described by the constraint. Di↵erentiating
the constraint (31) with respect to "t and all "t+1 following the date and
state "t,

"↵t
✓1+↵
t

d"t=Et

"
⇢

 
"↵t+1

✓1+↵
t+1

!
d"t+1

#
.

The production process gives extra output according to dyt=f(kt)d"t,
so the extra output dyt+1 and its cost dyt obey

"↵t
✓1+↵
t f(kt)

dyt=Et

"
⇢

 
"↵t+1

✓1+↵
t+1

!
1

f(kt+1)
dyt+1

#
.

Defining Rt+1=dyt+1/dyt, the firm can thus synthesize any return Rt+1

1=Et

"
⇢

✓
"t+1

"t

◆1+↵✓yt+1

yt

◆�1✓✓t+1

✓t

◆�(1+↵)

Rt+1

#
. (39)

We recognize the standard asset pricing equation with the discount
factor (36).
In this way, we can view this production-based asset pricing model

as an extension of the arbitrage argument of investment-based asset
pricing. Investment-based asset pricing notices that the firm can
synthesize a return RI

t+1 by varying investment at time t and t+1.
Therefore any security with state-contingent payo↵s RI

t+1 must have
price one. This argument tells us how similarly to price any set of random
payo↵s, by synthesizing them via the productivity choice constraint.

5.2 Separating time and state by recursive production and

CES

If we wish to separate the economics of time and state in production-
based asset pricing, treated symmetrically in the sum constraint (31),
we can naturally follow the approaches that separate time and state
in utility theory. Unlike the case in utility theory, where the axioms of
expected utility lead to state-separability, nothing (yet) but convenience
indicates that production technology should be separable across sates.
So non-state-separable and non-time-separable production functions are
useful possibilities to consider.
First, we can follow the Epstein and Zin 1989 recursive utility path.

To get there, write the recursive statement of the sum constraint (38)
as

Rt+1=

"
(1�⇢)

✓
"t+1

✓t+1

◆1+↵

+⇢W 1+↵
t+1

# 1
1+↵

Wt=
⇥
Et

�
R1+↵

t+1

�⇤ 1
1+↵ .
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Here, I just introduce the notation Rt+1 for the inside term of (38). Now
we can generalize this constraint by changing the parameter of the first
equation to � 6=↵:

Rt+1=

"
(1�⇢)

✓
"t+1

✓t+1

◆1+�

+⇢W 1+�
t+1

# 1
1+�

Wt=
⇥
Et

�
R1+↵

t+1

�⇤ 1
1+↵ .

The parameter � describes the firm’s ability to transform productivity
from one date to another. The parameter ↵ describes its ability to
transform productivity from one state to another.
The one-period discount factor becomes

mt+1=⇢
1+�

1+↵

0

@ Rt+1
⇥
Et

�
R1+↵

t+1

�⇤ 1
1+↵

1

A
↵��✓

"t+1

"t

◆1+�✓✓t+1

✓t

◆1+�✓yt+1

yt

◆�1

.

(40)
The Internet Appendix presents the algebra. As in recursive utility,
a state variable, Rt+1, that combines current "t+1 and future
productivities now enters the discount factor, and it defines risk
exposures. Identifying that state variable takes a lot of e↵ort on the
consumption side, and would likely require e↵ort on the production side
as well. But it also opens the door to an interesting menagerie of pricing
factors. And, we can observe the firm’s stock price where we cannot
observe the consumer’s utility, which may help.
Second, we can simply describe productivities as a CES aggregate,

with distinct elasticities across time � and states ↵,

8
<

:

1X

t=0

⇢t
"
E

✓
"t+1

✓t+1

◆1+↵
# 1+�

1+↵

9
=

;

1
1+�

1. (41)

The one-period discount factor becomes

mt+1=

8
>><

>>:

E

⇣
"t+1

✓t+1

⌘1+↵
�

E

⇣
"t
✓t

⌘1+↵
�

9
>>=

>>;

��↵
1+↵

✓
"t+1

"t

◆1+↵✓✓t+1

✓t

◆�(1+↵)✓yt+1

yt

◆�1

.

(42)
The first term alters our description of the firm’s ability to transform
across time, and now controls the risk-free rate or other level of returns.
Zero cost portfolios can be priced by the same discount factor as before,
ignoring the first term. Productivity ", still raised to 1+↵, carries risk
pricing. In the recursive formulation (40) the direct " productivity term
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is raised to the 1+� power and describes intertemporal substitution. The
Rt+1 term (which also contains "t+1) carries all the risk aversion, but one
must calculate or measure that state variable somehow to measure risk
premiums. So this CES aggregate is simpler and easier to operationalize,
though it opens fewer doors to additional pricing factors.

5.3 A constraint each period

One can also allow productivity choice in a dynamic model by writing
a separate constraint for each time period,

E

"✓
"t+1

✓t+1

◆1+↵
#
1 (43)

in place of the single constraint (31). This formulation does not allow
the firm a marginal rate of transformation between time periods by
productivity choice. All intertemporal transformation has to go through
the investment return.
The firm maximizes the contingent claim value of output,

maxE
1X

t=1

⇢t�1⇤t{"tf(kt)� [kt+1�(1��)kt]}

but now subject to the constraints (43) rather than (31). The first-order
conditions are

@

@it
,

@

@it+1
: 1=Et

⇢
⇢⇤t+1

⇤t
["t+1fk(kt+1)+(1��)]

�
(44)

@

@"t+1
: ⇤t+1f(kt+1)=�t+1(1+↵)

"↵t+1

✓1+↵
t+1

, (45)

where ⇢t�t+1 is the Lagrange multiplier on the constraint (43). It varies
over time, but not across states of nature.
Equation (44) again says that the investment return should be

correctly priced. Equation (45) again says to produce more in high
contingent claim price states, high natural productivity ✓ states, and
high output states.
The di↵erence between a separate constraint for each period (43)

and the previous constraint on the sum (31) is that we have time-
varying Lagrange multipliers �t+1 in (45) rather than a constant
�. The multiplier �t+1 measures the shadow value of transforming
intertemporally, of trading some "t for the ability to increase all of the
following "t+1.
We can quickly construct a discount factor that prices zero-cost

portfolios. Such a discount factor m⇤ at time t satisfies

0=Et(m
⇤
t+1R

e
t+1).
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It can be scaled by any time t random variable; btm⇤
t+1 also prices zero

cost portfolios. A convenient zero-cost portfolio discount factor is thus

m⇤
t+1=⇢

✓
"t+1

"t

◆↵✓✓t+1

✓t

◆�(1+↵)

. (46)

This discount factor is the same as the zero cost portfolio discount factor
deriving from the sum constraint, (35), di↵ering only by time t random
variables.
One could use the same discount factor for zero cost portfolios as in

the one-period model,

m⇤
t+1=bt"

↵
t+1✓

�(1+↵)
t+1 , (47)

for any bt. However, productivity "t, like consumption, is typically
very persistent and grows over time, and ✓t should have similar
properties. So, while (47) with bt=1, say, prices zero-cost portfolios, its
conditional mean Et(m⇤

t+1) and implied risk-free rate Rf
t =1/Et(m⇤

t+1)
vary strongly over time, and it is potentially nonstationary violating the
assumptions of all time-series empirical work. Choosing growth rates
as at least an initial scaling, as in (46), is wise for typical time-series
applications. Analogously, we typically use mt+1=�(ct+1/ct)

�� , though
m⇤

t+1=c��
t+1 also prices zero cost portfolios.

One can scale further by any convenient time-t random variable. For
example, one can produce a given shadow or measured risk-free rate Rf

t

with

m⇤
t+1=

1

Rf
t

⇣
"t+1

"t

⌘↵⇣
✓t+1

✓t

⌘�(1+↵)

Et

⇣
"t+1

"t

⌘↵⇣
✓t+1

✓t

⌘�(1+↵)
� , (48)

with or without "t and ✓t in the denominators. Scaling a discount factor
to have a reasonable implied risk-free rate has proven wise in empirical
work.
We can also scale the discount factor to price the investment return,

and thereby display a full production-based discount factor that prices
all returns,

mt+1=

⇣
"t+1

"t

⌘↵⇣
✓t+1

✓t

⌘�(1+↵)

Et

⇣
"t+1

"t

⌘↵⇣
✓t+1

✓t

⌘�(1+↵)
RI

t+1

�
.

. (49)

The expectation in the denominator is a time-t random variable, so it
fits in to the rubric of (47). This discount factor prices RI

t+1 and all zero
cost portfolios Re

t+1, so it prices all returns Rt+1.

25

D
ow

nloaded from
 https://academ

ic.oup.com
/raps/article-abstract/doi/10.1093/rapstu/raaa006/5863258 by John C

ochrane on 26 June 2020



Review of Asset Pricing Studies / v 00 n 0 2015

However, the point of this model is to separate the economics of time
and risk. Therefore, it may be clearer to examine its implications for
risk premiums via (46) or (48) and separately to examine its investment
returns, rather than to cloud the latter economics by constructing the
grand discount factor of (49).
The expectation in (43) is unconditional, as in the sum constraint (31).

The Internet Appendix considers whether the expectation in (43) should
be conditional, Et(·), unconditional, E(·) or somewhere in between
E⌧ (·), 0<⌧<t. The distinction matters for the dynamic properties of
the chosen "t given a discount rate process, but it makes no di↵erence
to the discount rate formulas here. In the Internet Appendix, I conclude
that an unconditional or ⌧<<t formulation is more reasonable. Absent
serially correlated natural productivity ✓, a conditional constraint leads
to a productivity level proportional to discount factor growth, and
thus to a productivity level that is poorly serially correlated. An
unconditional constraint or ⌧<<t more naturally produces serially
correlated productivity and a one period discount factor mt+1 related
to productivity growth. The unconditional constraint also generalizes
more easily to continuous time.

We can write the constraint E⌧

h
("t+1/✓t+1)

1+↵
i
1 recursively as

zt,t+1=

(
Et

"✓
"t+1

✓t+1

◆1+↵
#) 1

1+↵

(50)

zt�j,t+1=
n
Et�j

h
(zt�j+1,t+1)

1+↵
io 1

1+↵
;j=1,2,...⌧ (51)

z⌧,t+1=1. (52)

A specification ⌧<t thus amounts to applying the productivity-choice
idea to the constraint itself. The firm can take actions at t�1 to loosen
the time-t constraint on "t+1 in one time-t state, though tightening that
constraint in another time-t state. The firm may begin the process of
adjusting the time-t+1 productivity anytime after ⌧ , as captured by
evolution of state variables zs,t+1 as s proceeds forward.
The firm’s actions to transform across states of nature involve time.

The farmer plants seeds in di↵erent fields in the spring, but after that he
or she can do little to transform fall output across weather states. The
electric utility buys flexible or fuel-optimized equipment, but after that
it can do little to transform output across states indexed by fuel costs.
It makes sense to allow the firm more flexibility across states of nature
if it has more time to rearrange things, and less flexibility as the time
of a shock approaches. The ⌧<t specification allows that idea. Ideally,
we would like to capture the changing di�culty of making choices as
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the data approaches by adding ✓ shocks to the z choice in (51) or by
varying the value of ↵ over horizon.

5.4 More detailed production processes

More complex and realistic models of intertemporal production make
the formula for the investment return RI more complicated. They also
change the discount factor for zero-cost portfolios to the extent that
variable inputs, such as labor, show up in the production function.
For example, add adjustment costs and variable labor supply to the

intertemporal production function. The firm’s problem is now

maxE
1X

t=1

⇢t�1⇤t(yt�it�wtnt)

subject to

yt="tf(kt,nt)� (it,kt)

kt+1=(1��)kt+it

and either

E

"
(1�⇢)

1X

t=0

⇢t
✓
"t+1

✓t+1

◆1+↵
#
1 (53)

or

1=E⌧

"✓
"t+1

✓t+1

◆1+↵
#
. (54)

The intertemporal first-order condition becomes

1=Et

�
mt+1R

I
t+1

�
(55)

with

RI
t+1⌘

"t+1fk(kt+1,nt+1)� k(it+1,kt+1)+(1��)[1+ i(it+1,kt+1)]

1+ i(it,kt)
.

We now have a labor first-order condition,

"t+1fn(kt+1,nt+1)=wt+1,

and productivity choice, either

⇤t+1f(kt+1,nt+1)=�(1+↵)(1+⇢)
"↵t+1

✓1+↵
t+1

(56)

with the single sum constraint (53) or

⇤t+1f(kt+1,nt+1)=�t+1(1+↵)
"↵t+1

✓1+↵
t+1

(57)
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with the period by period constraint (54).
Relative to the cases with no labor and adjustment costs, (34) and

(45), the productivity choice conditions (56) and (57) di↵er by the
generalization f(kt+1,nt+1) in place of f(kt+1). This substitution adds
employment or wage to the discount factor formula, just as in the
one-period model with labor. Adjustment costs would also enter the
discount factor formula if we wrote productivity to multiply them, that
is, yt="t[f(kt,nt)� (it,kt)]. From (56), the sum-constraint model’s
discount factor is similar to the forms (35),

mt+1=⇢
⇤t+1

⇤t
=⇢

✓
"t+1

"t

◆↵✓f(kt+1,nt+1)

f(kt,nt)

◆�1✓✓t+1

✓t

◆�(1+↵)

=⇢

✓
"t+1

"t

◆1+↵✓yt+1

yt

◆�1✓✓t+1

✓t

◆�(1+↵)

. (58)

Using a Cobb-Douglas production function

f(k,n)=k1��
t+1 n

�
t+1

we can write the first expression of the sum-constraint model’s discount
factor as

mt+1=⇢

✓
"t+1

"t

◆↵✓kt+1

kt

◆�(1��)✓nt+1

nt

◆��✓✓t+1

✓t

◆�(1+↵)

. (59)

Using the first-order condition for labor input,

"t+1�k
1��
t+1 n

��1
t+1 =wt+1,

we can write the same discount factor in terms of wages,

mt+1=⇢

✓
"t+1

"t

◆↵� �
1��
✓
kt+1

kt

◆�1✓wt+1

wt

◆ �
1��
✓
✓t+1

✓t

◆�(1+↵)

. (60)

From the separate-constraint first-order condition (57), we can write
similar zero-cost portfolio discount factors. The one-period formulas
(25) and (28) remain valid, just add time t+1 subscripts. Growth rate
formulas are likely to be more useful, for example,

m⇤
t+1=bt

✓
"t+1

"t

◆↵✓nt+1

nt

◆��✓✓t+1

✓t

◆�(1+↵)

, (61)

m⇤
t+1=bt

✓
"t+1

"t

◆1+↵✓yt+1

yt

◆�1✓✓t+1

✓t

◆�(1+↵)

, (62)

or

m⇤
t+1=bt

✓
"t+1

"t

◆↵� �
1��
✓
wt+1

wt

◆ �
1��
✓
✓t+1

✓t

◆�(1+↵)

. (63)
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where bt can be set as convenient.
(Equation (63) seems to o↵er the possibility of a discount factor

negatively correlated with productivity. However, ↵>�/(1��) is the
condition for a convex problem. Otherwise, the firm chooses all of its
production in one state. I have left implicit the restriction "�0.)
Measuring productivity is di�cult. Belo 2016 investigates a CES

production function

yt="t
n
(!kt)

��1
� +[(1�!)nt]

��1
�

o �
��1

.

Using this definition and the first-order condition for labor, one can
impute productivity from the labor share and labor/output ratio,
without needing capital data,

"t=
1

(1�!)

✓
wtnt

yt

◆ �
��1
✓
yt
nt

◆
,

or in growth rates,

"t+1

"t
=

✓
wt+1nt+1/yt+1

wtnt/yt

◆ �
��1
✓
yt+1/nt+1

yt/nt

◆
. (64)

Substituting these expressions into (58) or (62), we obtain a discount
factor with output growth, labor share growth, and labor/output ratio
growth as factors, and no explicit productivity, for example,

mt+1=⇢

✓
wt+1nt+1/yt+1

wtnt/yt

◆�(1+↵)
��1

✓
yt+1/nt+1

yt/nt

◆1+↵✓
yt+1

yt

◆�1✓✓t+1

✓t

◆�(1+↵)

.

(65)
An important bottom line: as we make the production function

more detailed and realistic, a wide variety of production variables, not
just productivity ", enter the discount factor. Now, as in the case of
labor input, these variables are also chosen given the discount factor
and productivity shock, so in principle they do not o↵er additional
information and a multifactor model is not needed. But wages here
induce independent movement in labor input. The situation is much like
that of multiple nonseparable goods u(ca,cb,...) in consumption theory,
where their relative quantities or relative prices enter the discount factor.

5.5 Constraints on net output

We might also go back to first principles. To extend the production-
based asset pricing idea to multiple dates, why not proceed exactly in
analogy to consumption-based asset pricing? Rather than apply analogs
to consumption-based asset pricing to the choice of productivity, as I
have done so far, why not apply those analogs to the firm’s final output
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net of investment directly? Microeconomics textbooks treat production
and consumption with beautiful symmetry. Why not us?
We can write the firm’s two-period problem as

max c0+E(mc1) s.t.

(✓
c0
✓0

◆1+↵

+⇢E

"✓
c1
✓1

◆1+↵
#) 1

1+↵

K, (66)

where c denotes the firm’s final output sold to consumers, that is, c=
y�i, and K is a constant. This production set is concave and smooth
across time and across states of nature.
Explicitly, in the finite-state case, the firm’s problem is

maxc0+
X

s

⇡(s)m(s)c1(s)

s.t.

(✓
c0
✓0

◆1+↵

+⇢
X

s

⇡(s)

✓
c1(s)

✓1(s)

◆1+↵
) 1

1+↵

1.

The first-order conditions to this problem lead to

m1=⇢

✓
c1
c0

◆↵✓✓1
✓0

◆�(1+↵)

. (67)

The parallel to power utility is immediate.
We can generalize this approach to multiperiod problems and

continuous time transparently,

maxE
1X

t=1

⇢t�1⇤tct s.t. E

"
(1�⇢)

1X

t=1

⇢t�1

✓
ct
✓t

◆1+↵
#
1, (68)

and

maxE

Z 1

t=0
⇢t⇤tctdt s.t. E

"
1

⇢

Z 1

t=0
⇢t
✓
ct
✓t

◆1+↵

dt

#
1.

We are used to Dixit-Stiglitz aggregators across goods. This formulation
applies the same idea over time. The resultant discount factor is simply

⇤t=�
c↵t
✓1+↵
t

; mt+1=⇢
⇤t+1

⇤t
=

✓
ct+1

ct

◆↵✓✓t+1

✓t

◆�(1+↵)

. (69)

We have an output-based macro-factor model, not one based on
productivity. That productivity loomed so large in the previous analysis
was entirely a modeling choice.
Writing analogs to nonseparable utility that distinguish transfor-

mation over time from transformation across states of nature is
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straightforward as well. We can quickly write an Epstein and Zin 1989
style recursive non-state-separable constraint on final net output,

Rt+1=

"
(1�⇢)

✓
ct+1

✓t+1

◆1+�

+⇢W 1+�
t+1

# 1
1+�

(70)

Wt=
⇥
Et

�
R1+↵

t+1

�⇤ 1
1+↵ . (71)

Again, the discount factor will include the state variable Rt+1 as in (40).
We can write a CES constraint that separates time and risk by simply

aggregating over time and states with di↵erent coe�cients,

(1�⇢)
1X

t=1

⇢t�1

(
E

"✓
ct
✓t

◆1+↵
#) 1+�

1+↵

1. (72)

Then we obtain

⇤t=�(1�⇢)(1+�)
(
E

"✓
ct
✓t

◆1+↵
#)��↵

1+↵
c↵t
✓1+↵
t

and

mt+1=⇢

8
>><

>>:

E

⇣
ct+1

✓t+1

⌘1+↵
�

E

⇣
ct
✓t

⌘1+↵
�

9
>>=

>>;

��↵
1+↵

✓
ct+1

ct

◆↵✓✓t+1

✓t

◆�(1+↵)

. (73)

Zero-cost portfolios can still be priced using (69). But E(m)=1/Rf

is now distorted by the first term in brackets of (73). Intertemporal
transformation and risk-transformation are separated.
Incidentally, similar CES preferences seem like a useful alternative

to recursive preferences for consumption-based asset pricing. Write the
consumer’s objective

max
1X

t=0

�t
h
E
⇣
c1��
t

⌘i 1��
1��

.

The consumer’s first-order conditions lead to

mt+1=�

2

4
E
⇣
c1��
t+1

⌘

E
⇣
c1��
t

⌘

3

5

���
1�� ✓

ct+1

ct

◆��

.

The first term distorts intertemporal substitution relative to risk
aversion, a main goal of recursive utility. Consumption to a power still
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describes risk aversion, so zero-cost portfolios do not require (or allow)
computation of the utility index that makes recursive utility complex
and fun.
Why not describe production sets in terms of net output, following this

more elegant approach to production-based asset pricing? One answer
is that we then lose the connection to standard production theory. A
standard intertemporal production function, say

yt="tf(kt) (74)

kt+1=(1��)kt+(yt�ct) (75)

does not have a pretty representation in terms of final output c=
y�i. Derivatives dct+1/dct="t+1fk(kt+1)+(1��) are well defined, and
dc2t+1/dc

2
t <0. But the resultant production set is not expressible as

a CES aggregator of final output {ct} or any other pretty functional
form g(c0,c1,...)=0 that invites generalization to include states ct(s) in
parallel with time, or at least I have not been able to express it in such
a way and find that generalization.
So, we can follow elegance, and the beautiful symmetry of static

utility and production theory exactly. But in so doing we throw out
the contact with classic production theory, and in particular with
the successes of investment-return-based asset pricing and all existing
general equilibrium macroeconomics and asset pricing. Alternatively,
we can add productivity choice to standard production theory as I have
so far, and express production-based asset pricing as a constraint on
productivity rather than final output. That choice leads to a less elegant
but possibly more productive result. But perhaps better ways can be
found to write smooth production sets integrating time and risk, and
to connect them to the lessons of classic production theory without
throwing the latter out and starting over.
However, there may be good reason to abandon the symmetry between

time and state. The underlying economic stories are quite di↵erent. We
think of transformation over time with a story captured by the usual
symbols; some output is put aside or invested to become capital that
later produces more output. We think of transformation across states
using stories, such as planting in fields with di↵erent state sensitivities,
investing in machines with di↵erent sensitivities, and so on. Perhaps
keeping time and risk separate is wise, if inelegant.

5.6 Durability-like dynamics

These extensions to dynamic problems are not as pretty as I would like
them to be. Fundamentally, the constraints

E

"
(1�⇢)

1X

t=0

⇢t("t+1/✓t+1)
1+↵

#
1
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or
E
h
("t+1/✓t+1)

1+↵
i
1

allow completely di↵erent random variables "t at each date t. One would
suppose that the distribution of productivity at time t cannot not be
that di↵erent from the distribution of productivity at time t+�. In the
farming and electric utility examples, the choice of fields and machines
do not allow one exposure to shocks at one instant, and a di↵erent
exposure 10 minutes later.
The situation is similar in utility theory. Preferences E

P1
t=0�

tu(ct) or
E
R
e�tu(ct)dt allow the consumer to rank consumption processes with

completely di↵erent distributions at each point in time, a particularly
frightful prospect in continuous time.
In both cases, this is not typically a practical worry. If circumstances—

the discount factor ⇤t, natural productivity ✓t— evolve as continuous
functions of time, so will the choice "t. If we invert to find discount
factors as a function of choices that vary continuously over time, and
whose estimated distributions vary continuously over time, we will find
discount factors that vary continuously over time. So the model will not
generally produce crazy predictions. Still, the description of production
sets is inelegant.
The resolution of this sort of puzzle for consumption is to recognize

that all consumption goods are durable at short enough horizon. Even
a pizza is durable for 10 minutes (Hindy and Huang 1992). This
modification tends not to be used however, because the first-order
conditions for durable goods are more complex. While solving models
with durable goods is a simple exercise, doing so violates the philosophy
of consumption-based pricing, to read discount factors from first-order
conditions without solving models.
A similar situation applies to production sets. We would like a

productivity choice set in which productivity at nearby dates must have
similar distributions. The distributions can then more easily diverge
from each other as the time between production events increases.
Doing so, however, complicates the first-order conditions. Changing
productivity "t at time t now influences the set from which future
productivity "t+s is chosen. Future discount factors as well as current
ones enter the choice of "t, and inverting to find discount factors from
productivity choices involves unwinding that intertemporal choice, just
as it does for durable consumption goods.
To explore this idea in a simple environment, suppose we write the

choice set as a constraint on the growth of productivity:

E⌧

"✓
"t+�

✓t+�
/
"t
✓t

◆1+↵
#
1. (76)
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Analogously, with no depreciation, a durable purchase changes the flow
of consumption services. This specification is equivalent to writing a
natural shock ✓t+� that includes the previous actual productivity "t, as
part of the natural starting point. If one buys machines with a given
state-contingent output, then the natural starting point for next period
is just to use those machines. Specification (76) also leads to a natural
continuous-time expression,

E⌧

"✓
d("t/✓t)

✓t/"t

◆1+↵
#
=0. (77)

Specifications (76) or (77) result in productivity "t that wanders further
away from its initial value "0, and from the underlying shock ✓t, for a
longer time horizon.
So far so good, but the first-order conditions become more

complicated, because changing "t changes the choice set for all
subsequent "t+s. The resultant first-order conditions are di�cult to
unwind to a discount factor. With a constraint on the growth of
productivity (76), the firm’s problem is

maxE
1X

t=1

⇢t�1⇤t ["tf(kt)�it] s.t.

kt+1=(1��)kt+it

E

"✓
"t+1

✓t+1
/
"t
✓t

◆1+↵
#
1.

Now the first-order condition with respect to "t+1 is

⇢t�1⇤t+1f(kt+1)=�t(1+↵)

 
"↵t+1

✓1+↵
t+1

/
"1+↵
t

✓1+↵
t

!

��t+1(1+↵)Et+1

 
"1+↵
t+2

✓1+↵
t+2

!
/
"2+↵
t+1

✓1+↵
t+1

. (78)

We can use (78) recursively to write the productivity-choice first-order
condition as

1X

j=1

Et+1

⇥
⇢j�1⇤t+j"t+jf(kt+j)

⇤
=�t(1+↵)

✓
"t+1

✓t+1
/
"t
✓t

◆1+↵

.

In this form, one can more clearly see that increasing "t+1 at time t+1
makes the constraints easier for all future times, and thus has a present
discounted benefit.
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In these first-order conditions, one can see e↵ects similar to those
of internal habit or durable goods models. For writing simulation or
general equilibrium models, or even for estimation, they are not di�cult
to implement. But inferring the discount factor from productivity is not
as pretty as in the time-separable cases. A state variable, parallel to the
stock of durable goods, would help.
Putting these thoughts together, a useful way to describe the choice

of technology may be to let the firm change its technology shock
distribution, but at a cost. For example, let technology follow

yt=e"tf(kt)

dkt
dt

=��kt+it.

Let there be a vector of shocks dzt=[dz1t dz2t ...dzNt]
0, and productivity

responds by

d"t=µ0
"tdt+�

0
"tdzt. (79)

The discount factor responds to the same shocks,

d⇤t=µ0
⇤tdt+�

0
⇤tdzt.

The firm maximizes the contingent claim value of output

maxE

Z 1

t=0
⇢t⇤t(yt�it� t,)dt

where  t are the costs of adjusting the technology shock distribution. If
the firm does nothing, technology will evolve as usual as described by
(79). However, the firm can adjust the distribution of technology, at a
cost,

 dt=

✓
dµ"t

dt

◆1+↵

+
NX

j=1

✓
d�"tj
dt

/✓j

◆1+↵

.

We can even let the vector of cost weights move over time,

d✓t=µ0
✓tdt+�

0
✓tdzt.

This direction may give an interesting dynamic model of productivity
choice. It generates a marginal rate of transformation for discrete time
intervals, as the firm can get to any �⇤. But it does not seem to lead
to an analog to consumption-based asset pricing, so I do not follow this
lead here.
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6. General Equilibrium, Identification, and Calibration

The discount factors we have studied focus on powers of productivity
growth, for example,

m⇤
t+1=bt

✓
"t+1

"t

◆↵✓✓t+1

✓t

◆�(1+↵)

and

mt+1=⇢

✓
"t+1

"t

◆1+↵✓yt+1

yt

◆�1✓✓t+1

✓t

◆�(1+↵)

(80)

as well as other production-related macroeconomic variables including
labor, capital, wages, and investment. Will these or similar specifications
of such a production-based model be empirically successful? This section
takes up this question, as well as the troublesome question of whether
and what kinds of natural productivity shocks ✓ we need, and how to
identify them.
We know from Hansen and Jagannathan 1991 and its many

extensions, such as Cochrane and Hansen 1992, several properties that
a successful discount factor must have. The basic asset pricing formula
for excess returns 0=E(mRe) implies that the expected return is
proportional to the covariance of returns with the discount factor,

E(Re)=�cov(m,Re)

E(m)
. (81)

This relation implies

E(Re)

�(Re)
=� �(m)

E(m)
⇢(m,Re). (82)

To generate the market Sharpe ratio of about 0.5, the discount factor
must be volatile, with �(m) on the order of 0.50 or more. That
requirement has posed a challenge for consumption-based asset pricing,
as consumption itself has a much lower than 50% volatility, and very
high risk aversions � are di�cult to swallow. It is di�cult to generate
� [(ct+1/ct)�� ] on the order of 50%.
Output, productivity, and employment are more volatile than

consumption, however, and we have little a priori feeling about the
production curvature coe�cient ↵. This paper is devoted to lowering ↵
from its previously standard value, ↵=1. So it is likely that achieving
a high �("↵) will not be di�cult, and the classic equity premium
puzzle does not cause an obvious problem for production-based asset
pricing. More deeply, since marginal rates of transformation don’t have
any natural relationship to probabilities, the natural force toward risk
neutrality is missing. Easy simulation models tend to produce equity
premiums that are too high.
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The discount factor should have a low and fairly stable conditional
mean, to generate a low and relatively stable real risk-free rate Et(m)=
1/Rf

t . In all these models, the level of returns and risk-free rate are
governed by conventional investment-return economics, separate from
risk premiums, so the model really has nothing new to say about the level
of the risk-free rate. The sum-constraint discount factor (80) does predict
a risk free rate. But in the model, the firm chooses productivity " so that
investment returns are correctly priced so again the model as a whole has
nothing new to o↵er. The data may violate that restriction. However, the
growth rates in (80) are stationary and not severely serially correlated, so
risk-free rate variability is not an immediate problem. Since productivity
is more volatile than consumption, an equity premium is not likely
to require an enormous value of ↵ and hence an enormous E(m) via
E
⇥
("t+1/"t)1+a

⇤
. And the framework, with additional right-hand-side

variables and especially the free parameter ⇢ and growth in the ✓ process
beckoning, seems flexible enough to quickly adapt to any problems with
E(m).
Relation (82) also holds conditionally, with time t subscripts.

Risk premiums vary over time. It is generally felt that time-varying
conditional variance, �t(mt+1) should vary over time, as conditional
variance �t(Re

t+1) operates on a di↵erent time scale and in response to
di↵erent variables, and time-varying correlations ⇢t(mt+1,Re

t+1) are a
headache. A time-varying variance of productivity " may be plausible,
time-varying opportunity sets ↵t may be plausible, and one can imagine
mechanisms parallel to habits in preferences that generate variation in
↵t endogenously.
The most obvious obstacle, however, is the sign of the covariance

term in (81). To generate a positive risk premium E(Re
t+1), the

discount factor mt+1 must covary negatively with the ex post excess
return Re

t+1. In consumption-based asset pricing, mt+1=�(ct+1/ct)
�� ,

the positive correlation of consumption growth with asset returns is
consistent with this negative correlation of the discount factor with
asset returns and a positive risk premium. That model’s failure is
one of magnitude, not of sign. In production-based asset pricing we
have m⇤

t+1=("t+1/"t)
↵(✓t+1/✓t)�(1+↵), however, with ↵>0. If there

are no natural productivity shocks ✓, productivity growth "t+1/"t is
positively correlated with the discount factor. A positive correlation
of productivity growth with asset returns Re predicts counterfactual
negative risk premium E(Re).
Intuitively, the discount factor, contingent claims price, or marginal

utility is high in “bad times,” when consumption is low, the stock market
is low, and people would really value a marginal dollar. A firm without
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a ✓, without a bias to one state or another, will rearrange its output to
produce more in such high-price “bad times” states.
Now, many possibilities avoid this conundrum. The conundrum

presumes a one-factor model in which consumption, productivity, and
asset returns all move together. Maybe productivity is higher in
bad times. Whether productivity is procyclical or countercyclical is
debated in macroeconomics. (Measuring productivity is a headache
too.) Yes, real business cycle models generate recessions by procyclical
productivity shocks, but the rest of macroeconomics in the new
Keynesian DSGE tradition is deliberately constructed to avoid that
mechanism. In recessions, firms not only produce less but also shed
workers and machines, especially unproductive workers and machines
(Grigsby 2020). Varying composition, factor utilization, e↵ort, and labor
hoarding cloud the productivity picture.
Already, output enters discount factors (58) and (59)) with the

“right” negative sign, as do labor input and capital growth. Maybe
even if productivity growth is positively correlated with asset returns
a rich enough model’s discount factor will be negatively correlated with
returns, without underlying ✓ shocks. Perhaps in a dynamic model,
shocks ✓ that vary across time, but not states of nature, are su�cient
to produce the observed moments.
Moreover, asset returns, productivity and consumption are not

perfectly correlated. Maybe large components of asset returns are
not related to the business cycle, so asset returns can be negatively
correlated with productivity. Asset returns contain multiple orthogonal
priced factors past the market, including value, size, momentum, term
spread, default spread, and others. Maybe productivity is correlated
negatively with these additional factors, generating their premiums at
least, if not the market premium.
Furthermore, the production-based discount factor formula applies

to each firm, as the consumption-based discount factor applies to each
individual. But, unlike the consumption case, we have detailed data on
individual firms, industries, and sectors. The philosophy of production-
based asset pricing already says to take these detailed data seriously,
and construct many investment returns at a disaggregated level.
Who knows where disaggregated information about production-based
discount factors using firm-level productivity will lead.
Still, it is unpleasant that the basic model seems to produce the wrong

sign. The simplest answer is to include natural productivity shocks ✓. A
model driven, at least predominantly, by natural productivity shocks ✓
and not preference shocks will produce the “right” sign at the cost that
now we must face the problem of how to identify natural productivity
shocks ✓.
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If there is a high productivity shock ✓, other things constant, firms
will choose higher productivity " in that state. Consumers will consume
more in that state, driving down the discount factor or contingent claim
price of that state. This lower price causes firms to back o↵ so as to
raise productivity " somewhat less in the high-✓, low-price state, and
to lower productivity somewhat less in low-✓, high-price states. But the
product m=("t+1/"t)↵(✓t+1/✓t)

�(1+↵) still moves negatively with ✓, so
the discount factor moves negatively with productivity, consumption,
and asset returns, despite the positive coe�cient ↵.
By analogy, strawberry prices are higher in the winter, yet farmers

produce fewer of them. Well, winter is a bad time for producing
strawberries. Producers do what they can, building hothouses or growing
strawberries in Chile. So they move production toward the high price
state. But we still observe higher prices in times of lower output. We
also can observe that the price of strawberries is equal to the marginal
cost of producing them, and write a production-based strawberry pricing
model. But in doing so, we must recognize that the strawberry market is
dominated by natural productivity shocks, not preference or sentiment
shocks.

6.1 A simple general equilibrium economy

To validate and flesh out this story, focusing on the novel and risk
premium parts of these problems, I consider a general equilibrium of
the simplest one-period model, with a preference shock � as well as a
natural productivity shock ✓. I present the model in this subsection, and
analyze the central equilibrium conditions in the next subsection.
Add consumers with utility

Eu(c)=
X

s

⇡(s)u[c(s)],

where

u(c)=
(c/�)1���1

1�� .

Marginal utility is

u0(c)=
c��

�1��
=

c(s)��

�(s)1��
.

The variable � is a preference shock. For each c(s), higher �(s) lowers
utility. For �>1, higher � raises marginal utility. Thus, a higher � is a
negative preference shock.
Consumers own the firms, and thus have a contingent claim that pays

a random amount e. The consumers’ budget constraint is

E(me)=E(mc).
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The consumers’ first-order conditions are

m=�cu
0(c)=�cc

��/�1�� (83)

so consumption is

c=m� 1
� �

��1
� �

1
�
c .

Evaluating �c via the budget constraint, the full solution to the
consumer’s problem is

c=E(me)
m� 1

� �
��1
�

E
h
(m�)

��1
�

i . (84)

Producers have a stock of capital with f(k)=1. They maximize

E [m"f(k)] s.t. E

✓
"1+↵

✓1+↵

◆
1.

Producers’ first-order conditions are

m=�
"↵

✓1+↵
. (85)

Using the constraint to eliminate the Lagrange multiplier �, the solution
to the producer’s problem is

"↵

✓↵
=

m✓
n
E
h
(m✓)

1+↵
↵

io ↵
1+↵

.

In equilibrium, consumers own the firm, so their endowment equals
the firm profit, e=", and consumption equals output, c=". This equality
is an important limitation of this static analysis. In a dynamic model,
equilibrium requires ct=yt�it.
We can find the equilibrium from the planning problem

maxE

"✓
c

�

◆1��
#
s.t. E

⇣ c
✓

⌘1+↵
�
1.

The first-order condition is
c��

�1��
=�p

c↵

✓1+↵
. (86)

Imposing the productivity choice constraint to eliminate the Lagrange
multiplier �p, the full solution of the planning problem is5

logc=� 1

1+↵
log

8
<

:E

2

4
✓
✓

�

◆ (1+↵)(1��)
↵+�

3

5

9
=

;+
1+↵

↵+�
log✓+

��1

↵+�
log�.

(87)

5 From (86),

c=�
� 1

↵+�
p

 
✓1+↵

�1��

! 1
↵+�
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The constant is not interesting for us, however, so I suppress it below.
Using either discount factor formula, that is, (83) or (85), the

equilibrium discount factor is

logm=const.�� 1+↵
↵+�

log✓+↵
��1

↵+�
log�. (88)

A claim to consumption, or the output of the firm, has price p=
E(mc)=E(m") and thus excess return

Re=
c

E(mc)
� 1

E(m)
.

In this model the return is perfectly positively correlated with
consumption. Scaling by the risk-free rate to obtain a quantity
independent of the level of the discount factor m,

E(Re)

Rf
=

E(m)E(c)

E(mc)
�1.

Assuming normal distributions, the risk premium of the consumption
claim is

E(Re)

Rf
=��2


1+↵

↵+�
log✓

�
�↵�2


��1

↵+�
log�

�

+(��↵)cov

1+↵

↵+�
log✓,

��1

↵+�
log�

�
. (89)

6.2 Identification and measurement

In sum, consumer and producer first-order conditions are (83) and (85),

logm=const.�� logc+(��1)log� (90)

logm=const.+↵log"�(1+↵)log✓. (91)

and
✓

c

✓

◆1+↵

=�
� 1+↵

↵+�
p

✓
✓

�

◆ (1��)(1+↵)
↵+�

.

Imposing the constraint.

1=�
� 1+↵

↵+�
p E

2

4
✓

✓

�

◆ (1+↵)(1��)
↵+�

3

5.

Substituing out �p,

c=E

2

4
✓

✓

�

◆ (1+↵)(1��)
↵+�

3

5
� 1

1+↵
 

✓1+↵

�1��

! 1
↵+�

.
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To clarify the formulas, let

✓⇤⌘ 1+↵

↵+�
log✓; �⇤⌘ (��1)

↵+�
log�.

The equilibrium is then given by (87) and (88),

logc=log"=const.+✓⇤+�⇤ (92)

logm=const.��✓⇤+↵�⇤. (93)

Equation (89) gives the equilibrium risk premium,

E(Re)

Rf
=��2(✓⇤)�↵�2(�⇤)+(��↵)�(✓⇤,�⇤).

If we run a regression logm=� log"+u , the coe�cient is

�=
�(logm,log")

�2(log")
=�� �2(✓⇤)

�2(✓⇤+�⇤)
+↵

�2(�⇤)

�2(✓⇤+�⇤)
+(↵��) �(✓⇤,�⇤)

�2(✓⇤+�⇤)
.

Now, what do we see? Suppose there are no preference shocks �, and
only by natural productivity shocks ✓. Consumption and productivity
rise with the shock, and the discount factor declines. The equity
premium is positive. The data trace out logm=const.�� log" with no
error. The coe�cient of the regression of logm on log" is ��. Data trace
out the marginal rate of substitution curve and identify risk aversion �,
for any ↵.
How did we lose the production-based discount factor and ↵? The

production-based discount factor formula (91) is still there. However,
" and ✓ are perfectly correlated in equilibrium. To use the production-
based discount factor in this economy, we would have to account for the
movement in ✓ correlated with productivity ".
That insight o↵ers an important parable for what we may see in the

data. Several papers, discussed in the literature review below, use ad
hoc discount factors based on productivity and find that variables such
as productivity growth form useful discount factors, but with negative
coe�cients, not ↵>0. If underlying productivity shocks dominate, then
although the discount factor has a positive and structural coe�cient
on productivity, in (91), an approximate discount factor that uses
productivity but does not (somehow) control for the shock ✓, will see a
negative coe�cient.
Likewise, if there truly were no preference shocks, then " and ✓ would

be perfectly correlated, and our formulas ignoring ✓ would perfectly
measure the discount factor. The only trouble is that the estimated
coe�cient would have the wrong sign, relative to the prior that ↵ should
be positive. Or, for any ↵, we could use " to measure ✓.
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Suppose instead there are preference shocks � and no underlying
technology shocks ✓. For the realistic �>1 case, equilibrium consump-
tion in rises with the preference shock, but the discount factor also
rises with the preference shock, so the discount factor is high when
consumption is high. The equity premium is negative. On the bright side,
the production-based formula correctly measures the discount factor,
with no correction at all for the underlying preference shock. Data trace
out the marginal rate of transformation curve and identify production
curvature ↵, for any value of risk aversion �. The coe�cient in the
regression of logm on logc or log" is ↵. But the positive equity premium,
as well as common sense, suggests at least some underlying productivity
shocks.
In reality, then, we likely see a mixture of preference and productivity

shocks. The regression coe�cient is a mongrel combination of ↵, �, and
shock variances and covariances.
To identify ↵, we need to find preference shocks that are orthogonal

to the natural productivity shock, or we need to restrict or measure
the natural productivity shocks. To construct a production-based
discount factor we have somehow to control for or measure the natural
productivity shock. Below, I review a clever restriction by Belo 2010
that measures ✓, and I discuss identification and other ways to avoid ✓
problems.
This shock and parameter identification issue is not special to

production-based asset pricing. It has important lessons for investor-
based asset pricing as well, where in that term I include behavioral and
institutional finance.
Traditional consumption-based models just assume away preference

shocks. The empirical di�culties of the consumption-based model, and
the imprecision, instability, and counterintuitive values of risk aversion
� it reports suggest that preference shocks may indeed be part of the
story.
Preference shocks are increasingly popular in both finance and

macroeconomics. Many new Keynesian models now include preference
shocks, at least as a stand-in for financial intermediation shocks. For
example, typical models of the 2008 financial crisis start with a shock
to the representative consumer’s discount subjective discount factor �.
Changing risk aversion is sometimes modeled as a preference shock.
And behavioral finance is all about preference shocks. “Sentiment” or
irrationally assessed probabilities are equivalent to preference shocks
such as �.
All these observations give us comfort that some preference Shocks

exist, and that they can be used to identify productivity choice and
allow us to see productivity choice respond to preference shocks.
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But models with preference shocks will su↵er exactly the same
identification problem as a production-based model with dominant
technology shocks. The shocks and the endogenous variables will be
correlated. To identify � here, we need to find a productivity shock that
is orthogonal to preference shocks.
Moreover, the positive equity premium argues that productivity

(and whatever complexities of the production process that stands for)
rather than preferences (and whatever complexities the latter stand
for, including intermediation and time-varying irrational probability
assessments) must be the dominant shock driving the joint behavior
of asset returns and macroeconomic fluctuations. Estimates of � and
coe�cients of discount factors related to production variables may
be unstable mongrels, but they are negative mongrels. This trouble
ought to be particularly salient for behavioral finance and intermediary
asset pricing, which explicitly posits that preference shocks are a
central driving mechanism. As a concrete example, see Albuquerque,
Eichenbaum, and Rebelo 2016 for preference shocks in a detailed macro-
finance model, and Kruger 2019 for critique that it misses important
moments.
This discussion also reminds us that while production and

consumption-based asset pricing each exploit the wonderful GMM
philosophy of examining one side of the market in isolation, identification
requires us to think about general equilibrium and what causes variables
to move.

6.3 An endowment economy analogy for production-based

asset pricing

This sort of general equilibrium excursion helps us to understand
the problems we will face when confronting data, and what kind of
measurement or identifying assumptions for shocks ✓ and � might be
useful. However, the guiding philosophy of a production-based asset
pricing model is to avoid computing a general equilibrium. Figure 4
illustrates the idea.
One can approach data with a full general equilibrium economy,

incorporating a production function, productivity choice ", and a
utility function. Then one finds contingent claim prices or the discount
factor from the tangency point of marginal rate of transformation or
substitution, represented by the straight line.
Consumption-based asset pricing simplifies the computation. If one

correctly models the equilibrium consumption process as if it were
an endowment, then one can still read asset prices o↵ marginal rates
of substitution alone. Specifically, start with a general equilibrium
with natural productivity ✓, a curvature parameter ↵ and a chosen
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Figure 4
General equilibrium
The outward-bowed curve is a shock choice set E

⇥
("/✓)1+↵⇤1 with ↵=1, ✓=[2,1].

The inward-bowed curve is an indi↵erence curve for a power utility consumer with
u=(c/✓)1�� , �=[5,1], �=2. The dashed lines represent equivalent endowment economies,
that is, fixed shocks " or fixed-coe�cient preferences, that deliver the same equilibrium
quantities and prices. The symbol m denotes the stochastic discount factor or contingent
claim price ratio.

productivity ". Construct a new economy consisting of a fixed-
proportions production function calibrated to the observed ", "⇤=✓⇤=",
and ↵⇤=1, but keeping preferences and the preference shock �⇤=�
unchanged. This new economy has the same asset pricing implications
as the old one, read o↵ marginal rates of substitution alone. In Figure
4, one can model the production side as the northeast pointing box
outlined by the dashed lines, keep the indi↵erence curve, and maintain
asset prices.
One can create an analogous production-based asset pricing model.

Again, measure or model the consumption or productivity process
"⇤=". Leave the production set alone, keeping the same productivity
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shocks ✓⇤=✓ and curvature ↵⇤=↵. Marry this production process to
fixed-coe�cient preferences. In place of the smooth utility function and
preference shocks, let

u[c(h),c(l)]=min


c(h)

"(h)
,
c(l)

"(l)

�
. (94)

Then, measure contingent claim prices or the discount factor from the
marginal rate of transformation alone. This new economy has the same
asset prices and quantity implications as the full general equilibrium
but spares the researcher from having to model and measure the entire
consumption and intermediation side of the economy.
Fixed-coe�cient preferences (94) act like endowments. They generate

a simplified general equilibrium economy with the same asset pricing
and quantity implications as the full equilibrium if one models the
equilibrium consumption and productivity processes correctly. In this
way, we can mirror the brilliant simplification that Lucas 1978 brought
to consumption-based asset pricing or construct insightful simulation
economies in the style of Mehra and Prescott 1985.

7. A Simple Aggregation Model

The main philosophy of this paper is to model the aggregated (smooth)
production possibility set directly, rather than to derive the structures
of such sets from primitive traditional specifications. The primitives are
typically unobservable, and, again, there was no particular reason for
specifying fixed patterns across states in the first place. However, it is
useful as motivation, and to help think about what a smooth production
set might look like, to sketch a model in which a smooth aggregated
production set is derived from underlying traditional technologies.
Consider a two-state world in which the firm has two technologies.

For example, a farmer can plant in two fields. One field does well in wet
weather, the other in dry weather. The farmer can then shape the risk
exposure of total output to weather by varying the amount planted in
each of the two fields. Let the technologies of field i be

yi(s)="i(s)k
⌘
i ; s=h or l, i=1 or 2.

Total output is then

y(s)=y1(s)+y2(s); s={h,l}

and total inputs are constrained by initial capital less initial sales,

k=k1+k2.

We want to know what this structure implies for the aggregates k
and y(s). (Or, if we wish to characterize the production set by outputs
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Figure 5
Two-state aggregation
Aggregate production set {y(h),y(l)} induced by two technologies, y(s)=y1(s)+y2(s);
yi(s)✓i(s)k

0.5
i ; i=1,2; s=h,l; k1+k2=1.

alone, y(0)=W�k and y(s).) Figure 5 plots the answer. To produce
the figure, I vary k1 from 0 to k=1, I let k2=k�k1. Then, I calculate
y(s)="1(s)k

⌘
1+"2(s)k

⌘
2 with "1(h)=2, "1(l)=1 and "2(h)=1, "2(l)=2.

The far lower right point on the curve, for example, puts all initial capital
into technology 1 that does well in the h state. The far upper-left point
puts all initial capital into technology 2 that does well in the l state.
The aggregate production possibility set is smooth. Free disposal allows
the aggregate production set to fill out the area represented by dashed
lines.
For this construction to work, that is, for the marginal rate of

transformation @y(h)/@y(l) to exist, so we can equate it to contingent
claims price ratios @y(h)/@y(l)=p(h)/p(l)=⇡(h)m(h)/[⇡(l)m(l)] for
any such ratio, we need a spanning or invertibility condition, in this
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case that the matrix 
"1(h) "2(h)
"1(l) "2(l)

�

is nonsingular. If there are more than two technologies, we need the rank
of a larger shock matrix to be at least two, the number of states. We also
need su�cient concavity of the underlying production function f(k). If
not, the curve of Figure 5 is a straight line, and production ends up at
one of the corners for all but one contingent claim price.
For continuous-state economies, we subdivide technology into finer

units of analysis. Each square foot of land may have slightly di↵erent
sensitivity to weather. Thus, consider technologies indexed by z, and
states of nature indexed by !. Aggregate output is

y(!)=

Z
dz"(!,z)f [k(z)

Alternatively, and perhaps more elegantly, we can derive smooth
production sets by allowing the firm to vary its investment in a few
technologies continuously over time, extending the classic Black-Scholes
option pricing approach to multiple risky and concave investment
strategies.
I do not belabor aggregation theory or spanning conditions, as the

major point of this paper is to write down smooth technologies directly,
just as we write down aggregate technologies y=f(k,n,...) that are
smooth across inputs rather than derive them from deeper fundamentals.
One can see from this discussion where such an aggregation theory would
go.
With this basic idea, one can see many potential microfoundations

for active trade-o↵s across states. The firm could invest in capital or
R&D to shift its output across states. The firm could buy solar cells
or multifuel engines, for example, in order to change the distribution
of profits across states indexed by energy price shocks. And thinking
about such aggregation stories may be a useful way to improve on the
description of shock choices in an intertemporal context, as outlined
above.
The aggregation story emphasizes two points, however: First,

technologies generated in this way will vary only across states of
nature that are related somehow to the production process. The firm
cannot transform output across states of nature that depend on a pure
preference shock or other exogenous random variables, such as who wins
the Super Bowl. Second, since probabilities do not enter the technology,
probabilities do not enter the marginal rates of transformation. There is
no counterpart to the risk-neutral benchmark in which marginal rates
of substitution are proportional to probabilities.
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8. Literature

The idea of linking asset prices to quantities via producer first-order
conditions, and thereby studying the production side of the economy
without having to specify preferences, goes back a long way. My first
e↵ort was Cochrane 1988. This e↵ort swiftly ran in to the problem
outlined in the introduction: standard production technologies do not
give a marginal rate of transformation across states.
This paper is a revision of the first part of Cochrane 1993.

That paper introduced the idea of choosing productivity from a set
E
⇥
("/✓)1+↵

⇤
. It sat a long time, as I hoped to complete an empirical

counterpart, compute general equilibrium examples, and cleanly solve
the ✓ shock identification and measurement question among other
needed improvements. This paper includes a much-improved dynamic
extension, but does not achieve those other goals. Bringing these
sorts of models to data, or constructing simulation models that may
be compared to data, remains an important project, with numerous
measurement, specification, and identification issues to face.
Belo 2010 is the first to use this production technology with

productivity choice empirically. Belo proposes a clever approach to the
identification problem, which could (and should) be generalized to larger
and more disaggregated groups of investment returns. Discount factor
formulas such as m⇤=�("i,t+1/"i,t)

↵(✓i,t+1/✓i,t)
�(1+↵) hold separately

for each firm or industry, just as mt+1=�(ci,t+1/ci,t)�� holds separately
for each individual i. Taking logs,

log
�
m⇤

t+1

�
=↵log

✓
"i,t+1

"i,t

◆
�(1+↵)log

✓
✓i,t+1

✓i,t

◆

separately for each technology i. (Belo uses ↵ where I use 1+↵.) Belo
then assumes that multiple technologies have a factor structure,

(1+↵)log

✓
✓i,t+1

✓i,t

◆
=

JX

j=1

�ijFj,t.

With a single factor F and two technologies 1 and 2, then

log
�
m⇤

t+1

�
=↵log

✓
"1,t+1

"1,t

◆
��1Ft+1 (95)

log
�
m⇤

t+1

�
=↵log

✓
"2,t+1

"2,t

◆
��2Ft+1. (96)

Now, we can eliminate the latent factor F , to express the discount factor.

log
�
m⇤

t+1

�
=

↵

�1��2


�1 log

✓
"2,t+1

"2,t

◆
��2 log

✓
"1,t+1

"1,t

◆�
. (97)
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We observe log("i)=log(yi)� logf(ki). Normalizing �1=1, we can
estimate �2.
The model is identified, though we do not directly observe the

natural productivity shock ✓. Intuitively, since the firms have di↵erent
loadings on a common ✓, they will choose productivity shocks " that
are perfectly correlated, but one moves more than the other. Then the
di↵erence between the observed productivity shocks reveals the natural
productivity shock. Or, solving (95) and (96) for the shocks ", those
shocks move by the same amount in response to m, but one moves more
than the other in response to F . Thus, watching the di↵erences between
the shocks, we can disentangle the two sources of " movement, m and
F .
The assumption is more compelling with more technologies. Across

J technologies with productivity "j , there are J sources of unobserved
movement ✓j and one additional source of movement m. Reducing the
dimensionality of the ✓j by only one via a factor structure assumption,
we can identify m. To generalize, we need a J�1 factor structure
of J technology shocks, not a single factor structure. (Belo’s online
appendix C pursues a J=3 factor model.) The essence of business
cycles is common movement, and stock market returns display a strong
factor structure, so the idea that multiple firm’s productivities or other
variables follow a reduced factor structure is natural.
Since Belo assumes yt="tf(kt) with kt predetermined, he uses yt in

place of "t in (97). The bottom line is a two-factor macro-pricing model,
using output growth,

log(m⇤
t )=a�b1�y1t �b2�y2t .

This bottom-line result is the same form as the Cochrane 1996
investment-based model, and many related ad hoc macro-finance pricing
models that use discount factors tied to macroeconomic variables to
explain cross-sectional variation in expected returns. But Belo derives
that otherwise ad hoc model from the pure production-based pricing
idea with the clever factor structure assumption to identify natural
productivity shocks. That it is similar to existing successful ad hoc
models says it is robust. Belo also adds a relative price of output and
investment goods, which adds a second set of factors, and prices an
up-to-date set of asset returns.
Jermann 2013 uses the idea that with two investment returns, one

can span two states of nature, by pure arbitrage with no reference
to preferences. In essence, he implements the model of Section 7. He
creates a two-state simulation model, which captures salient features of
the term structure. The trouble is this approach is limited to simulation
economies as reality seems to have more states of nature than investment
returns.
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8.1 Investment returns

Standard technologies do not allow a general marginal rate of
transformation. Firm first-order conditions do, however, give rise to
investment returns. Production-based asset pricing has to date largely
linked macroeconomics to asset pricing via investment returns.
As outlined in Section 5, producer first-order conditions give rise

to a physical return RI , measurable from investment, capital, output,
and labor decisions (55). Any asset returns that can be determined by
arbitrage with the investment returns should be so priced. Equivalently,
the investment return should be priced by any discount factor, 1=
E(mRI). When marginal q equals average q, the firm’s stock (or stock
and bond) return should equal the investment return, ex post and ex
ante, a particularly clear instance of this arbitrage pricing result.
With adjustment costs, the investment return is dominated by

investment, and thus is approximately proportional to investment
growth. As a result, models based on investment returns are often
called “investment-based asset pricing,” and a cross-sectional extension
(discussed below) an “investment CAPM” (capital asset pricing model).
As I have emphasized, this paper generalizes investment-based asset
pricing, keeping its central prediction 1=E(mRI).
This e↵ort was successful, at least compared to the widespread view

that Q theory doesn’t work at all. Cochrane 1991 shows that an
investment return based on aggregate investment data is well correlated
with stock returns at business-cycle frequencies and that variation in
expected stock returns as forecasted by the dividend yield, term spread,
investment-to- capital ratio, and other variables matches variation in
expected investment returns well. Lamont 2000 shows that measures
of investment plans o↵er even better correlations. When stock prices
rise, time is required to put investment into motion, but investment
plans move quickly. One could also specify a time-to-build technology,
but investment plans show the correlation quickly and transparently.
Unlike many theories, the investment-return approach works better for
big movements than small ones: the 1990s stock boom corresponded to
an investment boom; the 2008 stock price plummet coincided with an
investment collapse. (See Cochrane 2017, figure 4.)
This branch of production-based asset pricing is the same as a simple

version of q theory. Yet it seems to work much better. This experience
reflects an important lesson: how theories are implemented empirically
matters a lot. Traditional q theory focuses on detailed treatment of
corporate taxes and measures of book values; it focuses on interest rates
as the central driver of cost of capital; it relates the level of investment
to the level of q ; it includes more complex production technologies (with
marginal not equal to average q, e.g.); it often uses cash flow forecasts
and other detailed measurements beyond investment and stock prices.

51

D
ow

nloaded from
 https://academ

ic.oup.com
/raps/article-abstract/doi/10.1093/rapstu/raaa006/5863258 by John C

ochrane on 26 June 2020



Review of Asset Pricing Studies / v 00 n 0 2015

It focuses on failure: theory predicts a 100% R2, that is, investment
should be proportional to q, exactly, with no error. Any error is a formal
rejection of the theory. That research focuses on the correlation of q
theory errors with cashflow. Much of the research has a goal of using
q theory only as a control to show what it cannot explain, in order to
advance a cash flow constraint agenda.
By contrast, investment-return work focuses on equity premiums

as the central driver of cost of capital, and we now know that
equity premiums vary over time far more than risk-free rates, and
in the opposite direction. Equity premiums are high in recessions
with low stock prices, and low investment; interest rates are low
in recessions. Investment-return work relates business-cycle frequency
measures of investment growth to stock returns, ignoring the obvious
high frequency failure (5-minute stock returns do not correlate with
5-minute investment growth) and ignoring low frequencies and the
cross-section of levels where measurement issues allow prices to diverge
persistently from book values. And, admitting that anything less than
100% R2 is a formal rejection, it looks for the part of the glass that is
half full. And finds it.
This lesson will be important in using the more general production-

based asset pricing described in this paper. One must make hundreds of
implementation decisions. Formal rejections of specific implementations
will be easy. Figuring out where theory is most useful will be di�cult.
Relating variation in the market return over time to investment

growth is interesting, but the variation in average returns across assets
and (especially) across portfolios sorted on various characteristics is the
heart of the asset pricing empirical challenge. Extending production-
based asset pricing to describe the cross-section of returns is the crucial
next step.
The investment-return-based literature took that step, constructing

multiple investment returns to extend asset pricing predictions to a
larger cross-section. We have a wealth of data on industry, portfolio, and
firm-level production that can construct similarly detailed investment
returns. Though we still can only price by arbitrage from this set of
returns, the more cross-sectional information the better.
The literature that Zhang 2017 calls the “investment CAPM” made a

great deal of progress by this approach. Each firm’s investment return
should equal that firm’s asset return. Firms with higher investment
growth have higher investment returns and higher stock returns, both
actual and expected. The same prediction holds of portfolios of firms.
Create a portfolio of value firms, and their investment returns should be
higher than those of a portfolio of growth firms, matching the average
stock returns of those portfolios of firms. Zhang 2017 shows that cross-
sectional variation in expected investment returns line up well with many
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of the “anomalous” cross-sectional patterns in expected stock returns in
this way. (The iceberg of which this survey is a tip includes Lyandres,
Sun, and Zhang 2008 Li, Livdan, and Zhang 2009, Liu and Zhang 2014,
Wu, Zhang, and Zhang 2010, Li and Zhang 2010, Liu, Xiaolei, Whited,
and Zhang 2009, and Goncalves, Xue and Zhang 2019. Lots of anomalies
and measurement issues must be worked out!)
Whether one can say this approach “explains” the anomalies and if

so “rationally” is a contentious question. This literature documents that
firms adjust properly in response to expected returns, so investment
decisions and expected returns are connected as economics says they
should be. There is no arbitrage between investment returns and
stock returns. But both investment and stock returns are endogenous
variables. Both could be driven by fads and irrationalities on the part of
consumers. Still, if expected returns lined up with market, consumption,
or factor betas, one could make the same objection to the word
“explain,” as returns, consumption and its betas are also endogenous
variables which might be driven by irrational behavior on the part of
producers. So, one can say that the investment CAPM “explains” risk
premiums as well as a standard CAPM and consumption CAPM would
do, if those models were successful in lining average returns up against
covariances with the market return or consumption growth.
I also think the word “investment CAPM” is a bit misleading. The

word “CAPM” suggests that expected returns line up with covariances
of returns with some variable, and promises a theory that in principle
can explain any asset return as the CAPM does. That is not the case.
The “investment CAPM” theory remains arbitrage between each return
and each investment return in isolation. It just compares a wide range of
investment returns to the corresponding wide range of asset returns, in
anomaly-sorted portfolios. By contrast, the production-based approach
in this paper does o↵er a “CAPM” representation. But he or she who
does the work gets to baptize the results, so just understand how the
fundamental structure of an “investment CAPM” remains di↵erent from
that of a market portfolio CAPM, consumption CAPM, or production-
based model, such as this one.
We still desire a general purpose model, a model that could in principle

price a larger set of returns. Cochrane 1996 investigates one way to
extend a cross-section of investment returns to price lots of assets. It
uses a discount factor formed from two investment returns,

m=a+brR
I,r
t+1+bnrR

I,nr
t+1 , (98)

where r denotes residential investment and nr denotes nonresidential
investment, in order to price a cross-section of stocks. (It is also where I
first thought about conditional vs. unconditional factor models, scaling
factors in GMM, and the somewhat dangerous plots of average returns
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vs. predicted average returns.) Obviously, one can extend this approach
to a larger set of investment returns on the right-hand side. Li, Vassalou,
and Xing 2006 take an important step, considering investment by
households, corporate, noncorporate and financial businesses, and they
price the Fama-French 25 size and book to market portfolios as well as
the Fama-French factor models do.
Why are we allowed to extend observation of two returns to price

other returns, which are not connected by pure arbitrage? Arbitrage
pricing theory, a limit on Sharpe ratios of strategies that profit from
the di↵erence between asset returns and investment returns, leads to
an approximate discount factor of the form (98) for asset returns
highly correlated with combinations of the two investment returns.
(See Cochrane 2005, chap. 9.4.) Alternatively, Cochrane 1996 (p. 577)
speculates, if the investment returns span the investment opportunity
set then consumption and marginal utility must be driven by the two
investment returns:

Why should investment returns be factors for asset
returns? Factor pricing models are derived by arbitrage
assumptions or by preference assumptions. We can assume
that the firms on the . . . NYSE are claims to di↵erent
combinations of N production technologies, plus idiosyn-
cratic components that have small prices. Alternatively, we
can invoke preference assumptions under which the returns
on the N active production processes, which are the only
nondiversifiable payo↵s in the economy and add up to
aggregate wealth, drive marginal utility growth and hence
price assets. . .

Zhang, Jones and Tüzel 2013, İmrohoroğlu and Tüzel 2014, Belo
and Lin 2012 and Belo and Yu 2013 follow a similar approach. Using
this logic, they estimate or simulate “production-based” models with
discount factors

logm⇤
t+1=constant��t"t+1, (99)

where "t+1 is the shock to aggregate productivity and �t is a coe�cient.
Belo, Lin, and Bazdresch 2014 add a cost-shock second factor. However,
as presented, it is a bit of a stretch to call these models “production
based,” at least by the definition given here of pricing assets from
producer first-order conditions, leaving out preferences. These models
really follow in the mode of the second suggestion in Cochrane 1996,
loosely suggesting that consumption should be a function of the
aggregate productivity shock. They really use consumption-based asset
pricing to extend the discount factor from a single investment return to
multiple returns. For example, Zhang 2005, (p. 71) writes
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Suppose there is a fictitious consumer side of the economy
featuring one representative agent with power utility and
a relative risk- averse coe�cient, A. The log pricing kernel
is then logMt+1=log�+A(ct�ct+1), where ct denotes log
aggregate consumption. Since I do not solve the consumer’s
problem that would be necessary in a general equilibrium, I
can link ct to the aggregate state variable in a reduced-form
way by letting ct=a+bxt ["t in my notation] with b>0.

By contrast, the approach in this paper o↵ers a truly production-based
view of where ad hoc macro-factor or investment-return models, such as
(99) and its generalizations, originate. This paper’s approach requires
no assumptions about preferences, not even a Sharpe ratio limit, other
than the existence of a discount factor or a set of contingent claims
prices.
Likewise, we have seen here production-based discount factors with

output growth, wages, labor input, labor share growth, and growth in
the labor/output ratio along with productivity as pricing factors. These
results can provide an alternative theoretical foundation for a wide
variety of asset pricing models that include such variables as risk factors.
Among many others, Campbell 1996 Jagannathan and Wang 1996 find
that a labor income growth factor helps to price the cross-section of
returns. Lettau, Ludvigson, and Ma 2019 find that the change in capital
share, which is one minus the labor share in the discount factor formula
(65), prices a cross-section of returns.
However, theory does not just exist to justify existing ad hoc models.

This paper links asset prices to production data in a fundamentally
di↵erent way. New theory ought to inspire new empirical specifications
or at least restrict and refine them.
The word “production-based” is also sometimes used to mean

“general equilibrium models that include production.” An important
literature writes models with (interesting and elaborate) preferences,
along with detailed (interesting and elaborate) production technologies,
and sometimes market frictions as well, calibrated to match asset pricing
facts. This general equilibrium literature tackles essential questions,
such as: What features of production technology create “growth” and
“value” firms in the first place? Where do betas come from? (Croce
2014 is an example that uses the “production-based” label.) As with ad
hoc models linking discount factors to production data, or models that
infer consumption from production data, this literature o↵ers a di↵erent
meaning than my sense of the word “production-based,” that uses only
producer first-order conditions.
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9. Concluding Comments

This paper is clearly an exploratory step. Lots must be done to create
production-based asset pricing models that unite asset pricing and
macroeconomic facts.
I explored one particular functional form. Other functional forms and

a more general theoretical treatment beckon. We have already seen that
once labor is included, the discount factor includes either labor or wages,
not just productivity and its underlying shock. More detailed production
functions may well change that form. A better handling of dynamics and
how firms can slowly change their shock exposures beckons.
I focused on the discount factor question, paralleling consumption-

based asset pricing. General equilibrium models, in which one fully solves
the productivity choice given external variables, beckon. Such models
will likely find it useful to exploit stationarity assumptions, the fact
that the same shocks are in some sense repeated. For example, one
often starts a general equilibrium model by positing that all uncertainty
evolves as a vector-valued Markov process, and looks for solutions as a
function of that state variable.
Bringing this production-based approach to data requires many

choices. The first is identifying or measuring the underlying productivity
shocks ✓, or finding a specification that does not need them. Initially,
this task looks daunting. If ✓ is completely unobserved, and likely to be
correlated with ", then how can we implement m=�"↵/✓1+↵? One can
find a ✓ at any date to generate any discount factor one wishes.
It is possible that this problem is ameliorated with a more detailed

production process, and careful measurement of productivity, along
with recognition of multiple factors in asset returns and macroeconomic
variables, as sketched above. Moreover, discount factors from realistic
production functions, including labor, adjustment costs, and other
inputs, feature a range of variables that all respond to the same
underlying natural productivity ✓ shocks and should help to identify
them. Simply assuming that the natural productivity shock ✓ is perfectly
correlated with actual productivity, excusing negative estimated ↵, may
be enough.
But really this identification problem is no di↵erent or worse than

the similar identification issues that haunt all of macroeconomics
and finance. The example of perfectly correlated natural and chosen
productivity is exactly the same, with only a change in Greek letters,
as the example in Cochrane 2011, in which the interest rate rule of new
Keynesian models has a right-hand-side variable (inflation) perfectly
correlated with its (monetary policy) shock, so yields exactly the wrong
coe�cient. VARs are plagued by the question of whether interest rates
cause inflation or whether expected inflation causes interest rates. Yet
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new Keynesian models and VARs are a thriving industry. How? By
thinking hard, making identification assumptions, and finding something
orthogonal or exogenous somewhere.
All economic models include shocks somewhere, and usually must

do so if they want to avoid 100% R2 predictions, equations that
link variables with no error. Yet a shock in any equation usually
means that the equation cannot be directly estimated. Instead, we
need a shock somewhere else to do that and an exclusion restriction.
Shocks have to be somewhere, and, if we are honest, most likely
everywhere. Medium-scale empirical macro models contain shocks in
every equation. Increasingly popular preference shocks (risk aversion,
discount factor, financial frictions) or their observational equivalents
(taste, sentiment, probability) raise exactly the same identification
problem for conventional asset pricing. The Belo 2010 factor model
approach is a great example of how light and plausible (and clever!)
identification assumptions can go a long way.
The other approach to identification is to construct simulation

economies. One may not be able to measure natural productivity ✓,
but one can specify a ✓ process, simulate data, and see what it takes for
the simulated moments to match actual moments. That process includes
lots of unstated identification assumptions or, in fact, does not identify
parameters at all. Other assumptions may produce the same moments.
But this process is how we construct such models. Obtaining a model
that can match the data is di�cult enough, and valuable, even if one
cannot prove that some other model or parameterization might fit the
data as well.
We have really just begun to properly explore the cross-sectional

richness of production data. Zhang 2017 makes great progress in
computing the investment returns of sorted portfolios by computing the
investment returns of their component firms and comparing the cross-
section of investment returns to the cross-section of asset returns. Belo
2010 online appendix C also encapsulates a wide cross-section of sector
and industry output data.
In the project of extending asset pricing from investment returns to

asset returns, we want to use as many investment returns as possible.
In the investment return approach, such as Zhang 2017, each firm’s
investment return is primitive, however. Surely one looks for something
more integrative than 3,000 separate investment returns to explain 3,000
stock returns. They likely share a statistical factor structure, but that
only ties them together as an empirical observation.
The productivity choice approach here is fundamentally di↵erent from

investment returns in this respect. Each firms’ investment return RI
i,t+1

is a separate object, giving us a separate measurement and prediction
for one part of the payo↵ space. A discount factor using investment

57

D
ow

nloaded from
 https://academ

ic.oup.com
/raps/article-abstract/doi/10.1093/rapstu/raaa006/5863258 by John C

ochrane on 26 June 2020



Review of Asset Pricing Studies / v 00 n 0 2015

returns should load on all of them, m=a+b1RI
1,t+1+b2RI

2,t+1+ ...+
biRI

i,t+1. Only a second empirical observation, that investment returns
obey a factor structure, results in the APT philosophy of a smaller
number of pricing factors. However, each firms’ productivity choice
m=�i"

↵i
i /✓1+↵i

i =�j"
↵j

j /✓
1+↵j

j should equal the common m. This
proposition mirrors the proposition that each individual consumer
should set marginal utility growth to equal the common discount factor,
m=�c��

i /�1��
i . Thus, while APT logic and investment returns lead

us to a discount factor m loading on many objects, productivity-
choice logic leads us to many measurements of a single discount factor.
Disaggregated data should be useful for constructing that discount
factor.
Individual firm data may have measurement error, of course, and

as Belo 2010 shows us, disaggregated data can help us to surmount
the shock identification issue. Moreover, as Constantinides and Du�e
1996 show us for consumers, the common discount factor can look very
di↵erent from aggregate productivity raised to a power.
But investment returns and productivity choice are complements as

they are parts of the same model, not competitors. One should ideally
integrate the investment-return and productivity-choice approaches,
using both the cross-sectional information of many investment returns
and the many sources of cross-sectional information on the common
discount factor. The aggregation model of Section 7 already points to
interesting productivity choice in the aggregate production function that
may not exist in firm-level production. Extending that idea to multiple
technologies that also have productivity choices should lead to additional
insights.
Clearly, the investigation has just begun.
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