
The Fiscal Roots of Inflation

John H. Cochrane∗

September 14, 2020

Abstract

Unexpected inflation devalues nominal government bonds. It must therefore cor-

respond to a decline in expected future surpluses, or a rise in their discount rates,

so that the real value of debt equals the present value of surpluses. I measure each

component using a vector autoregression, via responses to inflation, recession, sur-

plus and discount rate shocks. Discount rates, rather than deficits, account for most

inflation variation, and discount rates explain why large deficits often do not cause

inflation. Also, long-term debt is important to understand fiscal-monetary interac-

tions. Smooth inflation slowly devalues outstanding long-term bonds.
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1 Introduction

This paper measures the fiscal roots of inflation. Higher inflation devalues nominal gov-

ernment debt. Higher inflation must therefore correspond to lower surplus/GDP ra-

tios, lower GDP growth, or higher discount rates for government debt. I develop a set

of linearized identities that express these connections. I measure these components in

impulse-response functions of a simple vector autoregression (VAR).

I find that shocks to inflation largely correspond to shocks to discount rates. For

example, consider 2008-2009. There was a big recession, and a sharp fall in inflation

which raised the real value of nominal debt. Yet deficits exploded. How can this be?

Well, perhaps people expected higher future primary surpluses to pay back the cumu-

lated deficits and more, making nominal debt more valuable in real terms. Aside from its

implausibility, I do not find this pattern in the data. But nominal and real interest rates on

government debt fell sharply. Perhaps this lower discount rate for government surpluses

increased their present value, justifying a lower than expected price level? I find that this

is the case: the change in expected returns is large and persistent enough quantitatively

to account for inflation shocks in the data.

I also examine shocks to surpluses and shocks to discount rates. These shocks

come with essentially no inflation. Shocks to surpluses are highly correlated with shocks

to discount rates, so the surplus and discount rate terms of the present value formula

largely offset. Viewed in ex-post terms, persistent deficits come at the same time as low

returns. Low returns bring back the value of debt, without needing repayment via later

surpluses, or devaluation via an initial inflation. The strong correlation between discount

rates and deficits provide fiscal roots of the otherwise-puzzling absence of inflation.

The two observations are not contradictory. There are multiple sources of varia-

tion in the data. Not all business cycles are alike. When we isolate a shock to inflation, we

see events in which discount rates and deficits do not offset. When we isolate a shock to

discount rates or deficits, we see a different slice of data, in which they do offset and there

is not much inflation or deflation. If you sip a drink on the counter at Starbucks’ and find

it bitter, the cup is likely to contain only coffee. But the average cup on the counter that

contains coffee also contains sugar, and is not bitter.

I also find an important role for long-term debt. Simple models focus on one-

period debt, and only a price-level jump can devalue such debt. With long-term debt, a
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slow inflation can devalue long-term bonds when they come due. Expectation of such

future inflation lowers nominal bond prices, restoring present value balance in place of

a price-level jump. This mechanism, more plausible than one-time price-level jumps,

is evident in the data, with expected future inflation accounting for large fractions of

changes in the present value of debt.

I interpret the results through the lens of the fiscal theory of monetary policy:

models with interest rate targets, fiscal theory of the price level, and potentially sticky

prices, as described in Cochrane (2020a), Cochrane (2020b). (More literature below.) In

this interpretation, changes in expected surpluses and discount rates cause unexpected

inflation. In this interpretation, we study the fiscal roots rather than the fiscal conse-

quences of inflation. This paper establishes a set of facts that will be useful for construct-

ing such models, as atheoretical VARs guided the construction of conventional monetary

models. The fact that discount rates account for much inflation variation is key to mak-

ing a fiscal-theory analysis reasonable, and to allow a fiscal-theory model to account for

events such as 2009, or the converse rise in inflation in low-deficit booms. A fiscal theory

model must include time-varying discount rates with the right sign and cyclical pattern.

My causal language below refers to this interpretation.

But the identities whose terms I measure hold in almost all macroeconomic mod-

els used to quantitatively address inflation, and therefore form a useful set of stylized

facts for monetary and fiscal interaction in a wide set of models. (The calculations as-

sume that the present value is finite – loosely that r > g. I presume this case without

much comment, and I leave interpretation of the facts in r < g models for another day.)

The computations of this paper are deliberately “measurement without theory,” in the

classic sense articulated by Koopmans (1947). I do not estimate any structural parame-

ters, identify any structural shocks, or test one model vs. another. A “shock” only means a

movement in a variable that is not forecast by the VAR, without structural interpretation.

In particular, standard new-Keynesian / DSGE models posit an opposite causal-

ity of monetary-fiscal policy coordination. An interest-rate policy and an equilibrium-

selection policy by the central bank determines inflation. Fiscal policy reacts “passively,”

raising or lowering surpluses to validate inflation-induced changes in the value of gov-

ernment debt. Absent identifying assumptions, the fiscal theory of monetary policy cau-

sal story is observationally equivalent to this passive-fiscal causal story. Therefore, the
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results of this paper can also be interpreted as measures of the fiscal adjustments to in-

flation that a standard new-Keynesian model must envision. The fact that discount rates

do much of the adjusting, rather than the ex-post lump-sum taxes alluded to in many

theoretical footnotes, changes the fiscal underpinnings of such models substantially.

Since the analysis is based on identities that hold in these and many other mod-

els, the empirical results do nothing to establish one or another causal story. But which

element in an identity moves – whether surpluses or discount rates account for variation

in the value of government debt – is still an interesting measurement, that bears on the

construction of any theory.

More narrowly, this paper addresses a common attempt at armchair refutation of

fiscal theory: We have huge debt and deficits, and no inflation. Debt and deficits increase

in recessions, where inflation declines. The theory must be wrong. No. First, a low real

interest rate is a low discount rate. A low real interest rate can account for a large value of

nominal debt, and thereby low inflation. It does so in the estimates. Second, the govern-

ment debt valuation equation holds equally in conventional monetary theories, and in

the standard new-Keynesian and monetarist models in particular. If there is a puzzle in

the fiscal foundations of inflation, it applies equally to conventional theories, and does

not reject fiscal theory in favor of those other theories. As a paper on pure facts, I do not

offer here theory or evidence on why interest rates are so low, or why they decline amid

the deficits of a recession. Given that interest rates behave as they do, inflation makes

fiscal sense.

2 Literature

The technique in this paper is adapted from asset pricing. The general approach to lin-

earizing the valuation identity follows Campbell and Shiller (1988). Appendix C relates

impulse-response calculations to asset price variance decompositions. The summary of

this literature in Cochrane (2011b) and the treatment of identities in Cochrane (2007) are

obvious precursors to this work. The uniting theme in the former is that asset price and

return variation corresponds largely to variation in discount rates.

The analysis of government finances, how debt is paid off, grown out of, or inflated

away, is a huge literature. Hall and Sargent (1997), Hall and Sargent (2011) are the most
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important recent precursors. Hall and Sargent focus on the market value of debt, as I

do, not the face value reported by the Treasury, and consequent proper accounting for

interest costs.

Cochrane (1998) constructs a linearized present value equation similar to that

used here, and uses it to decompose the value of government debt. Cochrane (2019)

improves on that calculation, using the value identity (2). Both papers find that variation

in expected primary surpluses is an important determinant of the value of debt.

The main methodological novelty is that this paper uses the innovation identities,

(3) and (5) below, to focus on inflation, and eliminate the value of debt from the identities,

paralleling VAR-based return decompositions from asset pricing such as Campbell and

Ammer (1993). As we get different results by focusing on returns rather than prices, I find

a greater role for discount rates here by focusing on innovations and inflation rather than

the level of the value of debt.

The fiscal theory of monetary policy is the latest step in a long literature on the fis-

cal theory of the price level, starting with Leeper (1991), that integrates fiscal theory with

sticky-price models and interest rate targets. Sims (2011), Cochrane (2017) are immedi-

ate antecedents. Cochrane (2020a) works out such a model with the S-shaped surplus

processes I find here, calculates inflation decompositions and response functions in the

model, and reviews the literature. It is not quite the theory paper corresponding to this

work. I do not here identify the structural monetary and fiscal policy shocks studied

there. To keep the theoretical points transparent, I do not there extend the model with all

the embellishments necessary to be estimated, tested, and match dynamics in the data.

Much of the fiscal theory literature has pursued various theoretical controversies.

A big point of this paper is to begin productively and quantiatively to use fiscal theory to

understand US data. Fiscal theory will in the end be judged by its usefulness, as all past

theories have been judged.
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3 Identities

To develop the identities linking inflation to surpluses, growth, and discount rates, start

with a linearized version of the government debt flow identity,

ρvt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1. (1)

The quantity vt is the log of the ratio of the market value of debt, henceforth just “debt,”

to GDP. The log debt to GDP ratio at the end of period t+1, vt+1, is equal to its value at the

end of period t, vt, increased by the log nominal return on the portfolio of government

bonds rnt+1, less inflation πt+1, less log GDP growth gt+1, and less the scaled real primary

surplus to GDP ratio st+1. The parameter ρ is a constant of linearization, ρ = er−g, which

I take to be ρ = 1 in the numerical results. I derive this identity in Appendix A.

All variables in (1) are logs, except the surplus. I Taylor expand the level of the

surplus, to allow the surplus to be negative. As a result the surplus is scaled to generate

percentage units. The variable st is ρ times the ratio of primary surplus to GDP scaled

by the debt to GDP ratio at the linearization point. With ρ = 1, st can also represent

the real primary surplus divided by the previous period’s debt. Either definition leads

to the same linearization. In the data, I impute the surplus from the other terms of (1),

so its definition only matters when one wishes to assess an independent data source on

surpluses. For brevity, I refer to st simply as the “surplus.” With ρ < 1 there is also a

constant in the linearization, or the variables are deviations from steady state.

Iterating forward, we have a present value identity,

vt =

∞∑
j=1

ρj−1st+j +

∞∑
j=1

ρj−1gt+j −
∞∑
j=1

ρj−1
(
rnt+j − πt+j

)
. (2)

Taking expected values, the debt to GDP ratio is the present value of future surplus

to GDP ratios, discounted at the ex-post real return, and adjusted for growth. (Higher

GDP growth, with the same surplus to GDP ratio, gives rise to greater surpluses.)

Taking time t + 1 innovations ∆Et+1 ≡ Et+1 − Et and rearranging, we have an
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unexpected inflation identity,

∆Et+1πt+1 −∆Et+1r
n
t+1 = −

∞∑
j=0

ρj∆Et+1st+1+j−

−
∞∑
j=0

ρj∆Et+1gt+1+j +
∞∑
j=1

ρj∆Et+1

(
rnt+1+j − πt+1+j

)
.

(3)

A decline in the present value of surpluses, coming either from a decline in surplus to

GDP ratios, a decline in GDP growth, or a rise in discount rates, must correspond to a

lower real value of the debt. This reduction can come about by unexpected inflation, or

by a decline in nominal long-term bond prices. I use time t + 1 to denote unexpected

events, and time 1 as the date of a shock in the impulse-response functions.

The second term on the left hand side of (3) is a key point of the analysis. For

example, when there is a negative innovation to the present value of surpluses on the

right hand side of (3), a decline in nominal long-term bond prices and consequent neg-

ative return ∆Et+1r
n
t+1 can lower the real value of debt, in place of unexpected inflation

∆Et+1πt+1. In this way, long-term debt can buffer fiscal shocks.

What determines the long-term bond return rnt+1? Appendix B linearizes the re-

turn of the government bond portfolio around a geometric maturity structure, in which

the face value of maturity j debt declines at rate ωj ,

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1r
n
t+1+j = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
. (4)

Lower nominal bond prices, and a lower ex-post bond return, mechanically correspond

to higher bond expected nominal returns, which in turn are composed of real returns

and inflation.

We can then eliminate the bond return in (3)-(4) to focus on inflation and fiscal

affairs alone,

∞∑
j=0

ωj∆Et+1πt+1+j = −
∞∑
j=0

ρj∆Et+1st+1+j −
∞∑
j=0

ρj∆Et+1gt+1+j+

+
∞∑
j=1

(ρj − ωj)∆Et+1

(
rnt+1+j − πt+1+j

)
.

(5)



FISCAL INFLATION 7

I focus on this decomposition.

I assume here that the expected terminal condition vanishes,Et+1 limT→∞ ρ
T vt+T

= 0, and the sums converge. Equality r = g and ρ = 1 are also allowable, since I take

deviations from the mean and the variables are stationary.

While there is an enormous literature on the r < g possibility, most recently Blan-

chard (2019), I don’t have anything novel to say here about necessary or sufficient condi-

tions in economic models for the sums to converge or the limiting discounted debt/GDP

ratio to vanish, or about the astonishing implications for public finance if debt really

does not need to be repaid. The sums converge and the terminal condition vanishes in

the VAR estimates, and I interpret the calculations in light of economic models that have

the same features. How to interpret the data on inflation and the value of debt, through

the lens of models with r > g, a truly infinite value of government debt, or debt that never

needs to be repaid, I leave as questions for another day.

3.1 Mechanisms

The identities highlight several interesting mechanisms which we can look for in the data.

Consider the simple case with constant expected returns Etrnt+1 = Etπt+1. With

one-period debt, ω = 0, there is only one term on the left-hand side of (5), ∆Et+1πt+1.

Shocks to the present value of surpluses must be soaked up by a price-level jump, which

absent default is the only way to devalue outstanding debt. With long-term debt, ω > 0,

however, a shock to the present value of surpluses can result in a drawn out period of

inflation, which slowly devalues outstanding long-term bonds. In the identity (3), the

term rnt+1 marks the future inflation to market, as future inflation in (4) lowers that return.

The latter is a more realistic vision of the US economy, where we see drawn-out in-

flation accompanying fiscal problems as in the 1970s, not one-time price-level jumps. In

fact, equation (5) allows the entire effect of the fiscal shock to show up in expected future

inflation with no movement in current inflation ∆Et+1πt+1 = 0. This is how continuous-

time models that disallow price-level jumps work (Cochrane (2017)). This case provides

an important counterexample to the usual intuition gained from one-period models, in

which fiscal shocks only give rise to a one-period inflation surprise. We can productively

look for fiscal roots of drawn-out inflation.

In both the fiscal theory of monetary policy and in standard new-Keynesian the-
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ories, monetary policy controls of the path of nominal interest rates and thereby con-

trols the path of expected inflation. For example, in the simplest frictionless model,

it = Etπt+1 so the interest rate target sets expected inflation directly. Thus monetary

policy determines whether fiscal shocks result in smooth inflation in (5), and whether

there is a large bond-return term in the one-period accounting (3).

As the maturity structure of government debt lengthens, ω increases, and the dis-

count rate terms in (5) get smaller. When ω = ρ, almost a perpetuity, the discount rate

term drops out. Intuitively, a government that funds itself with near-perpetuities can pay

off its current debt while ignoring real interest rate variation, just as a household that

takes out a fixed rate mortgage is immune from rate variation.

If surpluses and growth are constant as well as discount rates in (5), with long term

debt a rise in expected future inflation results in a decline in current inflation. This is an

important mechanism for monetary policy to temporarily reduce inflation. The rise in

interest rates raises long-term inflation, but with no change in fiscal policy, that rise must

lower near-term inflation.

With one-period debt, expected inflation may continue to be high after an initial

inflation shck, but this fact has no impact on one-period unexpected inflation or this fis-

cal accounting. With ω = 0, ∆E1πj for j > 1 is irrelevant (though interesting) in (5). With

long-term debt, the weighted sum of changes in expected inflation substitutes for infla-

tion at time 1, but only the ω-weighted sum. Additional persistence in inflation, though

interesting for matching data, has no fiscal consequence or consequence for understand-

ing unexpected inflation.

With time-varying expected returns, interesting additional dynamics can emerge.

A higher nominal interest rate results in lower nominal bond prices and less inflation

today. But with sticky prices, the higher nominal interest rate raises the real interest rate

and discount rate. This is an inflationary force, which offsets the direct deflationary force

of the higher nominal rate. If a deficit shock comes with lower real interest rates and

expected bond returns, the latter raise the value of debt and offset the inflationary effect

of the surplus shock. We will these effects in the data.
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4 Data and VAR estimates

I use data on the market value of government debt held by the public and the nominal

rate of return of the government debt portfolio from Hall, Payne, and Sargent (2018). I

use standard BEA data for GDP and total consumption. I use the GDP deflator to measure

inflation. I use CRSP data for the three-month Treasury rate. I use the 10-year constant

maturity government bond yield from 1953 on and the yield on long-term United States

bonds before that date to measure a long-term bond yield.

I measure the debt to GDP and surplus to GDP ratios by the ratios of debt and sur-

plus to consumption, times the average consumption to GDP ratio. Debt to GDP ratios

are often used to compare countries, but in our time-series application they introduce

cyclical variation in GDP. We want only a detrending divisor, and an indicator of the econ-

omy’s long-run level of tax revenue and spending. Potential GDP has a severe look-ahead

bias. Consumption is a decent stochastic trend for GDP.

I infer the primary surplus from the flow identities. This calculation measures

how much money the government actually borrows. NIPA surplus data, though broadly

similar, does not obey the flow identity.

I infer the surplus for the VAR from the linearized identity (1), at an annual fre-

quency. By doing so, the data obey the identity exactly. Therefore VAR estimates of the

decompositions add up exactly with no approximation error. The approximation errors

are much smaller than sampling errors, so this choice just produces clearer tables.

To measure the accuracy of the linear approximation, I also infer the monthly real

primary surplus from the exact nonlinear flow identity, Appendix equation (11). I then

carry the surplus to the end of the year using the government bond return. This proce-

dure produces an annual series for which the nonlinear flow identity (11) continues to

hold in annual data.

I approximate around r = g or ρ = 1. The variables are all stationary, impulse-

responses and expected values converge, so downweighting higher order terms by, say,

0.99j vs. 1.0 makes little difference to the results. Since the value of the debt vt is station-

ary, limT→∞ Etvt+T = 0 without ρ weighting. The parameter ρ is only the arbitrary point

about which one takes a Taylor expansion of the one-period flow relation. It need not be

determined by a long run average r − g in the economy. With ρ = 1, the same lineariza-

tion applies to the surplus to value ratio, which is a bit more accurate. One can also view
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the unweighted ρ = 1 identities as r → g limits.

Figure 1: Surplus. “Linear” is inferred from the linearized flow identity, and is the defini-
tion used in VAR analysis. “sv ” is the exact ratio of the primary surplus to the previous
year’s market value of the debt. “sy” is the exact ratio of surplus to consumption, scaled
by the average consumption to GDP ratio and the average value of debt. Vertical shading
denotes NBER recessions.

Figure 1 presents the surplus and compares three measures. The “Linear, st” line

imputes the surplus from the linearized flow identity (1) directly at the one-year horizon,

which is the measure I use in the following analysis. The “svt” and “syt/ev” lines both

infer the surplus from the exact nonlinear flow identity, Appendix equation (11). The

“svt” line presents the ratio of the exact surplus to the previous year’s value of the debt.

The “syt/ev” line presents the exact surplus to GDP ratio – actually, the ratio of surplus to

consumption, times the average consumption to GDP ratio – scaled by the average value

to GDP ratio eE(vt).

The first piece of news in Figure 1 is that there are primary surpluses. One’s im-

pression of endless deficits comes from the deficit including interest payments on the

debt. NIPA measures (not shown) also show regular positive primary surpluses. Steady
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primary surpluses from 1947 to 1975 helped to pay off WWII debt. The year 1975 started

an era of large primary deficits, interrupted by the strong surpluses of the late 1990s.

Postwar primary surpluses also have a clear cyclical pattern. The primary surplus corre-

lates very well with the unemployment rate (not shown), a natural result of procyclical

tax revenues, automatic (e.g. unemployment insurance) and discretionary countercycli-

cal spending.

The three measures in Figure 1 are close. The graph is a measure of the accuracy

of the linearized identity (1). The linearized identity is a slightly closer approximation to

the surplus to value ratio sv. The difference is largest when the value of debt is far from

its mean, both in WWII and in the 1970s.

I use a postwar data sample 1947-2018 for the main VAR analysis, as is conven-

tional in empirical macroeconomics. One may well suspect that financing that war, and

expectations and reality of paying off war debt, follow a different pattern than fiscal-

monetary policy in the subsequent decades of largely cyclical deficits. Appendix G in-

cludes results from 1930-2018, including the great depression and WWII. The results are

quite different, in ways traceable to a few influential data points. That analysis suggests

that using full sample results to characterize the post WWII regime is not a good idea.

4.1 Vector autoregression

Table 1 presents OLS estimates of the VAR coefficients. Each column is a separate regres-

sion. I orthogonalize shocks later, so the order of variables has no significance. The VAR

includes the central variables for the inflation identity – nominal return on the govern-

ment bond portfolio rn, consumption growth rate g, inflation π, surplus s and value v. I

include the three-month interest rate i and the 10 year bond yield y as they are important

forecasting variables for growth, inflation, and long-term bond returns.

It is important to include the value of debt vt in the VAR, even if we are calculat-

ing terms of the innovation identity (3) that does not reference that variable. When we

deduce from the present value identity (2) expressions vt = Et(·), we must include vt in

the information set that takes the expectation. The surplus typically follows an s-shaped

process, in which deficits today are followed by surpluses in the future. The process will

not be properly recovered by VARs that do not include the value of debt. (See Cochrane

(2020b), Cochrane (2020a) for discussion and examples.)
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rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.17** -0.02 -0.10** -0.32* 0.28* -0.08* 0.04*

gt -0.27* 0.20* 0.16* 1.37** -2.00** 0.28** 0.06
πt -0.15 -0.14* 0.53** -0.25 -0.29 0.09 0.04
st 0.12** 0.03 -0.03* 0.35** -0.24* -0.04* -0.04**

vt 0.01 -0.00 -0.02** 0.04* 0.98** -0.01 -0.00
it -0.32* -0.40* 0.29* 0.50 -0.72 0.73** 0.36**

yt 1.93** 0.54** -0.17 -0.04 1.60* 0.11 0.46**

100× std(εt+1) 2.18 1.53 1.12 4.75 6.55 1.27 0.82
Corr ε, επ -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31

R2 0.71* 0.17* 0.73* 0.48* 0.97* 0.82* 0.90*

100× std(x) 4.08 1.68 2.16 6.61 37.00 2.96 2.63

Table 1: OLS VAR estimate. Sample 1947-2018. One (two) stars means the estimate is one
(two) Monte Carlo standard errors away from zero.

I use a single lag. Adding the last variable, the long-term rate, already introduces

slight wiggles in the impulse-response function indicative of overfitting. More lags are in-

significant forecasters, and add additional wiggles without much changing results. The

results depend on long-run forecasts, which are controlled by the most persistent com-

bination of variables. Fast-moving variables that improve short-term forecasts have little

effect on long-term forecasts.

I compute standard errors from a Monte Carlo, described in the Appendix. The

stars in Table 1 represent one or two standard errors above zero. Since we aren’t testing

anything, stars are just a visual way to show standard errors without another table.

In the first column, the long-term bond yield yt forecasts the government bond

portfolio return rnt+1 (1.93). The negative coefficient on the three-month rate it means

that the long-short spread also forecasts those returns. Since the yt and it coefficients

are not repeated in forecasting inflation and growth, the long rate and long-short spread

forecast real, growth-adjusted, and excess returns on government bonds, as we expect

from the long literature in which yield spreads forecast bond risk premia (Fama and Bliss

(1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005)). The long rate yt is

thus an important state variable for measuring expected bond returns, the relevant dis-

count rate for our present value computations. (It’s common to use the yield spread yt−it
as a forecasting variable. However, when forecasting inflation, we also want to include
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the level of the short rate it. Forecasts using short rate it and yield spread yt − it are the

same as the forecasts using short rate it and yield yt, though the coefficients are not the

same.)

Growth gt is only very slightly persistent (0.20). The term spread yt−it also predicts

economic growth, and reinforcing the importance of the interest rates as state variables.

Inflation πt is moderately persistent (0.53). The interest rate and growth help a bit

to predict inflation, but not much else does. We will see inflation responses that mostly

look like AR(1) decay.

The surplus is somewhat persistent (0.35). Growth gt predicts higher surpluses,

an important and realistic feedback mechanism. Inflation forecasts deficits (-0.25), so

we expect that to some extent inflation may be related to subsequent deficits. Debt also

forecasts surpluses (0.04), which is important to the following dynamics. Deficits raise

debt, and then larger debts lead to surpluses which slowly pay off some of the debt accu-

mulated from the deficits. This response does not imply passive fiscal policy, as discussed

in more detail below.

The value of the debt is very persistent (0.98). It thus becomes the most important

state variable for long-run calculations. A larger surplus st forecasts lower debt, vt+1,

(−0.24), as one expects. The long-run yield yt forecasts a rise in the value of debt vt+1, as

we expect given its effect on the expected return rnt+1.

The short rate it and long yield yt are also persistent (0.73, 0.46) and the long yield

is forecast by the interest rate, again reflecting standard yield curve dynamics.

For calculations reported below, I use the standard notation

xt+1 = Axt + εt+1 (6)

to denote this VAR.

5 Responses and decomposition estimates

I start by examining the fiscal roots of a simple inflation shock, an unexpected movement

in inflation ∆E1π1 = επ1 = 1. I allow all other variables to move contemporaneously to the

inflation shock. In either reading of causality, we want to measure simultaneous move-

ments of inflation and other variables, for example that a shock to current and future
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surpluses caused inflation, or that a shock to inflation caused changes in fiscal policy

within the period. To measure how much other variables typically move conditional on

seeing an inflation shock, I fill in shocks to the other variables by running regressions of

their shocks on the inflation shock. For each variable z, I run

εzt+1 = bz,πε
π
t+1 + ηzt+1.

Then I start the VAR (6) at

ε1 =
[
brn,π bg,π επ1 = 1 bs,π ...

]′
.

This procedure is equivalent to the usual orthogonalization of the shock covariance ma-

trix, but it is more transparent and it generalizes more easily later. I denote the VAR in-

novations as the change in expectations at time 1, i.e. ∆E1, and thus the response of

variable x, j periods in the future is ∆E1xj .

Figure 2 plots responses to this inflation shock. The “Inflation” rows of Table 2

present the terms of the inflation and bond return decompositions for these responses.

(I discuss the remaining rows of Table 2 later.) Figure 2 also presents some of the main

terms in the decomposition identities, (3), (4), (5).

In any interpretation, these responses and calculations answer the question, “if we

see an unexpected 1% inflation, how should we revise our forecasts of other variables?”

In a fiscal-theoretic interpretation, they answer “what changes in expectations caused

the 1% inflation?” As shown in Appendix C, the inflation decompositions care also de-

compositions of the variance of unexpected inflation: They answer the question, “What

fraction of the variance of unexpected inflation is due to each component?”

Table 3 presents Monte Carlo quantiles of the sampling distributions of the terms

of the inflation decompositions in Table 2. Figure 9, below, plots quantiles of the impulse-

response functions. A reader hungry to see that sampling variation may wish to peek.

Sampling variation merits a longer discussion, however, which I postpone until we see

the message in the point estimates.

In Figure 2, the inflation shock is moderately persistent, largely following the AR(1)

dynamics we noticed in the VAR coefficients. As result, the weighted sum
∑∞

j=0 ω
j∆E1π1+j

= 1.59%, greater than the 1% initial shock.
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Figure 2: Responses to a 1% inflation shock.

The inflation shock coincides with a deficit s1, which builds with a hump shape.

That hump shape largely represents the -0.25 coefficient by which inflation forecasts sur-

pluses. One might think these persistent deficits account for inflation. But surpluses

eventually rise to pay back almost all of the incurred debt. The sum of all surplus re-

sponses is−0.06%, essentially zero.

The line marked rn − π plots the response of the real discount rate, ∆E1(r
n
1+j −

π1+j). These points are plotted at the time of the ex-post return, 1 + j, so they are the

expected return one period earlier, at time j. The line starts at time 2, where the terms

of the discount-rate sums in the inflation decompositions start, and representing the

time-1 expected return. After two periods, this discount rate rises and stays persistently

positive. The weighted sum of discount rate terms is 1.04% while the unweighted sum is

1.00% (really 1.004%). The weight ω = 0.69, chosen to make the identity (4) hold exactly

for this response function, so weighting by 1 vs. 1− ωj makes little difference in the face

of this persistent response.

Weighted or unweighted, the discount rate terms account for 1% inflation. A higher

discount rate lowers the value of government debt, an inflationary force.
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1(r
n
1+j − π1+j)

π = s g rn − π
Inflation 1.59 = -( -0.06) -( -0.49) +( 1.04)
Recession -2.36 = -( -1.15) -( -1.46) +( -4.96)
Surplus -0.10 = -( -0.66) -( -0.34) +( -1.10)
Disc. Rate -0.18 = -( -0.54) -( -0.28) +( -1.00)
Surplus, no i 0.38 = -( -0.52) -( -0.48) +( -0.62)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1(r

n
1+j − π1+j)

π rn = s g rn − π
Inflation 1.00 -( -0.56) = -( -0.06) -( -0.49) +( 1.00)
Recession -1.00 -( 1.19) = -( -1.15) -( -1.46) +( -4.79)
Surplus 0.02 -( 0.27) = -( -0.66) -( -0.34) +( -1.25)
Disc. Rate -0.03 -( 0.28) = -( -0.54) -( -0.28) +( -1.13)
Surplus, no i 0.36 -( 0.03) = -( -0.52) -( -0.48) +( -0.67)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1(r
n
1+j − π1+j)−

∑∞
j=1 ω

j∆E1π1+j
rn = rn − π π

Inflation -0.56 = -( -0.03) -( 0.59)
Recession 1.19 = -( 0.17) -( -1.36)
Surplus 0.27 = -( -0.15) -( -0.12)
Disc. Rate 0.28 = -( -0.13) -( -0.15)
Surplus, no i 0.03 = -( -0.05) -( 0.02)

Table 2: Terms of the inflation and bond return identities. The inflation shock is a 1 per-
cent unexpected rise in inflation. The recession shock is a 1 percent unexpected decline
in inflation and growth. The surplus shock is a 1 percent unexpected decline in the sum
of current and future surpluses. The discount rate shock is a 1 percent unexpected de-
cline the sum of current and future expected returns. The Surplus, no i shock holds the
interest rate constant for two years after a surplus shock. Sample 1947-2018

Inflation also is also correlated with a persistent decline in economic growth g.

The stagflationary episodes of the 1970s drive this result. The growth decline contributes

0.49% to the inflation decompositions.

Overall, then,

• A 1% shock to inflation corresponds to a roughly 1.5% decline in the present value

of surpluses. A rise in discount rate contributes about 1%, and a decline in growth
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1(r
n
1+j − π1+j)

π = s g rn − π
Inflation 25 % 1.38 = -( -0.69) -( -0.72) +( 0.16)
Inflation 75 % 1.64 = -( 0.23) -( -0.22) +( 1.46)
Recession 25 % -2.41 = -( -1.28) -( -1.45) +( -4.84)
Recession 75 % -2.05 = -( 0.49) -( -0.57) +( -2.43)
Surplus 25 % -0.11 = -( -0.78) -( -0.39) +( -1.11)
Surplus 75 % 0.02 = -( -0.61) -( -0.22) +( -0.98)
Disc. Rate 25 % -0.26 = -( -0.63) -( -0.34) +( -1.00)
Disc. Rate 75 % -0.13 = -( -0.46) -( -0.18) +( -1.00)
Surplus, no i 25 % 0.21 = -( -0.78) -( -0.48) +( -0.76)
Surplus, no i 75 % 0.45 = -( -0.52) -( -0.22) +( -0.50)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1(r

n
1+j − π1+j)

π rn = s g rn − π
Inflation 25% 1.00 -( -0.71) = -( -0.69) -( -0.72) +( 0.16)
Inflation 75% 1.00 -( -0.39) = -( 0.23) -( -0.22) +( 1.55)
Recession 25% -1.00 -( 0.96) = -( -1.28) -( -1.45) +( -4.84)
Recession 75% -1.00 -( 1.40) = -( 0.49) -( -0.57) +( -2.35)
Surplus 25% 0.00 -( 0.21) = -( -0.78) -( -0.39) +( -1.30)
Surplus 75% 0.09 -( 0.34) = -( -0.61) -( -0.22) +( -1.15)
Disc. Rate 25% -0.07 -( 0.25) = -( -0.63) -( -0.34) +( -1.24)
Disc. Rate 75% -0.01 -( 0.42) = -( -0.46) -( -0.18) +( -1.10)
Surplus, no i 25% 0.18 -( -0.08) = -( -0.78) -( -0.48) +( -0.86)
Surplus, no i 75% 0.38 -( 0.07) = -( -0.52) -( -0.22) +( -0.57)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1(r
n
1+j − π1+j)−

∑∞
j=1 ω

j∆E1π1+j
rn = rn − π π

Inflation 25% -0.71 = -( -0.12) -( 0.38)
Inflation 75% -0.39 = -( 0.19) -( 0.64)
Recession 25% 0.96 = -( -0.17) -( -1.41)
Recession 75% 1.40 = -( 0.28) -( -1.05)
Surplus 25% 0.21 = -( -0.24) -( -0.13)
Surplus 75% 0.34 = -( -0.12) -( -0.05)
Disc. Rate 25% 0.25 = -( -0.24) -( -0.20)
Disc. Rate 75% 0.42 = -( -0.11) -( -0.11)
Surplus, no i 25% -0.08 = -( -0.18) -( 0.00)
Surplus, no i 75% 0.07 = -( -0.00) -( 0.10)

Table 3: Monte Carlo quantiles of the inflation and bond return identities.
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accounts for about 0.5% of that decline. Changes in the surplus/GDP ratio account

for nearly nothing. The additional 0.5% fiscal shock corresponds to a persistent rise

in expected inflation, which slowly devalues outstanding long-term bonds, and pro-

duces a 1.5% overall rise in inflation weighted by the maturity structure of debt.

This is an important finding for matching the fiscal theory to data, or for under-

standing the fiscal side of standard passive-fiscal models. Thinking in both contexts has

focused on the presence or absence of surpluses, or surplus to GDP ratios – lump sum

taxes in many discussions – not discount rate or growth effects. Thinking in both con-

texts has considered one-period unexpected inflation, to devalue one-period bonds, not

a rise in expected inflation that slowly devalues outstanding long-term bonds.

Turn to Table 2 for a more systematic view of the inflation decompositions, and

to see the role of one-period bond returns ∆E1r
n
1 . The top row of the top panel presents

the just-discussed overall decomposition (5) of current and expected future inflation in

terms of surplus, growth and discount rate shocks. The second and third panels express

the inflation decomposition in one-period terms, using the bond return rn1 . The sum of

surpluses and sum of growth rate terms are the same in this second panel as in the top

panel, but I repeat them so one can see the terms of each identity more clearly. In the first

row of the second panel, the 1% inflation shock corresponds to a roughly 1.56% overall

fiscal shock. That shock comes similarly from a tiny 0.06% decline in surpluses, a 1.004%

rise in discount rate and 0.49% reduction in growth. Here, the extra 0.56% fiscal shock is

absorbed by a 0.56% decline in the value of government debt, rn1 .

Turning to the last panel, we see that -0.56% return on government debt comes

almost entirely from expected inflation (0.59%) not a higher real discount rate (0.03%).

Discount rates matter in the inflation decompositions of the top two panels but

not in this return decomposition because the former have weights that emphasize long-

term movements (1 and 1 − ωj), while the ωj weights of the bottom panel emphasizes

a short-run movement in discount rate. With these weights, the early discount rate de-

clines shown in Figure 2 match nearly exactly the subsequent persistent rise.

Comparing the two analyses, you see how the government bond return essentially

marks to market the expected future inflation of the top panel. Here, the roughly 1.5%

fiscal shock is absorbed 1% by inflation, and 0.5% by a decline in long-term bond prices.

The last panel ties the two decompositions together, showing that the decline in long-
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term bond prices reflects higher expected future inflation.

In sum,

• The 1.5% fiscal shock that comes with 1% unexpected inflation is buffered by an 0.5%

decline in bond prices, which corresponds to 0.5% additional expected future in-

flation. The additional expected inflation slowly devalues long-term bonds as they

come due, a loss in value marked to market in the fall in bond prices.

0 1 2 3 4 5 6 7 8 9 10

Years

-0.5

0

0.5

1

P
e
rc

e
n
t

r
n

i y

Figure 3: Responses to 1% inflation shock

Figure 3 adds detail to the bond pricing responses. The interest rate i, bond yield

y, and expected return rn all move together and persistently. Again, the graph plots the

return rn, the expected return is one period earlier. The sawtooth pattern in rn at time

3 comes from a slightly negative eigenvalue of the VAR, which is far below statistical sig-

nificance. The return shock rn1 moves down sharply as expected subsequent returns rise.

Bond prices decline when yields rise. This is the picture of a “parallel shift” in the yield

curve, with no sizable change in risk premiums.

The rise in real discount rates stems from the apparent disconnect between nom-

inal returns and inflation. Inflation is initially above nominal rates, giving a few periods
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of lower real rates. When inflation declines below the persistent nominal rates, implied

real interest rates rise on the right hand side of the graphs.
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Figure 4: Responses to 1% inflation shock

Figure 4 plots the response of surplus and value of debt to the unexpected inflation

shock. The debt to GDP ratio v1 declines on impact, reflecting the offsetting forces of

deficits, inflation, bond returns, and growth in (1). The deficit (s1 = −0.58%) and lower

growth (g1 = −0.33%) raise the value of debt to GDP ratio. But inflation (π1 = 1%) and a

negative bond return (rn1 = −0.56%) combine to reduce it. Together these forces produce

the impact response v1 = −0.65%. The long string of deficits and rise in expected real

returns then raises the value of debt. But eventually surpluses rise and pay down the

debt.

The s-shaped surplus response is a crucial lesson. It means that early debts are

repaid, at least in part, by following surpluses. The surplus does not follow an AR(1)-like

process. Mechanically, this pattern is a result of the VAR coefficient of surplus on lagged

debt, and the persistence of debt. Thus, the finding is econometrically robust; it does not

rely on a tenuous measurement of high-order surplus autocorrelations.

However, this analysis illustrates the vital importance of including debt in the VAR.
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Without debt in the VAR, the surplus is positively autocorrelated throughout, and sur-

pluses never rise to pay off deficits. If we specify a theoretical model with AR(1) surplus,

we miss the crucial fact that governments do promise, and people do expect, subsequent

surpluses to pay off debts at least in part.

The 0.04 VAR coefficient of surpluses on debt and the s-shaped surplus response

do not mean that the estimates measure a passive fiscal policy. The active vs. passive fis-

cal question concerns how surpluses respond to changes in the value of debt induced by

multiple-equilibrium inflation. We cannot measure off-equilibrium responses from data

drawn from equilibrium. Suppose, for example, that surpluses are completely exoge-

nous. Suppose that when a government borrows money (negative surplus) it commits

to future positive surpluses to completely repay bondholders, an s-shaped pattern with∑
ρjs1+j = 0, but the schedule of those surpluses is fixed and independent of inflation.

That’s active fiscal policy. Yet we observe deficits, which run up debts, and then surpluses

which seem to “respond” to those debts and to pay them off. (For more on this point see

Cochrane (2020a) and Cochrane (2020b). Leeper and Li (2017) also show that regressions

of surplus on debt do not establish passive fiscal policy.)

5.1 Disclaimers

I use the words “shock,” and “response,” which have become conventional in the VAR

literature, and compactly describe the calculations for those familiar with VARs. The cal-

culations do not imply or require a causal structure, nor do they make any pretense to

measure structural shocks. A “shock” here is only an “innovation,” a movement in a vari-

able not forecast by the VAR. A “response” is a change in VAR expectations of a future

variable coincident with such a movement.

In fact, my fiscal theory interpretation offers a reverse causal story: News about

future surpluses and discount rates causes inflation to move. That news in turn reflects

news about future productivity, fiscal and monetary policy and other truly exogenous or

structural disturbances. Many VAR exercises do attempt to find an “exogenous” move-

ment in a variable by careful construction of shocks, or they attempt to measure struc-

tural shocks, and they attempt to measure responses as effects of causal shocks. I do

not.

I do not assume that people use only the VAR information set to form expecta-
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tions. Since we start with an identity (1) that holds ex-post, or under agents’ information

sets, the identity holds using any coarser information set that includes the value of debt.

The model vt = E(xt+1|Ωt) implies vt = E(xt+1|It ⊂ Ωt), so long as vt ∈ It. But “unex-

pected” here means relative to the VAR information set. People may see a lot more. A

decomposition using larger information sets, survey forecasts, or people’s full informa-

tion sets, may be different. The VAR forecasts are correct on average, but they integrate

out other variables which agents may see.

Likewise, one is tempted to explore stochastic volatility, time-varying parameters,

stochastically changing regimes, subsample variation, or other nonlinearities. Such ad-

ditions may help to predict the variables, and they may change answers, but they do not

invalidate the linear VAR. The linear VAR recovers the Wold representation. There always

is a Wold linear representation of a covariance-stationary time series, even if the true

process is governed by such nonlinear processes. Nonlinearities are fundamentally the

same question as additional variables.

Why not present fancier specifications? The answer is, sample size and a bit of

peeking. I tried to add some extra variables and lags, but explorations showed them to

be economically insignificant and visibly to add overfitting noise. A quick look at the

standard errors in Table 3, Figure 9, and discussed in Section 6 puts a quick damper on

any desire to chop up the sample.

The value of debt in particular moves very slowly in this sample, declining from

1945 to 1974, and then rising again with a bit of interruption in the late 1990s. Inter-

est rates and inflation also move slowly. The long run dynamics of the VAR are driven

by the autocorrelation of the persistent state variables, the debt in particular, and how

those slow-moving state variables forecast the other variables one period ahead. When a

forecasting variable crosses its mean once every two decades, you just can’t get too fancy

with subsample variation or nonlinearities and time-varying parameters.

And, most of all, when the long-run forecasts of interest are driven by slow-moving

state variables and their one-step ahead forecast of other variables, adding stochastic

volatility and other nonlinearities which may help (a bit) to forecast one-step ahead, does

not change the long-run forecasts.

In particular, the surplus of Figure 1 seems to ask for different regimes, interest-

ingly correlated with different inflation and growth regimes. But keep in mind that the
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most important regression coefficient here is the coefficient of surplus on debt. Debt

was large from 1945-1965 with positive surpluses, low in the low-surplus 1970s, and large

again in the high-surplus late 1990s. The crucial finding that larger debts drive larger

surpluses (on average, if not lately) is driven by this low-frequency variation.

The correlation of the level of inflation with deficits is also appetizing, but the anal-

ysis here focuses on unexpected inflation. That is a higher, business-cycle, frequency

phenomenon. It links unexpected inflation to revisions in long-run forecasts.

Why use annual data? A practical reason is that the surplus and deficit data have

strong seasonals, which otherwise need adjustment. Seasonally adjusting, which uses

ex-post information, then forecasting, then finding implied long-run forecasts is a deli-

cate business. Most of all, the point here is to measure long-run responses. With quar-

terly seasonally adjusted data one would surely want to include four lags. Raising an

annual VAR to many powers to calculate long-run forecasts is already fraught. Raising

a quarterly four-lag VAR to four-times higher powers is even more fraught. Higher fre-

quency data does not always help to make long-run forecasts. Minute by minute data

rather than daily or even yearly data does not improve estimates of the speed of climate

change.

Sometimes simpler is not just easier, it’s better, more robust, and clearer too.

5.2 Recession, or aggregate demand shocks

We can use the same procedure to understand the fiscal underpinnings of other shocks.

For any interesting ε1, we can compute impulse-response functions, and thereby the

terms of the inflation decompositions. I show in Appendix C that we can consider these

calculations as a decomposition of the covariance of unexpected inflation with the shock

ε1, rather the decomposition of the variance of unexpected inflation.

I start with a shock that moves inflation and growth in the same direction. The

inflation shock in Figure 2 is stagflationary, in that growth falls when inflation rises. Un-

expected inflation is, in this sample, negatively correlated with unexpected consumption

(and also GDP) growth. The stagflationary episodes in the 1970s outweigh the simple

Phillips curve episodes.

However, it is interesting to examine the response to disinflations which come

in recessions, and inflations that come in expansions, following a conventional Phillips
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curve. Such events are common, as in the recession following the 2008 financial crisis.

But they pose a fiscal puzzle. In such a recession, deficits soar, yet inflation declines. How

is this possible? As I outlined in the introduction, future surpluses or lower discount rates

could give that deflationary force, needed whether fiscal policy is active or passive. Can

we see these effects in the data, and which one is it?

To answer that question, I simply specify επ1 = −1, εg1 = −1. The model is linear,

so the sign doesn’t matter, but the story is clearer for a recession. To give it a name, I

call this a “recession shock” in the Tables. We could also call it an “aggregate demand”

shock, because output and inflation move in the same direction, as opposed to “aggre-

gate supply” shocks which move output and inflation in opposite directions. These are

just memorable labels, with no pretense to identify structural shocks of any model.

Again, we want shocks to other variables to have whatever value they have, on

average, conditional on the inflation and output shock. To initialize the other shocks of

the VAR, then, I run a multiple regression

εzt+1 = bz,πε
π
t+1 + bz,gε

g
t+1 + ηzt+1

for each variable z. I fill in the other shocks at time 1 from their predicted variables given

επ1 = −1 and εg1 = −1, i.e. I start the VAR at

ε1 = −
[
brn,π + brn,g εg1 = 1 επ1 = 1 bs,π + bs,g ...

]′
.

Figure 5 presents responses to this shock, and Table 2 collects the inflation decom-

position elements in the “Recession” rows.

Both inflation π and growth g responses start at -1%, by construction. Inflation is

once again persistent, with a ω-weighted sum of current and expected future inflation

equal to -2.36%. Consumption growth g returns rapidly, but does not much overshoot

zero, so the level of consumption does not recover much at all. Consumption is roughly

a random walk in response to this shock. The nominal interest rate i falls in the recession,

and recovers a bit more slowly than inflation. Long-term bond yields y also fall, but not

as much as the short-term rate, for about 4 years. We see here the standard upward-

sloping yield curve of a recession. The expected bond return follows the long-term yield.

The persistent fall in expected return corresponds to a large positive ex-post bond return
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Figure 5: Responses to a recession or aggregate demand shock, επ1 = εg1 = −1.
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∆E1r
n
1 . The recession includes a large deficit s, which continues for three years. In short,

we see a standard picture of a recession similar to 2008-2009.

The large deficits in recessions puzzle a simplistic interpretation of the fiscal the-

ory. Why do we not see inflation at times with such large deficits? Surpluses subsequently

turn positive, paying down some of the debt. But the total surplus is still -1.15. Left

to their own devices, surpluses would produce a 1.15% inflation during the recession. A

potential story that disinflation results from future surpluses more than matching today’s

deficits is wrong. Growth also adds an inflationary force. The decline in consumption is

essentially permanent, and would lead on its own to another 1.46% inflation.

Discount rates are the central story for disinflation in recessions. After one pe-

riod, expected real returns r − g decline persistently, accounting for 4.96% cumulative

deflation.

In terms of the unexpected inflation accounting in the second and third panels of

Table 2, again surpluses and growth provide a total 1.15% + 1.46% = 2.61% fiscal loosen-

ing, an inflationary force. The unweighted sum of future discount rates provides a 4.79%

deflationary force, for an overall fiscal shock of 2.19% deflation. Of that, 1% results in

unexpected deflation and 1.19% is soaked up by lower long-term bond prices. In the bot-

tom panel, that 1.19% overwhelmingly represents lower expected inflation, essentially

marking it to market for a one-period accounting.

In sum, rounding the numbers,

• Disinflation in a recession is driven by a lower discount rate, reflected in lower in-

terest rates and bond yields. For each 1% disinflation and growth shock, the ex-

pected return on bonds falls so much that the present value of debt rises by nearly

5%. This discount rate shock overcomes a 1.1% inflationary shock coming from per-

sistent deficits, and 1.5% inflationary shock coming from lower growth. The overall

fiscal shock is 1.6%, with the extra 0.6% spread to future disinflation and soaked up

by long-term bond prices.

The opposite conclusions hold of inflationary shocks in a boom. Discount rate

variation gives us a fiscal Phillips curve, accounting for the otherwise puzzling correla-

tion of deficits with disinflation and surpluses with inflation.

The relative magnitudes of the inflation and growth shocks that I used to define

a “recession” or “aggregate demand shock” are (obviously) arbitrary. Growth fell about



FISCAL INFLATION 27

twice as much as inflation in 2008, but inflation fell a bit more than growth in 1982. Other

recessions have been stagflationary.

To produce a better number one must write a model and find an identification

in the data to separate “supply” or “stagflationary” Phillips-curve shift shocks from “de-

mand” or “movement along the Phillips curve” shocks, and one must thereby define pre-

cisely just what kind of events we seek to evaluate. Rather than belabor the point with

such a calculation, or fill the paper with multiple graphs, I choose a simple and transpar-

ent value of 1% less growth and 1% less inflation. The calculations report correctly “How

do expectations of other variables change if we observe that inflation and growth both

decline by 1%?” The only quibble is whether some other combination of inflation and

growth shocks might be more interesting.

5.3 Surplus and discount rate shocks

We have studied what happens to surpluses and to discount rates given that we see un-

expected inflation. What happens to inflation if we see changes in surpluses or discount

rates? These are not the same questions. An inflation shock may come, on average, with

a discount rate shock, but a discount rate shock may not come on average with inflation.

I calculate here how the variables in the VAR react to an unexpected change in cur-

rent and expected future primary surpluses including growth, ∆E1
∑∞

j=0(st+j+gt+j) = 1,

and other shocks to the VAR take their average values given this innovation. I call this a

“surplus shock.” The results are almost the same with or without the growth term in the

shock definition. Then I calculate how the variables in the VAR react to an unexpected

change in discount rates, ∆E1
∑∞

j=1(1− ωj)(rnt+1 − πt+1) = 1, again letting all other vari-

ables take their average values given this innovation. I call this a “discount rate shock.”

These shocks take a step in the direction of monetary and fiscal policy shocks, as stud-

ied in Cochrane (2020a), but have many orthogonalization and identification steps to

go before they can take on that mantle. For now, they represent the effects of (or, more

carefully, the correlates of) fiscal and interest rate changes, no matter how the latter are

brought about.
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The response of the sum of future surpluses and growth to a shock ε1 is

∆E1

∞∑
j=0

(s1+j + gt+j) = (as + ag)
′ (I −A)−1ε1.

To calculate how VAR shocks respond to a surplus shock, I run for each variable z a re-

gression

εzt+1 = bz
[
(as + ag)

′ (I −A)−1εt+1

]
+ ηzt+1 (7)

where az pulls variable z from the VAR, a′zxt = zt.Then, I start the surplus-shock response

function at

ε1 = −
[
brn bg bπ ...

]′
.

I plot a negative surplus shock, i.e. a deficit shock, as that sign tells an easier story.

Similarly, to calculate responses to a discount-rate shock, I run

εzt+1 = bz
{

(arn − aπ)′
[
A(I −A)−1 − ωA(I − ωA)−1

]
εt+1

}
+ ηzt+1.

I start the discount-rate response function with the negative of these regression coeffi-

cients as well, capturing the response to a discount rate decline.

Figure 6 presents the responses to the deficit shock, and Figure 7 presents the re-

sponses to the discount rate shock. Table 2 collects relevant contributions to the inflation

decompositions.

The sum of surplus and growth responses to the deficit shock are -0.66 -0.34 = -

1.00 by construction. Surpluses still have an s-shaped pattern, but the initial deficits are

not matched by subsequent surpluses.

This decline in surpluses and growth has essentially no effect on inflation. Starting

in year 2, inflation declines – the “wrong” direction given deficits and lower growth – by

less then a tenth of a percent, and the overall weighted sum of inflation declines by a

tenth of a percent. Why is there no inflation? Because discount rates also decline, with a

weighted sum of 1.10%, almost exactly matching the surplus decline. The lower panel of

Figure 6 adds insight. We see a sharp and persistent decline in the interest rate, long-term

bond yield, and expected bond return, along with deficits and the growth decline.

This figure captures the event of a widening deficit, accompanied by a decline

in growth and interest rates, i. e. a recession. These deficits are on average not directly
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Figure 6: Responses to a surplus and growth shock, ∆E1
∑∞

j=0 (s1+j + g1+j) = −1.
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Figure 7: Responses to a discount-rate shock ∆E1
∑∞

j=1(1− ωj)
(
rn1+j − π1+j

)
= 1.
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repaid by subsequent surpluses or growth. Instead, real interest rates decline persistently

in the recession and its aftermath. This decline in real returns essentially pays for the

deficits. Ex-post, a low real return brings the value of debt back rather than larger taxes

or lower spending. There is, on average, very little inflation or deflation. The opposite

sign occurs for positive shocks.

The response to the discount rate shock in Figure 7 is, surprisingly, almost exactly

the same. The weighted discount rate response (
∑

1 − ωj) is -1.00 here by construction.

This discount rate decline should be deflationary, and it is – but the disinflation peaks at

-0.1% and the weighted sum is only -0.18%. A sharp growth and surplus decline accom-

panies this discount rate decline, with a pattern almost exactly the same as we found

from the growth and surplus shock. In the bottom panel, the expected return decline

comes with a decline in interest rates and bond yields, as we would expect.

Clearly, the surplus + growth shock and the expected return shock have isolated

essentially the same events – recessions in which growth falls, deficits rise, interest rates

fall, and, on average in this sample, inflation doesn’t move much, and the converse pat-

tern of expansions. The correlation of the surplus+growth and discount rate shocks is

0.96. To continue the coffee story from the introduction, if you sample cups of coffee at

Starbucks that have a lot of sugar in them, they are likely to have a lot of coffee as well,

and if you sample cups with a lot of coffee, they are likely to have a lot of sugar in them.

The responses to a one-period surplus shock, ∆E1s1 = 1, a pure growth shock

∆E1g1 = 1 and a one-period discount rate shock ∆E1r
n
2 = 1 are all quite similar as well.

The fiscal roots of the absence of inflation, in the end, characterize these business-

cycle movements in the data. This sort of event, apparently common in the data, is not

much studied in macroeconomic public finance. We study deficits in recessions, primary

surpluses in booms (at least before the most recent one), and wonder whether surpluses

pay off the deficits, or whether state-contingent default via inflation plays a part. We do

not often tell a story that the higher deficits in recessions are resolved by lower interest

rates, bringing back the debt/GDP ratio, and vice versa – a temporary r < g effect – with-

out surpluses, and that this can be a part of a responsible public policy that does not rely

on unexpected inflation to devalue debt.

In sum,

• Surplus and discount rate shocks paint the same picture: Deficits are mostly not
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repaid by subsequent growth or surpluses, but do not produce inflation. Instead,

deficits come with periods of extended low expected returns. Discount rate declines

come with offsetting deficits and do not produce much deflation. Discount rate and

deficit shocks move together. Discount rate variation explains why deficits, not re-

paid by future surpluses, do not result in inflation.

5.4 A surplus shock without accommodation

The fact that interest rates move in opposition to the surplus shock is obviously key to the

noninflationary result. What if there is a surplus shock and the Federal Reserve does not

accommodate the shock, or its economic correlates, with the prominent interest decline

seen in Figure 6? To answer this question, I modify the surplus+growth shock so that the

short-term interest rate remains constant for two years. I now run

εzt+1 = bz,s
[
(as + ag)

′ (I −A)−1εt+1

]
+ bz,i0ε

i
t+1 + bz,i1

(
a′iAεt+1

)
+ ηzt+1.

The last term before the error is the expected interest rate one year forward. Then, I

initialize the VAR at

ε1 = −
[
brn,s bg,s bπ,s ...

]′
.

Figure 8 presents the responses, and Table 2 collects the terms of the identities.

Starting in the bottom panel of Figure 8, verify that the interest rate i now stays constant

for two years, by construction. This behavior contrasts with the strong interest rate de-

cline in the bottom panel of Figure 6. Except for the one-period expected return decline

in year two, the long-term bond yields and expected returns follow the interest rate. All

decline eventually.

Turning to the upper panel, the sum of surplus (-0.52) and growth (-0.48) shocks

remains -1.00% by construction. Deficits are initially much larger than 0.52%, but much

of this immediate deficit is repaid by higher long-term surpluses, so in the end the fiscal

shock is split equally between surpluses and growth. The discount rate term is now re-

duced to 0.62% - 0.67%, however, so the surplus shock now produces 0.36% immediate

and 0.38% weighted sum inflation.

In sum, without the interest rate response, the fiscal shock does result in unex-

pected inflation. We see here a parallel of the theoretical analysis that central bank ac-
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Figure 8: Responses to a surplus and growth shock with no interest rate movement for
two years, ∆E1

∑∞
j=0 (s1+j + g1+j) = 1, ∆E1i1 = 0, ∆E1i2 = 0.
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commodation of shocks, via the interest rate target, smooth forward and thereby reduce

unexpected inflation, even though the bank cannot control fiscal policy.

(Holding the interest rate constant for one period produces a similar though slightly

weaker result. Interest rates drift down after the one period, so the discount rate effect is

slightly stronger and inflation slightly less.)

Will the real recession please stand up? How do we have by one calculation re-

cessions with disinflations, and by another recessions with no change in inflation? Alas,

our macroeconomy is not a one-factor model, with all time-series moving in lockstep.

Different (true, structural) shocks dominate different events. The recessions of the 1970s

featured stagflation, those since 1990 did not. All recessions are not the same. Sometimes

inflation falls, sometimes it doesn’t. I have examined five, hopefully interesting, slices of

the full covariance matrix of shocks. They are different.

6 Standard errors

I have delayed a discussion of standard errors because there is nothing important to test.

Identities are identities. If x = y+z and xmoves, y or z must move, and all we can do is to

measure which one moves. Standard errors only serve to give us a sense of how accurate

the measurement is. In addition, unlike the case in asset pricing, no important economic

hypothesis rests on whether one of surpluses or discount rates do not move. Asset pricing

finds the hypothesis that expected returns are constant over time interesting to test.

I run a Monte Carlo to evaluate sampling distributions. Appendix D gives details.

Most of the interesting statistics – variance decompositions, impulse-response functions,

(I −A)−1, etc. – are nonlinear functions of the underlying data, and the near-unit root in

value vt also induces non-normal distributions. For these reasons, I largely characterize

the sampling distribution by the interquartile range – the 25% and 75% points of the

sampling distribution.

Table 3 collects the sampling quantiles for the variance decompositions of Table 2.

Figure 9 presents the main components of the impulse-response function relevant to the

inflation variance decomposition. The bands are 25% and 75% points of the sampling

distribution, the dashed line is the median, and the solid line is the estimate.

Start with the “Inflation” shock in Table 3. In the second panel, inflation quantiles
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the estimate.

are 1.00 because the shock is defined as a 1% movement in inflation in every sample.

The 1.59% weighted sum of inflation has 1.38% to 1.64% quantiles in the top panel. The

-0.06% sum of future surpluses has quartiles -0.69% to 0.23%. The -0.49% sum of growth

rates has quantiles -0.72% to -0.22% The 1.04% (weighted) and 1.00% (unweighted) dis-

count rate term has quantiles 0.16% to 1.46% and 0.16% to 1.55%. That discount rates

matter is a pretty solid conclusion, but deficits may contribute more to unexpected in-

flation than the point estimate suggests.

There are several sources of this rather large sampling variation. First, the shocks

are large. As shown in Table 1, the surplus innovation has a 4.75 percentage point stan-

dard deviation, and value 6.55 percentage points, compared to 1.12 percentage points

for inflation. Our friend σ/
√
T starts off badly.

Second, the shocks are imperfectly correlated. This matters, because in each case

I find movements in other variables contemporaneous with the shock of interest by run-
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ning a regression of the other shocks on the shock of interest. The sampling uncertainty

of this orthogonalization adds to that of the VAR coefficient estimates. We see a corre-

spondingly wide band around the initial surplus and growth responses in Figure 9. There

is hope in this observation, however. Higher frequency data can better identify shock

correlations, at the cost that one must model the strong seasonal in primary surpluses.

Moreover, other shock identifications may have better measured correlations.

Third, we measure sums of future surpluses and discount rates. The value of the

debt vt is the main long-run state variable, and uncertainty about its evolution adds to

the uncertainty about the sum of surpluses. The coefficient of value vt on its own lag is

0.98 in Table 1, so small variations in that value lead to large variation in (I −A)−1 sums.

Appendix E shows that the last two sources of variation contribute about equally.

Table 3 also presents 25% and 75% quantiles for the recession, surplus and dis-

count rate shocks of Table 2. The -1.15% total surplus response to a recession shock has

quantiles -1.28% to 0.49%, spanning zero, while the -4.96% and -4.79% discount rate re-

sponse has quantiles from -4.84% to -2.43% and -4.84% to -2.35%. The conclusion that

discount rate variation is a central part of the story for understanding aggregate-demand

inflation is fairly solid. The small inflation and offsetting surplus and discount rate re-

sponses to surplus and discount rate shocks are similarly measured.

It would be nice if the elements of the identities were more precisely measured.

But there is nothing one can do within the framework of this VAR to improve on them,

so it’s worth examining point estimates while awaiting more data or other approaches

such as model-based estimates that impose prior structure. The rather large sampling

variation should, however, discourage one from the inevitable temptation to split up the

sample or add complexity to the specification.

7 Concluding comments

This analysis evidently just scratches the surface. One can apply these decompositions

to any VAR, or to the impulse-responses of any theoretical model. Such calculations

beckon.

In particular, it is interesting to apply the inflation decompositions to model pre-

dictions or empirical estimates of well-identified monetary and fiscal policy shocks. Sup-
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pose, for example, that monetary policy follows it = φi,ππt+φi,xxt+ui,t, and fiscal policy

follows st = φs,ππt + φs,xxt + us,t, with persistent disturbances ui,t and us,t, and in par-

ticular an s-shaped moving average of us,t, reflecting partial repayment promises. With

such a specification, it is interesting to compute responses and inflation decompositions

to orthogonal shocks to monetary and fiscal policy disturbances ui,t and us,t. The Federal

Reserve cannot directly control fiscal policy, so fiscal theory of monetary policy models

suggest that it is interesting to shock monetary policy ui,t, while holding fiscal policy in

some sense fixed. Yet we likely want to allow the systematic part of fiscal policy to re-

spond to economic events, reflecting the rise in tax revenues with income and inflation,

and the automatic stabilizers and predictable stimulus spending in recessions, as mod-

eled by the φs,ππt + φs,xxt part of the above fiscal policy rule. That, I think, is the kind

of “what happens if we raise interest rates?” question a Federal Reserve official might

have in mind. Cochrane (2020a) presents such calculations from a simple fiscal theory of

monetary policy model.

By contrast, New-Keynesian models imply a fiscal policy shock us,t that moves

passively with the monetary policy shock to ui,t. Responses to such correlated distur-

bances are interesting too, but a different question. Here, we might focus on the ne-

glected fiscal side of new-Keynesian models to examine what the “passive” fiscal policy

is.

It may also be interesting to know what happens without the systematic fiscal re-

sponse, which setting φs,π = φs,x = 0 can answer. Such a calculation illuminates the eco-

nomic operation of monetary policy, not just as a leader of a customary fiscal response.

The contrast tells us how important monetary-fiscal policy coordination is. Likewise, it

is interesting to know what is the response to fiscal shocks, changes in us,t, assuming the

central bank follows its customary rule represented by φ terms and not holding interest

rates constant as in my last Figure.

Alas, making such calculations in data require one to solve the formidable identi-

fication problems of estimating the φ coefficients, given that the right hand variables re-

act to the disturbances. The state of the art for identifying monetary policy disturbances

and measuring the reaction function goes well beyond the simple recursive and long-run

strategies available in the atheoretical annual VAR here, to include highly detailed identi-

fication assumptions, high frequency data, narrative approaches, and other devices, and
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the literature still does does not offer a robustly successful result on which one can build

(Ramey (2016), Cochrane (2011a)). And even this voluminous literature has not started

to think about how we can identify monetary policy shocks that are orthogonal to fiscal

policy shocks. In the data, monetary and fiscal authorities are likely to respond to the

same underlying shocks, as we found a strong correlation between interest rate or dis-

count rate shocks and surplus shocks here. Teasing out monetary policy shocks that are

orthogonal to fiscal policy shocks, as well as all the other desired orthogonality, requires

some thought. I attempted monetary and fiscal policy shocks by recursive identification

in this data, but one-year interest-rate, inflation, and growth shocks are all highly corre-

lated. Assuming all of that correlation flows from interest rates to inflation and growth

results in positive effects of interest rates on inflation and growth. Assuming all corre-

lation reflects rule-like responses of interest rates to inflation and growth eliminates the

unexpected inflation response we wish to measure. Obviously, reality lies in between.

Additional measurements beckon. Quarterly or monthly data are attractive, of-

fering potentially better measurement of correlations and shock orthogonalization but

requiring us to model the strong seasonality in surpluses, and not to let seasonal adjust-

ment, which uses ex-post data, influence forecasts. Debt data go back centuries, allowing

and requiring us to think what is the same and different across different periods of his-

tory. Inflation through wars and under the gold standard may well have different fiscal

foundations than in the postwar environment. Appendix G finds quite different behavior

in 1930-1947, though that sample is dominated by a few influential data points and does

not offer by itself enough evidence to measure a different regime. A narrative counter-

part, especially for big episodes such as the 1970s and 1980s, awaits. Different countries

under different monetary and exchange rate regimes and different fiscal constraints will

behave differently. A parallel investigation of exchange rates beckons, following Jiang

(2019a), Jiang (2019b). One could define shocks in many additional interesting ways.

The treatment of debt can be refined in many ways. In particular, the maturity structure

is not geometric, and varies over time, and active management of the maturity structure

is in theory an interesting policy for stabilizing inflation, or creating it (Cochrane (2001)).

I omitted analysis of the remaining shocks in the VAR. A shock to any other vari-

able, orthogonal to the inflation shock, can move all of the other terms of the infla-

tion identities. Such movements must offset: In (5), if a shock does not move the in-
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flation term, but does move the sum of future surpluses, then it must also move the sum

of growth rates or discount rates. These additional effects are large. The variation in

∆E1
∑∞

j=0 s1+j when other shocks move is large; the corresponding movement in the

discount rate term is also large, and the two movements are negatively correlated. We

get a hint of that behavior in the surplus+growth and discount rate shock responses. I

do not pursue this question because it is much more interesting if one can give some

structural or economic interpretation to the shocks to other variables.

Perhaps most of all, linking these theory-free characterizations to explicit fiscal

theory of monetary policy models such as Cochrane (2020a), or at least to explicit models

of discount rates and long-term debt management, is an obviously important step. How-

ever, such models need to be elaborated to the point that they can match data, which

requires considerable complication of model elements, as has been the case in the em-

pirical new-Keynesian DSGE literature, and to surmount difficult identification and esti-

mation challenges of all their structural parameters. It’s important, but not easy.
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Online Appendix to “The Fiscal Roots of Inflation”

A Derivation of the linearized identities

In this appendix I derive the linearized identities (1), (2), and (3),

vt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1, (8)

vt =
T∑
j=1

st+j −
T∑
j=1

(
rnt+j − πt+j − gt+j

)
+ vt+T ,

and

∆Et+1πt+1 −∆Et+1

(
rnt+1 − gt+1

)
= −

∞∑
j=0

∆Et+1st+1+j +

∞∑
j=1

∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)
. (9)

I also define the variables more carefully.

The symbols are as follows:

Vt = Mt +
∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t

is the nominal end-of-period market value of debt, where Mt is non-interest-bearing

money, B(t+j)
t is zero-coupon nominal debt outstanding at the end of period t and due

at the beginning of period t+ j, and Q(t+j)
t is the time t price of that bond, with Q(t)

t = 1.

Taking logs,

vt ≡ log

(
Vt
YtPt

)
is log market value of the debt divided by GDP, where Pt is the price level and Yt is real

GDP or another stationarity-inducing divisor such as consumption, potential GDP, etc.

I use consumption times the average GDP to consumption ratio in the empirical work,

but I will call Y and ratios to Y “GDP” for brevity. The quantity

Rnt+1 ≡
Mt +

∑∞
j=1Q

(t+j)
t+1 B

(t+j)
t

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

(10)
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is the nominal return on the portfolio of government debt, i.e. how the change in prices

from the end of t to the beginning of t+ 1 affects the value of debt held between periods.

The quantity

rnt+1 ≡ log(Rnt+1)

is the log nominal return on that portfolio.

πt ≡ log

(
Pt
Pt−1

)
, gt ≡ log

(
Yt
Yt−1

)
are log inflation and GDP growth rate.

We can accommodate explicit default, so the formulas can also apply to countries

that borrow in foreign currency such as the members of the Euro. An explicit default is a

reduction in the nominal quantity of debt between periods. The B(t+j)
t in the numerator

of (10) represents the post-default number of bonds outstanding, i.e. at the beginning of

period t + 1, while the B(t+j)
t in the denominator represents the pre-default number of

bonds outstanding, i.e. at the end of period t. A partial default then shows up as a low

return. To handle default one would, of course, add notation distinguishing the pre- and

post- default quantity of debt in the definition of return.

We start with the nonlinear flow identity,

Mt +

∞∑
j=1

Q
(t+j)
t+1 B

(t+j)
t = Pt+1spt+1 +Mt+1 +

∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1 . (11)

Here, spt+1 denotes the real primary (not including interest payments) surplus or deficit.

At the beginning of period t + 1, money Mt and bonds B(t+1+j)
t are outstanding. Money

Mt+1 at the end of period t and beginning of period t + 1 then equals money Mt, money

printed up to redeem bondsB(t+1)
t+1 , less money soaked up by a primary surplusPt+1spt+1,

or conversely printed to finance a primary deficit, and less money soaked up by net new

bond sales, or printed to finance long-term bond purchases,
∑∞

j=1Q
t+1+j
t+1 (B

(t+1+j)
t+1 −

B
(t+1+j)
t ).

Using the definition of return, (11) becomesMt +
∞∑
j=1

Q
(t+j)
t B

(t+j)
t

Rnt+1 = Pt+1spt+1 +

Mt+1 +
∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1

 ,
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or,

VtR
n
t+1 = Pt+1spt+1 + Vt+1.

The nominal value of government debt is increased by the nominal rate of return, and

decreased by primary surpluses. This seems easy. The algebra all comes from properly

defining the return on the portfolio of government debt.

Expressing the result as ratios to GDP, we have a flow identity

Vt
PtYt

×
Rnt+1

Gt+1

Pt
Pt+1

=
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1
, (12)

where Gt+1 ≡ Yt+1/Yt.

We can iterate this flow identity (12) forward to express the nonlinear government

debt valuation identity as

Vt
PtYt

=

∞∑
j=1

j∏
k=1

1

Rnt+k/(Πt+kGt+k)

spt+j
Yt+j

. (13)

where Πt+1 ≡ Pt+1/Pt. The market value of government debt at the end of period t, as

a fraction of GDP, equals the present value of primary surplus to GDP ratios, discounted

at the government debt rate of return less the GDP growth rate. I assume here that the

right hand side converges. Otherwise, keep the limiting debt term or iterate a finite num-

ber of periods. Given that the value of debt is finite, the sums converge iff the terminal

condition converges. And, in the end we only need convergence in expectation. Roughly

speaking, it is sufficient that debt to GDP is bounded and the proper nonlinear expected

version of r > g holds.

The nonlinear present value identities (12) and (13) are cumbersome. I linearize

the flow equation (12) and then iterate forward to obtain a linearized version of (13).

Taking logs of (12),

vt + rnt+1 − πt+1 − gt+1 = log

(
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1

)
(14)

I linearize this equation in the level of the surplus, not its log as one conventionally

does in asset pricing, since the surplus is often negative. To linearize in terms of the
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surplus/GDP ratio, Taylor expand the last term,

vt + rnt+1 − πt+1 − gt+1 = log(ev + sy) +
ev

ev + sy
(vt+1 − v) +

1

ev + sy
(syt+1 − sy)

where

syt+1 ≡
spt+1

Yt+1
(15)

denotes the surplus to GDP ratio, and variables without subscripts denote a steady state

of (14). With r ≡ rn − π,

r − g = log
ev + sy

ev
.

Then,

vt + rnt+1 − πt+1 − gt+1 =

[
log(ev + sy)− ev

ev + sy

(
v +

sy

ev

)]
+

ev

ev + sy
vt+1 +

ev

ev + sy

syt+1

ev

vt + rnt+1 − πt+1 − gt+1 =

[
v + r − g − ev

ev + sy

(
v +

ev + sy

ev
− 1

)]
+ ρvt+1 + ρ

syt+1

ev

vt + rnt+1 − πt+1 − gt+1 = [r − g + (1− ρ) (v − 1)] + ρvt+1 + ρ
syt+1

ev
(16)

where

ρ ≡ e−(r−g). (17)

Suppressing the small constant, and thus interpreting variables as deviations from means,

the linearized flow identity is

vt + rnt+1 − πt+1 − gt+1 = ρ
syt+1

ev
+ ρvt+1. (18)

Iterating forward, the present value identity is

vt =

T∑
j=1

ρj−1
[
ρ
syt+j
ev
−
(
rnt+j − πt+j − gt+j

)]
+ ρT vT . (19)

If we linearize around r − g = 0, then the constant in (18) is zero (sy = 0), and we obtain

the linearized flow and present value identities (8) and (9), with the symbol st represent-

ing syt/ev. There is nothing wrong with expanding about r = g. The point of expansion

need not be the sample mean.
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To approximate in terms of the surplus to value ratio, write (14) as

vt + rnt+1 − πt+1 − gt+1 = log

(
Vt
PtYt

spt+1

Yt+1

Vt
PtYt

+
Vt+1

Pt+1Yt+1

)

rnt+1 − πt+1 − gt+1 = log

( spt+1

Yt+1

Vt
PtYt

+

Vt+1

Pt+1Yt+1

Vt
PtYt

)

rnt+1 − πt+1 − gt+1 = log
(
svt+1 + evt+1−vt) .

At a steady state

r − g = log (1 + sv) . (20)

er−g = 1 + sv.

Taylor expanding around a steady state,

rnt+1 − πt+1 − gt+1 = log (1 + sv) +
1

(1 + sv)
(svt+1 − sv + vt+1 − vt)

vt + (1 + sv)
[
rnt+1 − πt+1 − gt+1

]
= [(1 + sv) log (1 + sv)− sv] + svt+1 + vt+1 (21)

The linearized flow identity (8) follows, with the symbol st representing the surplus to

value ratio st = svt, if we suppress the constant, using deviations from means in the

analysis, or if we use r = g or sv = 0, as a point of expansion.

The linearizations in terms of the surplus to value ratio svt are more accurate. The

units of the flow identities (8), (18) are rates of return. Dividing the surplus by the previous

period’s value gives a better approximation to the growth in value, when the value of debt

is far from the steady state.

A constant ratio of surplus to market value of debt for any price level path leads to

a passive fiscal policy: An unexpected deflation raises the real value of debt. If surpluses

always rise in response, they validate the lower price level. Thus, although on the equilib-

rium path one can describe dynamics via either linearization, if one wants to think about

how fiscal-theory equilibria are formed, it is better to describe a surplus that does not re-

act to price level changes, so only one value vt emerges, as is the case in (19). For such

purposes, the surplus to GDP definition is appropriate, as well as adopting a lineariza-

tion point r > g and ρ < 1. It’s also better to use the nonlinear versions of the identities



6 COCHRANE

for determinacy issues. The analysis of this paper is about what happens in equilibrium,

and does not require an active-fiscal assumption, so the difference is irrelevant here.

I infer the surplus from the linearized flow identity (8) so which concept the sur-

plus corresponds to makes no difference to the analysis. The difference is only the accu-

racy of approximation, how close the surplus recovered from the linearized flow identity

corresponds to a surplus recovered from the nonlinear exact identity (14).

B Linearizing the bond return formula

Here I derive the linearized identity

rnt+1 ≈ ωqt+1 − qt,

which leads to (4),

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
.

I also derive expectations-hypothesis bond-pricing equations.

Etr
n
t+1 = it

ωEtqt+1 − qt = it.

These equations are used in the sticky-price model Cochrane (2020a).

Denote the maturity structure by

ωj,t ≡
B

(t+j)
t

B
(t+1)
t

and Bt ≡ B(t+1)
t . Then the end of period t nominal market value of debt is

∞∑
j=1

B
(t+j)
t Q

(t+j)
t = Bt

∞∑
j=1

ωj,tQ
(t+j)
t .

(I ignore money to keep the formulas simple.) Define the price of the government debt
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portfolio

Qt =
∞∑
j=1

ωj,tQ
(t+j)
t .

The return on the government debt portfolio is then

Rnt+1 =

∑∞
j=1B

(t+j)
t Q

(t+j)
t+1∑∞

j=1B
(t+j)
t Q

(t+j)
t

=

∑∞
j=1 ωj,tQ

(t+j)
t+1∑∞

j=1 ωj,tQ
(t+j)
t

=
1 +

∑∞
j=1 ωj+1,tQ

(t+1+j)
t+1

Qt
. (22)

I loglinearize around a geometric maturity structure, B(t+j)
t = Btω

j−1, or equiva-

lently ωj,t = ωj−1. I use variables with no subscripts to denote the linearization points,

and tildes to denote deviations from those points.

When we linearize, we move bond prices holding the maturity structure at its

steady-state, geometric value, and then we move the maturity structure while holding

bond prices at their steady-state value. As a result, changes in maturity structure have no

first-order effect on the linearized bond return. At the steady state Qt+jt = 1/(1 + i)j ,

Rnt+1 =

∑∞
j=1 ωj,t/(1 + i)j−1∑∞
j=1 ωj,t/(1 + i)j

= (1 + i)

independently of {wj,t}. Intuitively, at the steady state bond prices, all bonds give the

same return, so all portfolios of bonds give the same return. Moreover, maturity structure

is a time-t variable in the definition of returnRnt+1. The return from t to t+1 is not affected

by the time t+1 maturity structure. (Changes in maturity structure might affect returns if

there is price pressure in bond markets. These are formulas for measurement, however,

and such effects would show up as changes in measured prices coincident with changes

in quantities.)

Maturity structure only has a second-order interaction effect on the bond portfo-

lio return. For example, a longer maturity structure at t raises the bond portfolio return at

t+1 if there is also a level shock, raising long-maturity bond returns at t+1. A longer ma-

turity structure at t it raises the expected return if the yield curve at t is also temporarily

upward sloping. But a linear VAR and a linear decomposition do not include interaction

effects.

To be clear, I measure the bond portfolio return rnt+1 directly, and exactly, and this

measure includes all variation in maturity structure. The linearization only affects the
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decomposition of the bond portfolio return to future inflation and future expected re-

turns. A second-order approximation would effectively use a different ω in the decompo-

sition formula for different dates, as well as estimate a VAR with parameters that depend

on the maturity structure or interaction terms. But variation in the geometric maturity

structure parameter ω makes little difference to the results. And the sample is too short

to add more variables, interaction terms, or time-varying parameters.

The term of the linearization with steady-state bond prices and changing matu-

rity thus adds nothing. The linearization only includes a linearization with steady-state,

geometric maturity structure and changing bond prices. Linearizing (22) then, we have

rnt+1 = log (1 + ωeqt+1)− qt ≈ log

(
1 + ωQ

Q

)
+

ωQ

1 + ωQ
q̃t+1 − q̃t (23)

where as usual variables without subscripts are steady state values and tildes are devia-

tions from steady state. In a steady state,

Q =
∞∑
j=1

ωj−1
1

(1 + i)j
=

(
1

1 + i

)(
1

1− ω
1+i

)
=

1

1 + i− ω
. (24)

The limits are ω = 0 for one-period bonds, which gives Q = 1/(1 + i), and ω = 1 for

perpetuities, which gives Q = 1/i. The terms of the approximation (23) are then

1 + ωQ

Q
= 1 + i

ωQ

1 + ωQ
=

ω

1 + i

so we can write (23) as

rnt+1 ≈ i+
ω

1 + i
q̃t+1 − q̃t.

since i < 0.05 and ω ≈ 0.7, I further approximate to

rnt+1 ≈ i+ ωq̃t+1 − q̃t. (25)

I find the value of ω that best fits the return identity, rather than measure the maturity

structure directly, so the difference betweenω andω/(1+i) makes no practical difference.

To derive the bond return identity (4), iterate (25) forward to express the bond
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price in terms of future returns,

q̃t = −
∞∑
j=1

ωj r̃nt+j .

Take innovations, move the first term to the left hand side, and divide by ω,

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1r̃
n
t+1+j . (26)

Then add and subtract inflation to get (4),

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(r̃nt+1+j − π̃t+1+j) + π̃t+1+j

]
. (27)

The expectations hypothesis states that expected returns on bonds of all maturi-

ties are the same,

Etr
n
t+1 = it

i+ ωEtq̃t+1 − q̃t = it

ωEtq̃t+1 − q̃t = ı̃t

In the text, all variables are deviations from steady state, so I drop the tilde notation.

C A variance decomposition

I use the elements of the impulse response function and their sums to calculate the terms

of the unexpected inflation identity (3). We can interpret this calculation as an decom-

position of the variance of unexpected inflation. Multiply both sides of (3) by ∆Et+1πt+1

and take expectations, giving

var (∆Et+1πt+1)− cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1 − gt+1

)]
(28)

= −
∞∑
j=0

cov [∆Et+1πt+1,∆Et+1st+1+j ] +

∞∑
j=1

cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.
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Unexpected inflation may only vary to the extent that it covaries with current bond re-

turns, or if it forecasts surpluses or real discount rates.

Dividing by var (∆Et+1πt+1), we can express each term as a fraction of the variance

of unexpected inflation coming from that term. This decomposition adds up to 100%,

within the accuracy of approximation, but it is not an orthogonal decomposition, nor are

all the elements necessarily positive. Each term is also a regression coefficient of future

long-run variables on unexpected inflation.

The two approaches give exactly the same result – the terms of (28) are exactly the

terms of the impulse-response function, to an inflation shock orthogonalized last, i.e. a

shock that moves all variables at time 1 including ∆E1π1.

To see this fact, write the VAR in standard notation

xt+1 = Axt + εt+1 (29)

so

∆Et+1

∞∑
j=1

xt+j = (I −A)−1εt+1.

Let a denote vectors which pull out each variable, i.e.

πt = a′πxt, st = a′sxt, (30)

etc. Then the present value identity (3) reads and may be calculated as

a′πεt+1 − (arn − ag)′εt+1 = −a′s(I −A)−1εt+1 + a′rg(I −A)−1Aεt+1 (31)

where

arg ≡ arn − aπ − ag.

We can calculate the variance decomposition (28) by

a′πΩaπ − (arn − ag)′Ωaπ = −a′s(I −A)−1Ωaπ + a′rg(I −A)−1AΩaπ
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where Ω = cov(εt+1, ε
′
t+1), and then divide by a′πΩaπ to express the result as a fraction,

1− (arn − ag)′
Ωaπ
a′πΩaπ

= −a′s(I −A)−1
Ωaπ
a′πΩaπ

+ a′rg(I −A)−1A
Ωaπ
a′πΩaπ

. (32)

To show that this variance decomposition is the same as the elements and sum

of elements of the impulse-response function to an inflation shock, orthogonalized last,

note that the regression coefficient of any other shock εz on the inflation shock is

bεz ,επ =
cov(εzt+1, ε

π
t+1)

var(επt+1)
=
a′zΩaπ
a′πΩaπ

,

so the VAR shock, consisting of a unit movement in inflation επ1 = 1 and movements

εz1 = bεz ,επ in each of the other variables is given by

ε1 =
Ωaπ
a′πΩaπ

.

We recognize in (32) the responses and sums of responses to this shock. Dividing (28) by

the variance of unexpected inflation, or examining the terms of (32), we recognize that

each term is also the coefficient in a single regression of each quantity on unexpected

inflation.

In an analogous way, we can interpret the responses to other shocks as a decom-

position of the covariance of unexpected inflation with that shock, based on

cov (∆Et+1πt+1εt+1)− cov
[
εt+1,∆Et+1

(
rnt+1 − gt+1

)]
= −

∞∑
j=0

cov [εt+1,∆Et+1st+1+j ] +

∞∑
j=1

cov
[
εt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

This variance decomposition is similar in style to the decomposition of return

variance in Campbell and Ammer (1993). To avoid covariance terms, however, it fol-

lows the philosophy of the price/dividend variance decomposition in Cochrane (1992),

extended to a multivariate context. With x = y+z, I explore var(x) = cov(x, y)+ cov(x, z)

rather than var(x) = var(y) + var(z) + 2cov(y, z).



12 COCHRANE

D Monte Carlo details

To evaluate sampling distributions I run a simple Monte Carlo. I start with the estimated

VAR. I find the covariance matrix of the residuals εt+1. The identity (1) implies

εs,t+1 = εrn,t+1 − εg,t+1 − επ,t+1 − εv,t+1. (33)

Since I infer the surplus data st from (1), the data obey this identity and the covariance

matrix of residuals is singular. Thus I simulate iid shocks from the covariance matrix of

all shocks except the surplus, and then I infer the surplus shock from the identity (33).

I initialize the VAR at the first data point, thereby generating the conditional sam-

pling distribution. I simulate forward 50,000 artificial data samples using the estimated

VAR parameters. I re-estimate the VAR and I calculate impulse responses and inflation

decompositions in each artificial sample. I tabulate the sampling distribution of these

quantities and report quantiles.

In a very few artificial samples, the VAR estimate has eigenvalues greater than or

equal to one, so (I −A)−1 cannot be computed. I omit these 38 out of 50,000 samples. As

a result the reported quantiles are slightly smaller than actual quantiles. Avoiding these

infinities and beyond is one reason that I report quantiles rather than standard errors.

More generally, the distribution of statistics is not normal.

It is also not always possible to find ω ∈ [0, 1] to satisfy the return identity, so many

Monte Carlo draws use a best fit value of ω in which the return identity does not hold.

Weights have little effect on the results however, so this fact seems to have little effect.

Since this is what I would have done in sample had I not been able to find an ω ∈ [0, 1]

that satisfied the return identity, this fact just fills out the correct sampling distribution.

I run the Monte Carlo using sample estimates, and in particular the estimated 0.98

coefficient of debt on lagged debt. Near unit roots are biased down, and one might wish

also to run a Monte Carlo with a bias-corrected estimate with eigenvalues closer to one.

That procedure would likely lead to somewhat larger sampling distributions.

Between the conditional Monte Carlo – starting at the first data point – the prob-

lem of draws withA eigenvalues greater than one, near-unit roots, and non-normal error

distributions, one could likely find sampling experiments that produce even larger dis-

tributions. Generating data from models with stochastic volatility, time-varying means,
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rn g π s v i y

Regression of other shocks on inflation shock
Coefficient -0.56 -0.33 1.00 -0.58 -0.65 0.24 0.23

Std. err. (0.24) (0.17) (0.00) (0.53) (0.74) (0.14) (0.24)
Correlation matrix of VAR shocks

rn 1.00 -0.25 -0.29 -0.27 0.63 -0.74 -0.93
g -0.25 1.00 -0.24 0.39 -0.56 0.41 0.20
π -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31
s -0.27 0.39 -0.14 1.00 -0.88 0.35 0.26
v 0.63 -0.56 -0.11 -0.88 1.00 -0.63 -0.60
i -0.74 0.41 0.21 0.35 -0.63 1.00 0.75
y -0.93 0.20 0.31 0.26 -0.60 0.75 1.00

Table 4: Regression of other shocks on inflation shock, and correlation matrix of VAR
shocks

sample breaks, Markov-switching, and so forth may do even more.

But remember, I am not testing anything, so the point is simply to give a sense

of the sampling error of the measurements. My main conclusion is that the sampling

distribution of the response functions and decompositions, though narrow enough that

the qualitative results are reasonably reliable, is still pretty wide already, steering me away

from model complications. Sampling exercises that produce even wider distributions

would only emphasize that point.

E Sources of sampling variation

Table 4 includes the regression of other shocks on inflation shock that starts off the main

inflation decomposition, and thus determines the instantaneous response in Figures 2

and 9. The table also includes the correlation matrix of the shocks.

To measure the relative contribution of the shock correlation and the long-run

response function given the shock identification as sources of variation, Table 5 includes

two other sampling calculations. The “no b” columns resample data using the original

regression of shocks εzt+1 on inflation shocks επt+1, the top row of Table 4, in each sample.

The VAR coefficients still vary across samples, but the identification of the inflation shock

does not. The “no A” columns likewise keep constant the VAR regression coefficients, but
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Fraction No b No A
Component Estimate 25% 75% 25% 75% 25% 75%
Inflation π1 1.00

Bond return (rn1 − g1) -0.23 -0.45 0.00 -0.23 -0.23 -0.45 0.00
Future Σs -0.06 -0.69 0.23 -0.60 0.14 -0.69 0.23

Future Σr − g 1.17 0.42 1.57 0.63 1.37 0.42 1.57

Table 5: Decomposition of unexpected inflation variance – distribution quantiles. No b
holds the initial response constant across trials. No A holds the VAR regression coeffi-
cients constant across trials

reestimate the shock regression in each sample. Turning off either source of sampling

variation reduces that variation, but not as much as you might think. Sampling variation

is still large in either case, and variances add, not standard deviations. Moreover the

sampling variation associated with shock orthogonalization – the “no A” exercise – does

not go away no matter how small the shocks. Both left and right hand sides of the shock

on shock regressions get smaller at the same rate.

F 1980-2018 subsample results

This section presents results using the 1980-2018 subsample. Much monetary macroeco-

nomics isolates this period as having a different set of correlations that the earlier 1970s

inflation, 1960s under Bretton woods, etc. Breaking the sample also allows us to see if the

results are stable across subsamples.

Table 6 presents OLS VAR regression coefficients, parallel to Table 1. Table 7 com-

piles inflation decompositions, parallel to Table 2. Figures 10, 11 and 12 plot responses

to inflation shocks, paralleling Figures 2, 3, and 4.

The broad pattern of Figure 10 is similar to the full postwar sample. There are

some differences. The surplus and growth shocks are now positively correlated with the

inflation shock, seen in the period 1 responses. There is less need to isolate a separate

growth+inflation shock in this period, dominated by “aggregate demand” rather than

“stagflation” episodes.

However, the surplus and growth responses turn negative after one period, as they

are in the full sample. Higher inflation strongly forecasts a lower surplus, -1.55 in Table
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rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.22* 0.05 -0.10** -0.25* 0.08 -0.04 0.07*

gt -0.11 0.13 0.06 0.76 -1.06 0.20* -0.04
πt -0.04 -0.57* 0.67** -1.55 1.41 -0.08 -0.12
st 0.10* 0.07* -0.02 0.38** -0.34* -0.02 -0.04*

vt -0.00 0.00 -0.00 0.05 0.95** 0.01 0.00
it -0.12 -0.27* 0.20* 1.14* -1.19 0.61** 0.31*

yt 1.61** 0.67** -0.08 0.05 0.98 0.32* 0.57**

100× std(εt+1) 2.44 1.10 0.51 5.17 7.00 1.15 0.93
Corr ε, επ -0.40 0.14 1.00 0.11 -0.31 0.27 0.42

R2 0.73* 0.54* 0.88* 0.50* 0.94* 0.85* 0.89*

100× std(x) 4.74 1.63 1.48 7.30 28.88 2.97 2.84

Table 6: OLS VAR estimate. Sample 1980-2018. One (two) stars means the estimate is one
(two) Monte Carlo standard errors away from zero.

6 rather than -0.25 in Table 1, and similarly higher inflation forecasts lower growth -0.57

rather than -0.14. The overall responses are then similar to the full period.

Surpluses then recover and turn positive as before. The sum of the surplus re-

sponse remains small, 0.19 rather than -0.06.

Figure 11 explores the long-run surplus response, and you can see the same dy-

namics playing out. Inflation forecasts a rise in debt (1.41 in Table 6), and the period of

deficits also raises debt (-0.34). But the rise in debt leads to a rise in surpluses, which

slowly pay down much of that debt.

The expected return also rises in figure 10, and accounts for all the inflation and

more in this subsample as it does in the main estimate.

Figure 12 shows the interest rate response in more detail. The wiggly response,

which I pointed out in the postwar sample and is a result of slight overfitting there, is

even more pronounced here. However, wiggles aside, the basic picture is similar. Interest

rates and the expected bond return rise together, and almost permanently in response to

the inflation shock. They do not rise as much as inflation, giving a few periods of negative

expected returns, but their rise is so much more persistent than that of inflation that we

see a very long period of high expected returns on the right side of the graph. As in the full

sample, the much greater persistence of yield-curve changes than of inflation generates

the long-term discount rate rise which accounts for most of the inflation shock.
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1(r
n
1+j − π1+j)

π = s g rn − π
Inflation 2.32 = -( 0.19) -( 0.52) +( 3.03)
Recession -2.50 = -( -0.31) -( -1.67) +( -4.49)
Surplus -0.08 = -( -0.46) -( -0.54) +( -1.08)
Disc. Rate -0.12 = -( -0.40) -( -0.49) +( -1.00)
Surplus, no i 0.07 = -( -0.70) -( -0.30) +( -0.92)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1(r

n
1+j − π1+j)

π rn = s g rn − π
Inflation 1.00 -( -1.92) = -( 0.19) -( 0.52) +( 3.63)
Recession -1.00 -( 2.44) = -( -0.31) -( -1.67) +( -5.42)
Surplus -0.01 -( 0.32) = -( -0.46) -( -0.54) +( -1.33)
Disc. Rate -0.02 -( 0.35) = -( -0.40) -( -0.49) +( -1.25)
Surplus, no i 0.07 -( -0.01) = -( -0.70) -( -0.30) +( -0.92)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1(r
n
1+j − π1+j)−

∑∞
j=1 ω

j∆E1π1+j
rn = rn − π π

Inflation -1.92 = -( 0.60) -( 1.32)
Recession 2.44 = -( -0.94) -( -1.50)
Surplus 0.32 = -( -0.25) -( -0.07)
Disc. Rate 0.35 = -( -0.25) -( -0.09)
Surplus, no i -0.01 = -( -0.00) -( 0.00)

Table 7: Terms of the inflation and bond return identities. Sample 1930-2018.

The impulse-response quantiles, plotted in Figure 13, are even larger than those

of the full sample, but not so large that the results are meaningless.

Overall, we see a comfortingly similar picture, and many signs of weak estimation

in a short sample. At least it is comforting not to see the point estimates paint a much

different picture, as they do in the prewar sample studied in the next section.

I do not present results for the 1947-1980 subsample to save space, since it too

paints about the same picture. The near-term (5 years) response functions are similar.

However the point estimate has an eigenvalue of the transition matrix greater than one,

so one must either reduce that or make calculations based on the first few responses only,

not (I −A)−1 calculations.
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Figure 10: Response to inflation shocks, sample 1980-2018.
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Figure 11: Response to inflation shocks, sample 1980-2018.
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Figure 12: Response to inflation shocks, sample 1980-2018.
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Figure 13: Inflation shock response quantiles, sample 1980-2018.
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G Full sample results

This section presents results using the full sample of data that I have been able to collect,

1930-2018.

rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.23** 0.06 -0.02 -0.12 -0.14 -0.06* 0.05*

gt 0.02 0.42** 0.25** 0.52* -1.17** 0.07* -0.01
πt -0.11* 0.05 0.53** -0.75** 0.05 0.02 0.02
st 0.01 -0.02 -0.02 0.65** -0.61** 0.00 -0.01*

vt 0.01 0.01* 0.01 0.08** 0.91** -0.00 -0.00*

it -0.32* -0.35* 0.26 0.63 -0.87 0.79** 0.31**

yt 1.85** 0.40* -0.05 0.59 0.90 0.14 0.52**

100× std(εt+1) 2.22 2.15 2.28 7.34 9.04 1.24 0.77
Corr ε, επ -0.14 0.21 1.00 -0.07 -0.28 0.15 0.17

R2 0.68* 0.32* 0.56* 0.54* 0.96* 0.84* 0.91*

100× std(x) 3.92 2.61 3.44 10.80 42.76 3.05 2.60

Table 8: OLS VAR estimate. Sample 1930-2018. One (two) stars means the estimate is one
(two) Monte Carlo standard errors away from zero.

Table 8 presents OLS VAR regression coefficients, parallel to Table 1. Table 10 com-

piles inflation decompositions, parallel to Table 2. Figures 14, 15, and 16 plot responses

to inflation shocks, paralleling Figures 2, 3, and 4. Figure 17 presents sampling quantiles,

paralleling Figure 9.

Start with the impulse response function for the inflation shock, Figure 14, paral-

leling Figure 2. The general pattern is similar. But the magnitudes are completely dif-

ferent. The 1% inflation shock still corresponds to a prolonged deficit, and the deficit

eventually turns to surplus. But the deficit is larger and longer, and following surpluses

no longer pay off the accumulated debts. The sum of the surplus responses is -2.59, not

-0.06, accounting for more than all of the 1.83% weighted sum of inflation.

Discount rates follow the same general pattern as well. But the decline in discount

rate is longer lasting, and the subsequent rise much smaller, so discount rates now ac-

count for -0.52% inflation, not +1.004% inflation.

The growth response goes the other way, now rising with inflation rather than de-

clining, and therefore contributes -0.93% inflation rather than +0.49%.
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1(r
n
1+j − π1+j)

π = s g rn − π
Inflation 1.83 = -( -2.59) -( 0.93) +( 0.17)
Recession -2.00 = -( 2.59) -( -2.13) +( -1.54)
Surplus 0.09 = -( -1.04) -( 0.04) +( -0.91)
Disc. Rate -0.05 = -( -0.89) -( -0.05) +( -1.00)
Surplus, no i 0.30 = -( -1.27) -( 0.27) +( -0.70)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1(r

n
1+j − π1+j)

π rn = s g rn − π
Inflation 1.00 -( -0.14) = -( -2.59) -( 0.93) +( -0.52)
Recession -1.00 -( 0.17) = -( 2.59) -( -2.13) +( -0.72)
Surplus 0.07 -( 0.13) = -( -1.04) -( 0.04) +( -1.05)
Disc. Rate -0.01 -( 0.16) = -( -0.89) -( -0.05) +( -1.11)
Surplus, no i 0.26 -( 0.01) = -( -1.27) -( 0.27) +( -0.75)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1(r
n
1+j − π1+j)−

∑∞
j=1 ω

j∆E1π1+j
rn = rn − π π

Inflation -0.14 = -( -0.69) -( 0.83)
Recession 0.17 = -( 0.82) -( -1.00)
Surplus 0.13 = -( -0.14) -( 0.02)
Disc. Rate 0.16 = -( -0.11) -( -0.05)
Surplus, no i 0.01 = -( -0.05) -( 0.04)

Table 9: Terms of the inflation and bond return identities. Sample 1930-2018.

In sum, the full sample data paint a picture more than diametrically opposite. A

1% inflation shock, drawn out to 1.83% cumulative weighted inflation, is more than ac-

counted for by 2.53% cumulative deficits, and buffered by an 0.52% disinflationary de-

cline in discount rates, and 0.93% disinflationary rise in growth.

The full-sample results appear to support a simple fiscal theory, which would be

convenient – inflation comes from persistent deficits. Discount rates only mitigate that

result.

Why then do I emphasize the postwar sample in the text, and relegate these to an

online appendix? Clearly, the full sample results do not carry through the postwar period

to the present. As in essentially all macroeconomics and monetary economics, which
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Figure 14: Response to inflation shocks, sample 1930-2018.

studies the post-1947 sample, the post-1959 sample, or, increasingly, the post-1980 sam-

ple, the war and prewar data behave differently. My interest in this paper is to charac-

terize the behavior of inflation in postwar recessions, and the peacetime inflation of the

1970s and 1980s. Making an inference about that behavior from war and prewar data,

when the central results switch in a postwar-only sample would be hugely misleading.

The nature of the prewar and war regime is interesting. Alas, the 1930-1947 sample

is too short for these VAR methods. An investigation of the prewar regime with a long

historical time series beckons.

What are the stylized facts and influential data points behind this switch in behav-

ior? As before, long-run forecasts are driven by slow-moving state variables. Think of a

system

xt+1 = αyt + εx,t+1

yt+1 = ρyt + βεx,t+1 + εy,t+1.

In the second equation, I express the y shock in terms of a component correlated with

the x shock and an orthogonal component. In this system, the variable y is the persistent

state variable for long-run responses. The long-response of x to the εx shock depends on
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Figure 15: Response to inflation shocks, sample 1930-2018.

how much the state variable y moves, β, and the persistence of the y variable. In response

to εx,1 = 1, the long-run x response is

∆E1

∞∑
j=0

x1+j = 1 +
αβ

1− ρ
.

With this insight, let us understand the responses of Figure 14. Three state vari-

ables matter most. From Table 8, inflation basically follows its own AR(1), unaffected by

other variables, with a a persistence of 0.53, the same value as the postwar sample. The

value of debt is the most important state variable for long-run responses with an 0.91 co-

efficient on its own lag. However, this debt to GDP ratio does respond strongly (-0.61) to

surpluses, and to lagged growth (-1.1) as we would expect, so at medium runs it evolves

jointly with these other variables. The surplus has a strong coefficient on its lag, 0.65, so

in part any shock to surpluses coincident with the inflation shock will persist. The sur-

plus also responds positively though with a small value 0.08 to the debt. This coefficient

does not account for much of the short run dynamics, as the movements of surplus and

debt are roughly the same size, but is the dominant force behind very long run surpluses

which repay debts. The surplus responds and negatively -0.75 to inflation. This key coef-
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Figure 16: Response to inflation shocks, sample 1930-2018.

ficient is only -0.25 in the postwar sample. Interest rates also have a persistent response,

but they move so little in this estimate that they are not an important state variable.

So, what accounts for the long deficits in Figure 14? The surplus does not jump

down by a large amount with the shock, declining only 0.25, so the surplus’ autocor-

relation is not a big part of the story. The big decline in surplus follows from its -0.75

coefficient on inflation, and the inflation AR(1) response. If inflation this year forecasts

deficits next year, then a very simple fiscal theory story that inflation is accounted for by

deficits follows swiftly.

But deficits should raise the value of debt, and the rise in the value of debt, which

is very persistent, should pull deficits back to surplus, no? Here, another difference in

the full sample is key. In the full sample, the value of debt v jumps down by 1.10% when

inflation jumps up 1%, where in the postwar sample the value of debt jumps down half as

much, 0.65%. Now, a low value of debt does not put into motion additional surpluses. So,

the effect seen in the postwar sample of Figure 3, that deficits quickly give rise to higher

debt which then triggers surpluses, is absent here because so much debt was wiped out

by the inflation shock.

Contrasting Figures 15 and 3 help to explain the differing behavior of the discount
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Figure 17: Inflation shock response quantiles, sample 1930-2018.

rate. In both cases, the behavior of nominal interest rates is disturbingly disconnected

from the behavior of inflation. In the postwar sample, nominal rates rise immediately

and very persistently. When inflation declines and passes by the higher nominal rates,

real rates are higher. In the full sample, nominal rates move much less, reflecting the zero

bound in the great depression and interest rate targets in WWII and the early postwar

period. The resulting real rate the inverse of the inflation AR(1), and mostly negative.

The massive deficits of 1943 and 1944 are key influential data points that account

for the shift in behavior of the full sample. Estimates from the 1940-2018 sample, not

shown, are similar. Figure 18 plots inflation and surplus during WWII. The WWII deficits

are immense. Inflation, more volatile in the pre-1947 period, was above its mean in the

years prior to these immense deficits. Thus, this inflation preceding deficits of 1943 and

1944 drives the result that inflation forecasts deficits in the full sample, and thus the result

that inflation shocks are accounted for by deficits. This is clearly not a robust result, or

one that should be taken as evidence that inflation today is due to deficits.

The strong negative correlation between shocks to inflation and to the value of

debt in the full sample comes from a different set of influential observations. The infla-

tion of 1943 and 1944 was largely expected, according to the VAR, and preceded rather
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Figure 18: Surplus and inflation during WWII

than coincided with increased debt. Instead, the sharp and unexpected (by the VAR)

postwar inflation of 1947 coincided with a sharp decline in the real value of debt, and

the sharp deflation of 1932 coincided with a sharp rise in the real value of debt. These

events are conventionally regarded as times in which deflation raised the value of debt,

in the first, and inflated it away, in the second. But again, one is loath to let these two

observations double our estimate of the correlation between shocks to inflation and the

value of debt for the postwar period.

The inflation shock is already positively correlated with a growth shock in the full

sample, due to a strong positive correlation in the 1930s. As a result, the response to

the inflation + growth shock (not shown) is not much different from the response to the

inflation shock. Again, the 1% deflation and 2% cumulative inflation corresponds to 2.6%

cumulative rise in surpluses. This time a long-run decline in discount rate contributes to

deflation, but an equally large decline in growth contributes to inflation.


