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Abstract

Unexpected inflation devalues nominal government bonds. It must therefore

correspond to a decline in expected future surpluses, or a rise in their discount

rates, so that the real value of debt equals the present value of surpluses. I

measure each component using a vector autoregression, via responses to infla-

tion, recession, surplus and discount rate shocks. Discount rates account for

much inflation variation, for the cyclical pattern of inflation, and why persistent

deficits often do not cause inflation. Long-term debt is important. In response

to a fiscal shock, smooth inflation slowly devalues outstanding long-term bonds.

Keywords: Fiscal theory of the price level, monetary policy, fiscal policy,

inflation.

1. Introduction

The real value of nominal debt equals the present value of real primary

surpluses. Higher inflation devalues nominal government debt. Higher inflation

must therefore correspond to lower surplus/GDP ratios, lower GDP growth, or

higher discount rates for government debt. I develop a set of linearized identities5

that expresses this identity. I measure the components via impulse-response

functions of a simple vector autoregression (VAR).

I look first at an unanticipated movement in inflation. Two thirds of the total

inflationary effect of that shock corresponds to a change in discount rates, one
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third from a change in growth, and essentially none to a change in surplus/GDP10

ratios.

I look next at a shock in which both inflation and growth move unexpectedly

and together. This exercise is motivated by events such as 2008-2009. There

is a big recession, with large and persistent deficits. Yet inflation falls, raising

the real value of nominal debt. How can this be? Well, perhaps people expect15

higher subsequent primary surpluses to pay back the cumulated deficits, and

more. Aside from its implausibility, I do not find this pattern in the data. But

nominal and real interest rates on government debt fall sharply, which raise

the value of government debt, a deflationary force. I find that the decline in

expected returns is large and persistent enough quantitatively to account for20

inflation shocks in a recession, and vice versa in a boom.

I also examine persistent shocks to surpluses and shocks to discount rates.

These shocks come with essentially no inflation. Shocks to surpluses are highly

correlated with shocks to discount rates, so the surplus and discount rate terms

of the present value formula largely offset. Viewed in ex-post terms, persistent25

deficits come at the same time as low returns. Low returns bring back the

value of debt, without needing repayment via later surpluses, or devaluation via

an initial inflation. The strong correlation between discount rates and deficits

provide fiscal roots of the absence of inflation in the presence of large variation

in surpluses and discount rates.30

The first and third observations are not contradictory. There are multiple

sources of variation in the data. Not all business cycles are alike. When we

isolate a shock to inflation, we see events in which discount rates and deficits

do not offset. When we isolate a shock to discount rates or deficits, we see a

different slice of data, in which they do offset and there is not much inflation or35

deflation.

I also find an important role for long-term debt. Simple models focus on one-

period debt, and price-level jumps devalue such debt. With long-term debt, a

slow inflation can devalue long-term bonds when they come due. Expectation of

such future inflation lowers nominal bond prices, restoring present value balance40
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in place of a price-level jump. This mechanism is evident in the data, with

expected future inflation accounting for large fractions of changes in the present

value of debt.

I interpret the results through the lens of the fiscal theory of monetary

policy: models with interest rate targets, fiscal theory of the price level, and45

potentially sticky prices, as described in Cochrane (2020a), Cochrane (2020b).

(More literature below.) In this interpretation, changes in expected surpluses

and discount rates cause unexpected inflation. In this interpretation, we study

the fiscal roots rather than the fiscal consequences of inflation. This paper

establishes a set of facts that will be useful for constructing such models. My50

causal language below refers to this interpretation.

But the identities whose terms I measure hold in almost all macroeconomic

models used to quantitatively address inflation, and therefore form a widely

useful set of stylized facts for monetary and fiscal interaction. The computations

of this paper are deliberately “measurement without theory.” I do not estimate55

any structural parameters, identify any structural shocks, or test one model vs.

another. A “shock” only means a movement in a variable that is not forecast

by the VAR, without structural interpretation.

In particular, standard new-Keynesian / DSGE models posit an opposite

causality. Equilibrium-selection policy by the central bank determines unex-60

pected inflation. Fiscal policy reacts “passively,” raising or lowering surpluses

to validate inflation-induced changes in the value of government debt. These

fiscal underpinnings are not often examined, but they should be as they are also

important parts of the model, just as monetary-fiscal coordination is important

to classic monetarist thought. The results of this paper can also be interpreted65

as measures of the fiscal adjustments to inflation that a standard new-Keynesian

model must envision. The fact that discount rates do much of the adjusting, and

the measured time-path of surpluses following inflation shocks, are important

fiscal underpinnings of such models.

Since the analysis is based on identities, and since I make no effort to identify70

structural shocks of a model or exogenous policy shocks, the empirical results do
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nothing to establish one or another causal story. But which element in an iden-

tity moves – whether surpluses or discount rates account for inflation-induced

variation in the value of government debt – is still an interesting measurement,

that bears on the construction of any theory.75

More narrowly, this paper addresses a common attempt at armchair refuta-

tion of fiscal theory: We have huge debt and deficits, and no inflation. Debt

and deficits increase in recessions, where inflation declines. The theory must be

wrong. No. First, a low real interest rates quantitatively account for the dis-

inflation and rise in the value of government debt in recessions. Second, since80

the government debt valuation equation holds equally in conventional mone-

tary theories, if there is a puzzle in the fiscal foundations of inflation, it applies

equally to conventional theories. It does not reject fiscal theory in favor of those

other theories.

As a paper on pure facts, I do not offer here theory or evidence on why85

surpluses or expected returns on government bonds vary as they do. Given

their variation, inflation makes fiscal sense.

2. Literature

The technique in this paper is adapted from asset pricing. The general ap-

proach to linearizing the valuation identity follows Campbell and Shiller (1988).90

The summary of this literature in Cochrane (2011b) and the treatment of identi-

ties in Cochrane (2008) are obvious precursors to this work. The uniting theme

in the former is that asset price and return variation corresponds in great mea-

sure to variation in discount rates.

The analysis of government finances, how debt is paid off, grown out of, or95

inflated away, is a huge literature. Hall and Sargent (1997), Hall and Sargent

(2011) are the most important recent precursors. Hall and Sargent focus on the

market value of debt, as I do, not the face value reported by the Treasury, and

consequent proper accounting for interest costs. Cochrane (1998) constructs

a linearized present value equation similar to that used here, and uses it to100
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decompose the value of government debt. Cochrane (2019) improves on that

calculation, using the value identity (2). Both papers find that variation in

expected primary surpluses is an important determinant of the value of debt.

The main methodological novelty is that this paper uses the innovation iden-

tities, (3) and (5) below, to focus on inflation rather than the value of gov-105

ernment debt, paralleling VAR-based return (rather than price-dividend ratio)

decompositions such as Campbell and Ammer (1993). I find a greater role for

discount rates in this inflation accounting, where varying expected surpluses are

more important in accounting for variation in the level of the value of debt.

The fiscal theory of monetary policy is the latest step in a long literature on110

the fiscal theory of the price level, starting with Leeper (1991), that integrates

fiscal theory with sticky-price models and interest rate targets. Leeper and Leith

(2016) offers an excellent example and literature review. Cochrane (2020b) offers

an extensive literature review.

Cochrane (2020a) works a fiscal theory of monetary policy model with the115

s-shaped surplus processes I find here, and calculates inflation decompositions

and response functions from the model. It is not quite the theory paper cor-

responding to this work. I do not here identify the structural monetary and

fiscal policy shocks studied there. I do not there extend the model with the

dynamic embellishments and multiple shocks necessary to match responses of120

this paper. Bringing theory and data closer together is obviously an important

goal for future work.

3. Identities

Start with a linearized version of the government debt flow identity,

ρvt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1. (1)

I derive this identity in Online Appendix. The quantity vt is the log of the ratio

of the market value of debt to GDP, henceforth just “debt.” Debt at the end125

of period t + 1, vt+1, is equal to debt at the end of period t, vt, increased by
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the log nominal return on the portfolio of government bonds rnt+1, less inflation

πt+1, less log GDP growth gt+1, and less the scaled real primary surplus to GDP

ratio st+1. The measured return rnt+1 includes any effects of maturity structure

or of liquidity premiums accruing to government debt. The parameter ρ is a130

constant of linearization, which I take to be ρ = 1 in the numerical results. We

can express ρ in terms of return r and growth g values around which we take

the linearization as ρ = e−(r−g).

All variables in (1) are logs, except the surplus. I Taylor expand the level

of the surplus, to allow the surplus to be negative. As a result the surplus135

is scaled to generate percentage units: The variable st is ρ times the ratio of

primary surplus to GDP scaled by the debt to GDP ratio at the linearization

point. With ρ = 1, st can also represent the real primary surplus divided by

the previous period’s debt. Either definition leads to the same linearization. In

the data, I impute the surplus from the other terms of (1), so its definition only140

matters when one wishes to assess an independent data source on surpluses. For

brevity, I refer to st simply as the “surplus,” or when necessary for clarity as

“surplus to GDP ratio.” With ρ < 1 there is also a constant in the linearization,

or the variables are deviations from steady state.

Iterating forward, we have a present value identity,

vt =

∞∑
j=1

ρj−1st+j +

∞∑
j=1

ρj−1gt+j −
∞∑
j=1

ρj−1
(
rnt+j − πt+j

)
. (2)

Taking expected values, the debt to GDP ratio is the present value of future145

surplus to GDP ratios, discounted at the ex-post real return, and adjusted for

growth. Higher GDP growth, with the same surplus to GDP ratio, gives rise to

greater surpluses.

Taking time t+ 1 innovations

∆Et+1 ≡ Et+1 − Et
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and rearranging, we have an unexpected inflation identity,

∆Et+1πt+1 −∆Et+1r
n
t+1 = −

∞∑
j=0

ρj∆Et+1st+1+j−

−
∞∑
j=0

ρj∆Et+1gt+1+j +

∞∑
j=1

ρj∆Et+1rt+1+j ,

(3)

where

rt+1 ≡ rnt+1 − πt+1

denotes the ex-post real return on the portfolio of government debt. A decline

in the present value of surpluses, coming either from a decline in surplus to GDP150

ratios, a decline in GDP growth, or a rise in discount rates, must correspond to

a lower real value of the debt. This reduction can come about by unexpected

inflation, or by a decline in nominal long-term bond prices and hence a negative

ex-post return. I use time t+ 1 to denote unexpected events, and time 1 as the

date of a shock in the impulse-response functions.155

What determines the bond return rnt+1? I linearize the return of the govern-

ment bond portfolio around a geometric maturity structure, in which the face

value of maturity j debt declines at rate ωj , yielding

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1r
n
t+1+j = −

∞∑
j=1

ωj∆Et+1 (rt+1+j + πt+1+j) . (4)

Lower nominal bond prices, and a lower ex-post bond return, mechanically cor-

respond to higher bond expected nominal returns, which in turn are composed

of real returns and inflation. The Online Appendix presents the algebra.

We can then eliminate the bond return in (3)-(4) to focus on inflation and

fiscal affairs alone,

∞∑
j=0

ωj∆Et+1πt+1+j = −
∞∑
j=0

ρj∆Et+1st+1+j −
∞∑
j=0

ρj∆Et+1gt+1+j+

+

∞∑
j=1

(ρj − ωj)∆Et+1rt+1+j .

(5)

I focus on this decomposition. Each of the terms is, directly, a sum of the

elements of an impulse-response function.160
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Identity (5) highlights several interesting mechanisms which we can look for

in the data and models. Consider the simple case with constant expected returns

Etr
n
t+1 = Etπt+1. With one-period debt, ω = 0, there is only one term on the

left-hand side of (5), ∆Et+1πt+1. Shocks to the present value of surpluses must

be soaked up by a price-level jump.165

With long-term debt, ω > 0, however, a shock to the present value of sur-

pluses can result in a drawn-out period of inflation, which slowly devalues out-

standing long-term bonds. In the identity (3), the term rnt+1 marks the future

inflation to market, as future inflation in (4) lowers that return. In fact, equa-

tion (5) allows the entire effect of the fiscal shock to show up in expected future170

inflation with no movement in current inflation ∆Et+1πt+1 = 0. Drawn-out in-

flation accompanying fiscal problems is more realistic than one-time price-level

jumps. So, we can productively look for fiscal roots of drawn-out inflation.

With one-period debt, expected inflation may continue to be high after an

initial inflation shock, but this fact has no impact on one-period unexpected175

inflation or this fiscal accounting. With ω = 0, ∆E1πj for j > 1 is irrelevant

in (5). With long-term debt, the weighted sum of changes in expected inflation

substitutes for inflation at time 1, but only the ω-weighted sum. Additional

persistence in inflation, though interesting for matching data, has no fiscal con-

sequence or consequence for understanding unexpected inflation.180

Higher discount rates, a higher expected real bond return, are an inflationary

force exactly parallel to low surpluses. They lower the value of government debt,

and thus require current or future inflation.

As the maturity structure of government debt lengthens, ω increases, and

the discount rate terms in the last part of (5) get smaller. When ω = ρ, almost185

a perpetuity, the discount rate term drops out. Intuitively, a government that

funds itself with near-perpetuities can pay off its current debt while ignoring real

interest rate variation, just as a household that takes out a fixed-rate mortgage

is immune from interest rate variation.

The identity (5) is also useful for understanding the operation of models190

and model predictions for responses to policy shocks. For example Cochrane
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(2020a) uses the identity to understand how long-term debt is useful to generate

a negative inflation response to a monetary policy shock, and how monetary

policy by controlling expected inflation can smooth the effects of a fiscal shock

over time.195

3.1. What about r < g?

To get to (2), I iterate forward the flow identity (1) to

vt =

T∑
j=1

ρj−1st+j +

T∑
j=1

ρj−1gt+j −
T∑
j=1

ρj−1rt+j + ρT vt+T . (6)

Then I assume that the expected value of the terminal condition vanishes, and

the sums converge. With all variables stationary, this assumption requires ρ ≤ 1,

i.e. r ≥ g. What about r < g?

First, the parameter ρ = e−(r−g) represents a point of linearization. It does200

not have to be calculated from the sample or population mean of the government

bond return and growth rate. So take ρ ≤ 1 even if E(r) < E(g). The return

linearization is not sensitive to the linearization point, since the variables vary

by so much relative to their means. Then, with stationary variables, the terms of

the linearized identities all converge. Indeed, convergence depends more on the205

stationarity of the variables than it does on ρ. The limit limT→∞ ρTEt(vt+T ) =

0 not because ρ < 1 but because vt is stationary, and the formula applies to

deviations from the mean, so limT→∞Et(vt+T ) = 0. The point estimate of

0.98 autocorrelation would allow ρ as large as 1.02. The terms converge in the

estimates, which is really all that matters for these decompositions.210

The worry, then, is that the configuration of the economy which produces r <

g is one in which the true present value does not operate. In a perfect-certainty

frictionless economy with r < g, the economy will always grow out of debt, so

deficits (st < 0) need not require later surpluses. Debt is the accumulation of

past deficits, but does not require future surpluses. A linearization with ρ ≤ 1215

misses this crucial fact. In this circumstance, we should linearize with ρ > 1

and also solve backwards.
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However, our economy does not feature perfect certainty and no frictions.

Even if it is true that E(r) < E(g) in our economy, that fact does not imply

that debts do not have to be repaid in present value, that fiscal expansion has220

“no fiscal cost” in the provocative analysis of Blanchard (2019). The present

value of debt can be well defined, properly using the stochastic discount factor,

contingent claim price, or marginal utility to discount, and large deficits still

need to be repaid by subsequent surpluses, yet the economy displays E(r) <

E(g). In this case, the linearized present value formula remains valid as long as225

its terms converge, which they do. For small r < g or for liquidity premiums

or seignorage which do not scale, one may also apply the linearized identities to

deviations about the mean, even if the mean causes trouble, i.e. due to a small

perpetual deficit.

Bohn (1995) gives an early classic example. Bassetto and Cui (2018) an-230

alyze the issue with a specific eye to fiscal theory, and Bassetto and Sargent

(2020) give a general discussion. Reis (2021) gives a detailed example empha-

sizing discounting at the marginal product of capital, which is higher than the

growth rate. Cochrane (2021) offers a short summary of the issues. The Online

Appendix gives a fuller analysis in this context.235

4. Data

I use data on the market value of government debt held by the public and the

nominal rate of return of the government debt portfolio from Hall, Payne, and

Sargent (2018). I use standard BEA data for GDP and total consumption. I use

the GDP deflator to measure inflation. I use CRSP data for the three-month240

Treasury rate. I use the 10-year constant maturity government bond yield from

1953 on and the yield on long-term United States bonds before 1953 to measure

a long-term bond yield.

I measure the debt to GDP and surplus to GDP ratios by the ratios of debt

and surplus to consumption, times the average consumption to GDP ratio. For245

brevity, I still refer to ratios as ratios to GDP. We conventionally reference debt
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to GDP, but there is no fundamental economic reason to divide debt by GDP

rather than another macroeconomic aggregate. For most uses, we want some

measure of debt relative to the government’s long-term taxing power and spend-

ing habits. In time-series work we want a divisor that renders debt stationary.250

But dividing debt by GDP introduces additional dynamics due to GDP dynam-

ics. Is it interesting, for example, to say that the debt to GDP ratio declines in a

recovery because GDP grows, mechanically raising the denominator? Dividing

by a measure of trend or permanent GDP produces a stationary series in which

variation in the debt ratios comes more from fiscal affairs than from predictable255

dynamics in the denominator. Potential GDP has a severe look-ahead bias for

a VAR. Consumption, being close to a random walk, is a good stochastic trend

for GDP and divisor for debt for this time-series analysis.

I infer the primary surplus from the flow identities. This calculation mea-

sures how much money the government actually borrows. NIPA surplus data,260

though broadly similar, does not obey the flow identity.

I infer the surplus/GDP st for the VAR from the linearized identity (1), at

an annual frequency. By doing so, the data obey the identity exactly. Therefore

VAR estimates of the decompositions add up exactly with no approximation

error. The approximation errors are much smaller than sampling errors, so this265

choice just produces clearer tables.

I approximate around r = g or ρ = 1. The variables are all station-

ary, impulse-responses and expected values converge, so weighting higher-order

terms by, say, 0.99j vs. 1.0 makes little difference to the results. One can also

view the unweighted ρ = 1 identities as r → g limits.270

Figure 1 presents the surplus/GDP and compares three measures. The “Lin-

ear, st” line imputes the surplus/GDP from the linearized flow identity (1)

directly at the one-year horizon, which is the measure I use below.

There are primary surpluses. One’s impression of endless deficits comes

from the deficit including interest payments on the debt. NIPA measures (not275

shown) also show regular positive primary surpluses. Steady primary surpluses

from 1947 to 1975 helped to pay off WWII debt. The year 1975 started an era
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Figure 1: Surplus/GDP. “Linear” is inferred from the linearized flow identity, and is the

definition used in VAR analysis. “sv ” is the exact ratio of the primary surplus to the

previous year’s market value of the debt. “sy” is the exact ratio of surplus to consumption,

scaled by the average consumption to GDP ratio and the average value of debt. Vertical

shading denotes NBER recessions.

of large primary deficits, interrupted by the strong surpluses of the late 1990s.

Postwar primary surpluses also have a clear cyclical pattern. The primary sur-

plus correlates very well with the unemployment rate (not shown), a natural280

result of procyclical tax revenues, automatic spending such as unemployment

insurance, disability and food stamps, and regular discretionary countercyclical

“stimulus” spending.

To measure the accuracy of the linear approximation, I also infer the real

primary surplus from the exact nonlinear flow identity, as detailed in the Online285

Appendix. The “svt” line presents the ratio of the exact surplus to the previ-

ous year’s value of the debt. The “syt/e
v” line presents the exact surplus to
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GDP ratio – actually, the ratio of surplus to consumption, times the average

consumption to GDP ratio – scaled by the average value to GDP ratio eE(vt).

The linearization applies equally to either concept.290

The three surplus measures in Figure 1 are close. The linearization is less

accurate when the value of debt is far from its mean, both in WWII and in the

1970s.

I use a postwar data sample 1947-2018 for the main VAR analysis, as is

conventional in empirical macroeconomics. Financing that war, and expecta-295

tions and reality of paying off war debt, clearly follow a different pattern than

fiscal-monetary policy in the subsequent decades of largely cyclical deficits. The

WWII deficits come with very low unemployment and high output, contrary to

the postwar pattern, and the war featured extensive price controls.

The Online Appendix includes results from 1930-2018, including the great300

depression and WWII. The results are quite different, in ways traceable to a few

influential data points. That analysis suggests that using full sample results to

characterize the post-WWII regime is not a good idea.

5. Vector autoregression

Table 1 presents OLS estimates of the VAR coefficients. Each column is305

a separate regression. The order of variables has no significance. The VAR

includes the central variables for the inflation identity – nominal return on the

government bond portfolio rn, consumption growth rate g, inflation π, surplus

s and value v. I include the three-month interest rate i and the 10 year bond

yield y as they are important forecasting variables for growth, inflation, and310

long-term bond returns.

It is important to include the value of debt vt in the VAR, even if we are

calculating terms of the innovation identity (3) that does not reference that

variable. When we deduce from the present value identity (2) expressions vt =

E(·|It), we must include vt in the information set It that takes the expectation.315

Moreover, the surplus typically follows an s-shaped process, in which deficits

13



rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.17** -0.02 -0.10** -0.32* 0.28* -0.08* 0.04*

gt -0.27* 0.20* 0.16* 1.37** -2.00** 0.28** 0.06

πt -0.15 -0.14* 0.53** -0.25 -0.29 0.09 0.04

st 0.12** 0.03 -0.03* 0.35** -0.24* -0.04* -0.04**

vt 0.01 -0.00 -0.02** 0.04* 0.98** -0.01 -0.00

it -0.32* -0.40* 0.29* 0.50 -0.72 0.73** 0.36**

yt 1.93** 0.54** -0.17 -0.04 1.60* 0.11 0.46**

100× std(εt+1) 2.18 1.53 1.12 4.75 6.55 1.27 0.82

Corr ε, επ -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31

R2 0.71* 0.17* 0.73* 0.48* 0.97* 0.82* 0.90*

100× std(x) 4.08 1.68 2.16 6.61 37.00 2.96 2.63

Table 1: OLS VAR estimate. Sample 1947-2018. One (two) stars means the estimate is one

(two) Monte Carlo standard errors away from zero.

today are followed by surpluses in the future. The process is not properly

recovered by VARs that exclude the value of debt. Leaving out the value of

debt is simply a mistake.

I use a single lag. Adding the last variable, the long-term rate, already intro-320

duces slight wiggles in the impulse-response function indicative of overfitting.

The results depend on long-run forecasts, which are controlled by the most per-

sistent combination of variables. Fast-moving variables that improve short-term

forecasts have little effect on long-term forecasts.

I compute standard errors from a Monte Carlo, described in the Online325

Appendix. The stars in Table 1 represent one or two standard errors above

zero. Since we aren’t testing anything, stars are just a visual way to show

standard errors without another table.

In the first column, the long-term bond yield yt forecasts the government

bond portfolio return rnt+1 (1.93). The negative coefficient on the three-month330

rate it means that the long-short spread also forecasts those returns. Since the yt
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and it coefficients are not repeated in forecasting inflation and growth, the long

rate and long-short spread forecast real, growth-adjusted, and excess returns on

government bonds, as we expect from the long literature in which yield spreads

forecast bond risk premia (Fama and Bliss (1987), Campbell and Shiller (1991),335

Cochrane and Piazzesi (2005)). The long rate yt is thus an important state

variable for measuring expected bond returns, the relevant discount rate for our

present value computations.

Growth gt is only very slightly persistent (0.20). The term spread yt − it
also predicts economic growth, and reinforcing the importance of the interest340

rates as state variables.

Inflation πt is moderately persistent (0.53). The interest rate and growth

help a bit to predict inflation, but not much else does. We will see inflation

responses that mostly look like AR(1) decay.

The surplus/GDP is somewhat persistent (0.35). Growth gt predicts higher345

surplus/GDP, an important and realistic feedback mechanism. Inflation fore-

casts deficits (-0.25), so we expect that to some extent inflation may be related

to subsequent deficits.

Debt also forecasts surplus/GDP (0.04), which is important to the following

dynamics. Deficits raise debt, and then larger debts lead to surpluses which350

slowly pay off some of the debt accumulated from the deficits. The 0.04 VAR

coefficient of surplus/GDP on debt does not mean that the estimates measure

a passive fiscal policy. Surpluses that follow a completely exogenous s-shaped

process will produce this coefficient, and surpluses may respond to past deficits

but not to off-equilibrium inflation. See Leeper and Li (2017), an extensive355

counterexample in Cochrane (2020a) and long discussion in Cochrane (2020b).

The value of the debt is very persistent (0.98). It thus becomes the most

important state variable for long-run calculations. A larger surplus/GDP st

forecasts lower debt, vt+1, (−0.24), as one expects. The long-run yield yt fore-

casts a rise in the value of debt vt+1, as we expect given its effect on the expected360

return rnt+1.

The short rate it and long yield yt are also persistent (0.73, 0.46) and the
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interest rate forecasts the long yield, again reflecting standard yield curve dy-

namics. The combination of interest rate and long yield form the second most

persistent state variable, which drives medium term responses that differ from365

those responding to the value of debt.

For calculations reported below, I use the standard notation

xt+1 = Axt + εt+1 (7)

to denote this VAR.

6. Responses and decompositions

I start by examining the fiscal roots of a simple inflation shock, an unex-

pected movement in inflation ∆E1π1 = επ1 = 1. I allow all other variables to

move contemporaneously to the inflation shock. In either reading of causality,

we want to measure simultaneous movements of inflation and other variables.

To measure how much other variables typically move conditional on seeing an

inflation shock, I fill in shocks to the other variables by running regressions of

their shocks on the inflation shock. For each variable z, I run

εzt+1 = bz,πε
π
t+1 + ηzt+1.

Then I start the VAR (7) at

ε1 =
[
brn,π bg,π επ1 = 1 bs,π ...

]′
.

This procedure is equivalent to the usual orthogonalization of the shock covari-

ance matrix with inflation last, but it is more transparent and it generalizes370

more easily later. I denote the VAR innovations as the change in expectations

at time 1, so the response of variable x, j periods in the future is ∆E1xj .

Figure 2 plots responses to this inflation shock. The “Inflation” rows of

Table 2 present the terms of the inflation and bond return decompositions for

these responses. (I discuss the remaining rows of Table 2 later.) Figure 2 also375

presents some of the main terms in the decomposition identities, (3), (4), (5).
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Figure 2: Responses to a 1% inflation shock.

In any interpretation, these responses and calculations answer the question,

“if we see an unexpected 1% inflation, how should we revise our forecasts of other

variables?” In a fiscal-theoretic interpretation, they answer “what changes in

expectations caused the 1% inflation?” As shown in the Online Appendix, the380

inflation decompositions are also decompositions of the variance of unexpected

inflation: They answer the question, “What fraction of the variance of unex-

pected inflation is due to each component?”

Table 3 presents Monte Carlo quantiles of the sampling distributions of the

terms of the inflation decompositions in Table 2. Figure 9, below, plots quantiles385

of the impulse-response functions. I discuss sampling variation below, after

seeing the message in point estimates.

In Figure 2, the inflation shock is moderately persistent, largely following

the AR(1) dynamics we noticed in the VAR coefficients. As result, the weighted

sum
∑∞
j=0 ω

j∆E1π1+j = 1.59%, greater than the 1% initial shock.390

The inflation shock coincides with a deficit s1, which builds with a hump

shape. That shape largely reflects the -0.25 coefficient by which inflation fore-
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∑∞
j=0 ω

j∆E1π1+j = −
∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1(1− ωj)∆E1r1+j

π = s g r

Inflation 1.59 = -( -0.06) -( -0.49) +( 1.04)

Recession -2.36 = -( -1.15) -( -1.46) +( -4.96)

Surplus -0.10 = -( -0.66) -( -0.34) +( -1.10)

Disc. Rate -0.18 = -( -0.54) -( -0.28) +( -1.00)

Surplus, no i 0.38 = -( -0.52) -( -0.48) +( -0.62)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 1.00 -( -0.56) = -( -0.06) -( -0.49) +( 1.00)

Recession -1.00 -( 1.19) = -( -1.15) -( -1.46) +( -4.79)

Surplus 0.02 -( 0.27) = -( -0.66) -( -0.34) +( -1.25)

Disc. Rate -0.03 -( 0.28) = -( -0.54) -( -0.28) +( -1.13)

Surplus, no i 0.36 -( 0.03) = -( -0.52) -( -0.48) +( -0.67)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞
j=1 ω

j∆E1π1+j

rn = r π

Inflation -0.56 = -( -0.03) -( 0.59)

Recession 1.19 = -( 0.17) -( -1.36)

Surplus 0.27 = -( -0.15) -( -0.12)

Disc. Rate 0.28 = -( -0.13) -( -0.15)

Surplus, no i 0.03 = -( -0.05) -( 0.02)

Table 2: Terms of the inflation and bond return identities. Each entry is the indicated sum

of response functions.

casts surplus/GDP. One might think these persistent deficits account for infla-

tion. But surplus/GDP eventually rises to offset almost all of the incurred debt.

The sum of all surplus/GDP s responses is −0.06%, essentially zero.395
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∑∞
j=0 ω

j∆E1π1+j = −
∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1(1− ωj)∆E1r1+j

π = s g r

Inflation 25 % 1.38 = -( -0.69) -( -0.72) +( 0.16)

Inflation 75 % 1.64 = -( 0.23) -( -0.22) +( 1.46)

Recession 25 % -2.41 = -( -1.28) -( -1.45) +( -4.84)

Recession 75 % -2.05 = -( 0.49) -( -0.57) +( -2.43)

Surplus 25 % -0.11 = -( -0.78) -( -0.39) +( -1.11)

Surplus 75 % 0.02 = -( -0.61) -( -0.22) +( -0.98)

Disc. Rate 25 % -0.26 = -( -0.63) -( -0.34) +( -1.00)

Disc. Rate 75 % -0.13 = -( -0.46) -( -0.18) +( -1.00)

Surplus, no i 25 % 0.21 = -( -0.78) -( -0.48) +( -0.76)

Surplus, no i 75 % 0.45 = -( -0.52) -( -0.22) +( -0.50)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 25% 1.00 -( -0.71) = -( -0.69) -( -0.72) +( 0.16)

Inflation 75% 1.00 -( -0.39) = -( 0.23) -( -0.22) +( 1.55)

Recession 25% -1.00 -( 0.96) = -( -1.28) -( -1.45) +( -4.84)

Recession 75% -1.00 -( 1.40) = -( 0.49) -( -0.57) +( -2.35)

Surplus 25% 0.00 -( 0.21) = -( -0.78) -( -0.39) +( -1.30)

Surplus 75% 0.09 -( 0.34) = -( -0.61) -( -0.22) +( -1.15)

Disc. Rate 25% -0.07 -( 0.25) = -( -0.63) -( -0.34) +( -1.24)

Disc. Rate 75% -0.01 -( 0.42) = -( -0.46) -( -0.18) +( -1.10)

Surplus, no i 25% 0.18 -( -0.08) = -( -0.78) -( -0.48) +( -0.86)

Surplus, no i 75% 0.38 -( 0.07) = -( -0.52) -( -0.22) +( -0.57)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞
j=1 ω

j∆E1π1+j

rn = r π

Inflation 25% -0.71 = -( -0.12) -( 0.38)

Inflation 75% -0.39 = -( 0.19) -( 0.64)

Recession 25% 0.96 = -( -0.17) -( -1.41)

Recession 75% 1.40 = -( 0.28) -( -1.05)

Surplus 25% 0.21 = -( -0.24) -( -0.13)

Surplus 75% 0.34 = -( -0.12) -( -0.05)

Disc. Rate 25% 0.25 = -( -0.24) -( -0.20)

Disc. Rate 75% 0.42 = -( -0.11) -( -0.11)

Surplus, no i 25% -0.08 = -( -0.18) -( 0.00)

Surplus, no i 75% 0.07 = -( -0.00) -( 0.10)

Table 3: Monte Carlo quantiles of the inflation and bond return identities.
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Inflation also is also correlated with a persistent decline in economic growth

g. The stagflationary episodes of the 1970s drive this result. The growth decline

contributes 0.49% to the inflation decompositions.

Lower growth means a lower actual surplus for given surplus/GDP. Thus, of

the total 1.59% inflation on the left hand side, a decline in surpluses, accounts400

for 0.49+0.06 = 0.55%, about one third, and almost all of that via lower growth

not lower surplus/GDP.

The line marked r plots the response of the real discount rate, ∆E1r1+j =

∆E1(rn1+j − π1+j). These points are plotted at the time of the ex-post return,

1 + j, so they are the expected return one period earlier, at time j. The line405

starts at time 2, where the terms of the discount-rate sums in the inflation

decompositions start, and representing the time-1 expected return. After two

periods, this discount rate rises and stays persistently positive. The weighted

sum of discount rate terms is 1.04% while the unweighted sum is 1.00% (really

1.004%). I choose the weight ω = 0.69 to make the identity (4) hold exactly for410

this response function. The value 0.69j declines rapidly, so weighting by 1 vs.

1− ωj makes little difference in the face of this persistent response.

Weighted or unweighted, the discount rate terms account for 1% inflation,

and about 2/3 of the overall inflation. A higher discount rate lowers the value

of government debt, an inflationary force.415

Overall, then,

• A 1% shock to inflation corresponds to a 1.6% decline in the present

value of surpluses. A rise in discount rate contributes about 1%, and a

decline in growth accounts for about 0.6% of that decline. Changes in the

surplus/GDP ratio account for nearly nothing. The additional 0.6% fiscal420

shock corresponds to a persistent rise in expected inflation, which slowly

devalues outstanding long-term bonds, and produces a 1.6% overall rise in

inflation weighted by the maturity structure of debt.

This is an important finding for matching the fiscal theory to data, for

understanding the fiscal side of standard passive-fiscal models, or for questions of425
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cyclical fiscal policy and debt sustainability in general. Thinking in all contexts

has focused on the presence or absence of surpluses, or surplus to GDP ratios,

not discount rate effects, time-varying returns. Thinking in all contexts has

considered one-period unexpected inflation, to devalue one-period bonds, not a

rise in expected inflation that slowly devalues outstanding long-term bonds.430

Turn to Table 2 for a more systematic view of the inflation decompositions,

and to see the role of one-period bond returns ∆E1r
n
1 . The top row of the

top panel presents the just-discussed overall decomposition (5) of current and

expected future inflation in terms of surplus, growth and discount rate shocks.

The second and third panels express the decomposition of one-period inflation,435

using the bond return rn1 . The sum of surplus and growth rate terms are the

same in this second panel as in the top panel, but I repeat them so one can see the

terms of each identity more clearly. In the first row of the second panel, the 1%

inflation shock corresponds to a roughly 1.56% overall fiscal shock. That shock

comes similarly from the same tiny 0.06% decline in surplus/GDP, a 1.004% rise440

in discount rate and 0.49% reduction in growth. In this decomposition, the extra

0.56% fiscal shock is absorbed by a 0.56% decline in the value of government

debt, rn1 . Turning to the last panel, we see that -0.56% return on government

debt comes almost entirely from expected inflation (0.59%) not a higher real

discount rate (0.03%). That fact ties together the decompositions of the first445

and second panels. The government bond return essentially marks to market

the expected future inflation of the top panel.

Discount rates matter in the inflation decompositions of the top two panels

but not in this return decomposition because the former have weights that

emphasize long-term movements (1 and 1 − ωj), while the ωj weights of the450

bottom panel emphasize a short-run movement in discount rate.

In sum,

• The 1.6% fiscal shock that comes with 1% unexpected inflation is buffered

by an 0.5% decline in bond prices, which corresponds to 0.5% additional

expected future inflation. The additional expected inflation slowly devalues455
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long-term bonds as they come due, a loss in value marked to market in the

initial fall in bond prices.
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Figure 3: Responses to 1% inflation shock

Figure 3 adds detail and intuition to the interest rate and return responses.

The interest rate i, bond yield y, and expected return rn all move together

and persistently. (The sawtooth pattern in rn at time 3 comes from a slightly460

negative eigenvalue of the VAR, which is far below statistical significance.) The

return shock rn1 moves down sharply as expected subsequent returns rise. Bond

prices decline when yields rise. The rise in expected return is largely driven

by the rise in the interest rate, with smaller contribution from a larger risk

premium.465

In turn, the rise in real discount rates we saw in Figure 2 stems from the

apparent disconnect between nominal returns and inflation that we see in Figure

3. Inflation is initially above nominal rates, giving a few periods of lower real

rates. When inflation declines below the more persistent nominal rates, implied

real interest rates rise on the right hand side of the graphs, and persistently.470

In the VAR, interest rates do not forecast inflation as strongly as they forecast
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interest rates, which generates the high real rates from persistently high nominal

rates.
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Figure 4: Responses to 1% inflation shock

Figure 4 plots the response of surplus/GDP and value of debt to the unex-

pected inflation shock. The debt-to-GDP ratio v1 declines −0.65% on impact,475

reflecting the offsetting forces of deficits, inflation, bond returns, and growth in

the innovation version of the flow identity (1). The long string of deficits then

raises the value of debt. But, crucially, higher debt leads to higher surpluses.

Eventually, therefore, surpluses rise and pay down the debt.

The s-shaped surplus/GDP response is a crucial lesson. It means that early480

debts are repaid, at least in part, by following surpluses. The surplus/GDP

does not follow an AR(1)-like process. Mechanically, this pattern is a result

of the VAR coefficient of surplus/GDP on lagged debt, and the persistence of

debt. Thus, the finding is econometrically robust; it does not rely on a tenuous

measurement of high-order surplus autocorrelations.485

However, this analysis illustrates the vital practical importance of including

debt in the VAR. Without debt in the VAR, the surplus/GDP is positively
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autocorrelated throughout, and surplus/GDP never rises to pay off deficits.

I use the words “shock,” and “response,” which are conventional in the

VAR literature, and compactly describe the calculations for those familiar with490

VARs. The calculations do not imply or require a causal structure, nor do they

make any pretense to measure structural shocks. A “shock” here is only an

“innovation,” a movement in a variable not forecast by the VAR. A “response”

is a change in VAR expectations of a future variable coincident with such a

movement.495

In fact, my fiscal theory interpretation offers a reverse causal story: News

about future surpluses and discount rates causes inflation to move today. That

news in turn reflects news about future productivity, fiscal and monetary policy

and other truly exogenous or structural disturbances. Many VAR exercises

attempt to find an “exogenous” movement in a variable by careful construction500

of shocks, or they attempt to measure structural shocks, and they attempt to

measure responses as causal effects of such identified structural or exogenous

policy shocks. I do not.

I do not assume that people use only the VAR information set to form

expectations. Since we start with an identity (1) that holds ex-post, or under505

people’s information sets, the identity holds using any coarser information set

that includes the value of debt. The model vt = E(xt+1|Ωt) implies vt =

E(xt+1|It ⊂ Ωt), so long as vt ∈ It. But “unexpected” here means relative to

the VAR information set. People may see a lot more. The VAR forecasts are

correct on average, but they integrate out other variables which people may see.510

6.1. Recession or aggregate demand shocks

We can use the same procedure to understand the fiscal underpinnings or

correlates of other shocks. For any interesting ε1, we can compute impulse-

response functions, and thereby the terms of the inflation decompositions. I

show in the Online Appendix that we can consider these calculations as a de-515

composition of the covariance of unexpected inflation with the shock ε1, rather

the decomposition of the variance of unexpected inflation.
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I start with a shock that moves inflation and growth in the same direction.

The inflation shock in Figure 2 is stagflationary, in that growth falls when

inflation rises. Unexpected inflation is, in this sample, negatively correlated520

with unexpected growth. The stagflationary 1970s drive this correlation.

However, it is interesting to examine the response to disinflations which come

in recessions, and inflations that come in expansions, following a conventional

Phillips curve. Such events are common, as in the recession following the 2008

financial crisis. But they pose a fiscal puzzle. In such a recession, deficits soar,525

yet inflation declines. How is this possible? As I outlined in the introduction,

future surpluses or lower discount rates could give that deflationary force, needed

whether fiscal policy is active or passive. Can we see these effects in the data,

and which one is it?

To answer that question, I simply specify επ1 = −1, εg1 = −1. The model530

is linear, so the sign doesn’t matter, but the story is clearer for a recession.

To give it a name, I call this a “recession shock” in the tables. We could also

call it an “aggregate demand” shock, because output and inflation move in the

same direction, as opposed to “aggregate supply” shocks which move output

and inflation in opposite directions.535

Again, we want shocks to other variables to have whatever value they have,

on average, conditional on the inflation and output shock. To initialize the other

shocks of the VAR, then, I run a multiple regression

εzt+1 = bz,πε
π
t+1 + bz,gε

g
t+1 + ηzt+1

for each variable z. I fill in the other shocks at time 1 from their predicted

variables given επ1 = −1 and εg1 = −1, i.e. I start the VAR at

ε1 = −
[
brn,π + brn,g εg1 = 1 επ1 = 1 bs,π + bs,g ...

]′
.

Figure 5 presents responses to this shock, and Table 2 collects the inflation

decomposition elements in the “Recession” rows.

Both inflation π and growth g responses start at -1%, by construction. In-

flation is once again persistent, with a ω-weighted sum of current and expected
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Figure 5: Responses to a recession or aggregate demand shock, επ1 = εg1 = −1.
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future inflation equal to -2.36%. Growth g returns rapidly, but does not much540

overshoot zero, so the level of consumption does not recover much at all. Con-

sumption is roughly a random walk in response to this shock. The nominal

interest rate i falls in the recession, and recovers a bit more slowly than infla-

tion. Long-term bond yields y also fall, but not as much as the short-term rate,

for about 4 years. We see here the upward-sloping yield curve of a recession.545

The expected bond return follows the long-term yield. The persistent fall in ex-

pected return corresponds to a large positive ex-post bond return ∆E1r
n
1 . The

recession includes a large deficit s, which continues for three years. In short, we

see a standard picture of a recession similar to 2008-2009.

Why do we not see inflation at times with such large deficits? Surplus/GDP550

subsequently turns positive, paying down some of the debt. But the total sur-

plus/GDP response is still -1.15. Left to their own devices, surplus/GDP would

produce a 1.15% inflation during the recession. Growth also adds an inflation-

ary force. The decline in consumption is essentially permanent, and would lead

on its own to another 1.46% inflation.555

Discount rates are the central story for disinflation in recessions. After one

period, expected real returns ri decline persistently, accounting for 4.96% cu-

mulative deflation.

In terms of the unexpected inflation accounting in the second and third

panels of Table 2, again surplus/GDP and growth provide a total 1.15% +560

1.46% = 2.61% fiscal loosening, an inflationary force. The unweighted sum of

future discount rates provides a 4.79% deflationary force, for an overall fiscal

shock of 2.19% deflation. Of that, 1% results in unexpected deflation and 1.19%

is soaked up by lower long-term bond prices. In the bottom panel, that 1.19%

overwhelmingly represents lower expected inflation, essentially marking it to565

market for a one-period accounting.

In sum, rounding the numbers,

• Disinflation in a recession is driven by a lower discount rate, reflected in

lower interest rates and bond yields. For each 1% disinflation and growth
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shock, the expected return on bonds falls so much that the present value570

of debt rises by nearly 5%. This discount rate shock overcomes a 1.1%

inflationary shock coming from persistent deficits, and 1.5% inflationary

shock coming from lower growth. The overall fiscal shock is 1.6%, with the

extra 0.6% spread to future disinflation and soaked up by long-term bond

prices.575

The opposite conclusions hold of inflationary shocks in a boom. Discount

rate variation gives us a fiscal Phillips curve, accounting for the otherwise puz-

zling correlation of deficits with disinflation and surpluses with inflation.

The relative magnitudes of the inflation and growth shocks that I use in

this calculation are obviously arbitrary. The plots and calculations correctly580

report the answer to the question, “If we see a -1% growth shock and a -1%

inflation shock together, how does that observation change our forecasts of all

variables?” The labels “aggregate demand” or “recession” are just suggestive

to give the exercise a label, with no pretense to identify structural shocks. The

only question is whether that combination of shocks is interesting, or whether585

some other combination of growth, inflation, and other shocks might present a

more interesting calculation.

To produce a better-named shock one should write a model and find an

identification in the data. One might separate “aggregate supply” shocks or

“stagflationary” “Phillips-curve shift” shocks from “aggregate demand” shocks590

or “movement along the Phillips curve” shocks. Those restrictions might include

the other variables as well. Even these concepts refer to ideas from the 1970s.

Today’s intertemporal models specify objects such as technology shocks, finan-

cial friction shocks, marginal cost shocks, and so forth. Rather than belabor the

point with such calculations, or fill the paper with multiple graphs, I choose a595

simple and transparent value, consistent with the measurement without theory

philosophy of the rest of this paper.

The Online Appendix includes plots of GDP growth and CPI inflation, as

well as the growth and inflation VAR residuals. The 1970s show the opposite
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sign: inflation and growth move in opposite directions, stagflation, and basically600

one for one. These large events drive the negative full sample correlation. By

contrast, 1982 saw a sharp decline in inflation along with the comparably sized

recession. Inflation moved a bit less than growth in the 2000 recession, but again

moved about one for one with growth in 2008. The late 1940s and early 1950s

also show roughly one for one positive comovement. Of course, no historical605

event is the pure result of a single external or policy shock. The point is only,

some recessions involve inflation that moves roughly one for one with growth,

and some involve inflation that moves in the opposite direction. It’s interesting

to plot responses to the former kind of event and one for one is in the range of

experience.610

6.2. Surplus and discount rate shocks

We have studied what happens to surpluses and to discount rates given that

we see unexpected inflation. What happens to inflation if we see changes in

surpluses or discount rates? These are not the same questions. An inflation

shock may come, on average, with a discount rate shock, but a discount rate615

shock may not come on average with inflation. The average person who gets

hit by a bus has tried to cross the street, but the average person who crosses a

street does not get hit by a bus.

I calculate here how the variables in the VAR react to an unexpected change

in current and expected future primary surpluses including growth, ∆E1

∑∞
j=0(st+j+620

gt+j) = −1, and other shocks to the VAR take their average values given this

innovation. I call this a “surplus shock.” This is, by construction, a shock

that is not repaid by subsequent surpluses, so it either must correspond to

inflation or to a change in discount rate. The results are almost the same

with or without the growth term in the shock definition. Then I calculate625

how the variables in the VAR react to an unexpected change in discount rates,

∆E1

∑∞
j=1(1− ωj)(rnt+1 − πt+1) = 1, again letting all other variables take their

average values given this innovation. I call this a “discount rate shock.”

These are not monetary and fiscal policy shocks, as studied in Cochrane
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(2020a), most models, and VAR literature. The fiscal shock may be, and is,630

correlated with a change in interest rates, and the discount rate shock may

be, and is, correlated with fiscal changes, where “policy shocks” are more in-

terestingly defined to be orthogonal to each other. I also make no attempt to

orthogonalize these shocks relative to forecasts of inflation, growth, or other

variables, to call them “exogenous.” In fact, they are the opposite, deliberately635

reflecting news to the economy as a whole, changing expectations of true and

future structural and policy disturbances.

The response of the sum of future surpluses and growth to any shock ε1 is

∆E1

∞∑
j=0

(s1+j + gt+j) = (as + ag)
′
(I −A)−1ε1.

To calculate how VAR shocks respond to a surplus shock, I run for each variable

z a regression

εzt+1 = bz
[
(as + ag)

′
(I −A)−1εt+1

]
+ ηzt+1 (8)

where az pulls variable z from the VAR, a′zxt = zt. Then, I start the surplus-

shock response function at

ε1 = −
[
brn bg bπ ...

]′
.

I plot a negative surplus shock, i.e. a deficit shock, as that sign tells an easier

story.

Similarly, to calculate responses to a discount-rate shock, I run

εzt+1 = bz
{

(arn − aπ)′
[
A(I −A)−1 − ωA(I − ωA)−1

]
εt+1

}
+ ηzt+1.

I start the discount-rate response function with the negative of these regression640

coefficients as well, capturing the response to a discount rate decline.

Figure 6 presents the responses to the deficit shock, and Figure 7 presents

the responses to the discount rate shock. Table 2 collects relevant contributions

to the inflation decompositions.

The sum of surplus/GDP and growth responses to the deficit shock are -0.66645

-0.34 = -1.00 by construction. Surplus/GDP still has an s-shaped response, but

the initial deficits are not matched by subsequent surpluses.
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Figure 6: Responses to a surplus and growth shock, ∆E1
∑∞
j=0 (s1+j + g1+j) = −1.
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Figure 7: Responses to a discount-rate shock ∆E1
∑∞
j=1(1 − ωj)

(
rn1+j − π1+j

)
= 1.
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This decline in surpluses and growth has essentially no effect on inflation.

Starting in year 2, inflation declines – the “wrong” direction given deficits and

lower growth – by less then a tenth of a percent, and the overall weighted sum650

of inflation declines by a tenth of a percent. Why is there no inflation? Be-

cause discount rates also decline, with a weighted sum of 1.10%, almost exactly

matching the surplus decline. The lower panel of Figure 6 adds insight. We see

a sharp and persistent decline in the interest rate, long-term bond yield, and

expected bond return, along with deficits and the growth decline.655

This figure captures the event of a widening deficit, accompanied by a decline

in growth and interest rates, i.e. a recession. These deficits are on average not

directly repaid by subsequent surpluses or growth. Instead, real interest rates

decline persistently in the recession and its aftermath. This decline in real

returns essentially pays for the deficits. Ex-post, a low real return brings the660

value of debt back rather than larger taxes or lower spending. There is, on

average, very little inflation or deflation. The opposite sign occurs for positive

shocks.

The response to the discount rate shock in Figure 7 is, surprisingly, almost

exactly the same. The weighted discount rate response (
∑

1−ωj) is -1.00 here665

by construction. This discount rate decline should be deflationary, and it is –

but the disinflation peaks at -0.1% and the weighted sum is only -0.18%. A

sharp growth and surplus decline accompanies this discount rate decline, with

a pattern almost exactly the same as we found from the growth and surplus

shock. In the bottom panel, the expected return decline comes with a decline670

in interest rates and bond yields, as we would expect.

Clearly, the surplus + growth shock and the expected return shock have

isolated essentially the same events – recessions in which growth falls, deficits

rise persistently, interest rates fall, and, on average in this sample, inflation

doesn’t move much, and the converse pattern of expansions. The correlation of675

the surplus+growth and discount rate shocks is 0.96.

The responses to a one-period surplus shock, ∆E1s1 = 1, a pure growth

shock ∆E1g1 = 1 and a one-period discount rate shock ∆E1r
n
2 = 1 are all quite

33



similar as well.

The fiscal roots of the absence of inflation, in the end, characterize these680

business-cycle movements in the data. Since well-run fiscal and monetary poli-

cies borrow and repay without excessive inflation, that outcome is just as inter-

esting.

In sum,

• Surplus and discount rate shocks paint the same picture: Persistent deficits685

that are not repaid by subsequent growth or surpluses do not produce in-

flation. Instead, such deficits come with periods of extended low expected

returns. Discount rate declines come with offsetting deficits and do not

produce much deflation.

6.3. A surplus shock without accommodation690

The fact that interest rates move in opposition to the surplus shock is obvi-

ously key to the noninflationary result. What if there is a surplus shock and the

Federal Reserve does not accommodate the shock, or its economic correlates,

with the prominent interest decline seen in Figure 6? To answer this question,

I modify the surplus+growth shock so that the short-term interest rate remains

constant for two years. I now run

εzt+1 = bz,s
[
(as + ag)

′
(I −A)−1εt+1

]
+ bz,i0ε

i
t+1 + bz,i1 (a′iAεt+1) + ηzt+1.

The last term before the error is the expected interest rate one year forward.

Then, I initialize the VAR at

ε1 = −
[
brn,s bg,s bπ,s ...

]′
.

Figure 8 presents the responses, and Table 2 collects the terms of the iden-

tities. Starting in the bottom panel of Figure 8, verify that the interest rate i

now stays constant for two years, by construction. This behavior contrasts with

the strong interest rate decline in the bottom panel of Figure 6. Except for the

one-period expected return decline in year two, the long-term bond yields and695

expected returns follow the interest rate. All decline eventually.
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Figure 8: Responses to a surplus and growth shock with no interest rate movement for two

years, ∆E1
∑∞
j=0 (s1+j + g1+j) = 1, ∆E1i1 = 0, ∆E1i2 = 0.
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Turning to the upper panel, the sum of surplus (-0.52) and growth (-0.48)

shocks remains -1.00% by construction. Deficits are initially much larger than

0.52%, but much of this immediate deficit is repaid by higher long-term sur-

pluses, so in the end the fiscal shock is split equally between surpluses and700

growth. The discount rate term is now reduced to 0.62% - 0.67%, however,

so the surplus shock now produces 0.36% immediate and 0.38% weighted sum

inflation.

In sum, without the interest rate response, the fiscal shock does result in

unexpected inflation. We see here a parallel of the theoretical analysis that705

central bank accommodation of shocks, via the interest rate target, smooth

forward and thereby reduce unexpected inflation, even though the bank cannot

control fiscal policy.

Will the real recession please stand up? How do we have by one calcula-

tion recessions with disinflations, and by another recessions with no change in710

inflation? Alas, our macroeconomy is not a one-factor model, with all time-

series moving in lockstep. Different (true, structural) shocks dominate different

events. The recessions of the 1970s featured stagflation, those since 1990 did

not. All recessions are not the same. Sometimes inflation falls, sometimes it

doesn’t. I have examined five, hopefully interesting, slices of the full covariance715

matrix of shocks. They are different.

7. Standard errors

I have delayed a discussion of standard errors because there is nothing im-

portant to test. Identities are identities. If x = y + z and x moves, y or z must

move, and all we can do is to measure which one moves. Standard errors only720

serve to give us a sense of how accurate the measurement is. In addition, unlike

the case in asset pricing, no important economic hypothesis rests on whether one

of surpluses or discount rates do not move. Asset pricing finds the hypothesis

that expected returns are constant over time interesting to test.

I run a Monte Carlo to evaluate sampling distributions. The Online Ap-725

pendix gives details. Most of the interesting statistics – variance decomposi-
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tions, impulse-response functions, (I − A)−1, etc. – are nonlinear functions of

the underlying data, and the near-unit root in value vt also induces non-normal

distributions. For these reasons, I largely characterize the sampling distribution

by its 25% and 75% percentiles.730
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Figure 9: Distribution of the responses to an inflation shock. The bands are 25% and 75%

points of the sampling distribution, the dashed line is the median, and the solid line is the

estimate.

Table 3 collects the sampling quantiles for the variance decompositions of

Table 2. Figure 9 presents the main components of the impulse-response func-

tion relevant to the inflation variance decomposition presented in Figure 2. The

bands are 25% and 75% points of the sampling distribution, the dashed line is

the median, and the solid line is the estimate.735

Start with the “Inflation” shock in Table 3. In the second panel, inflation

quantiles are 1.00 because the shock is defined as a 1% movement in inflation

in every sample. Likewise, there is no sampling variation in the first inflation
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response of the top left panel of Figure 9. The 1.59% weighted sum of inflation

has 1.38% to 1.64% quantiles in the top panel of Table 3. The -0.06% sum of740

future surpluses has quartiles -0.69% to 0.23%. The -0.49% sum of growth rates

has quantiles -0.72% to -0.22% The 1.04% (weighted) and 1.00% (unweighted)

discount rate term has quantiles 0.16% to 1.46% and 0.16% to 1.55%. That

discount rates matter is a pretty solid conclusion, but deficits may contribute

more to unexpected inflation than the point estimate suggests.745

There are several sources of this rather large sampling variation. First, the

shocks are large. As shown in Table 1, the surplus innovation has a 4.75 per-

centage point standard deviation, and value 6.55 percentage points, compared

to 1.12 percentage points for inflation. Our friend σ/
√
T starts off badly.

Second, the shocks are imperfectly correlated. This matters, because in750

each case I find movements in other variables contemporaneous with the shock

of interest by running a regression of the other shocks on the shock of interest.

The sampling uncertainty of this orthogonalization adds to that of the VAR

coefficient estimates. We see a correspondingly wide band around the initial

surplus and growth responses in Figure 9. Higher frequency data may better755

measure shock correlations, at the cost that one must model the strong seasonal

in primary surpluses. Other shock identifications may have better-measured

correlations.

Third, we measure sums of future surpluses and discount rates. The value

of the debt vt is the main long-run state variable, and uncertainty about its760

evolution adds to the uncertainty about the sum of surpluses. The coefficient

of debt vt on its own lag is 0.98 in Table 1, so small variations in that value

lead to large variation in (I −A)−1 sums. The Online Appendix shows that the

last two sources of variation contribute about equally. A larger or smaller value

of this coefficient raises and lowers all the long-run responses together, so the765

apparently reasonably-measured individual responses of Figure 9 all add up to

larger sampling variation of the decomposition terms.

Table 3 also presents 25% and 75% quantiles for the recession, surplus and

discount rate shocks of Table 2. The -1.15% total surplus response to a recession
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shock has quantiles -1.28% to 0.49%, spanning zero, while the -4.96% and -4.79%770

discount rate response has quantiles from -4.84% to -2.43% and -4.84% to -

2.35%. The conclusion that discount rate variation is a central part of the story

for understanding aggregate-demand inflation is fairly solid. The small inflation

and offsetting surplus and discount rate responses to surplus and discount rate

shocks are similarly measured.775

It would be nice if the elements of the identities were more precisely mea-

sured. But there is nothing one can do within the framework of this VAR

to improve on them, so it’s worth examining point estimates while awaiting

more data or other approaches such as model-based estimates that impose prior

structure. The rather large sampling variation should, however, discourage one780

from the inevitable temptation to split up the sample or add complexity to the

specification.

8. Concluding comments

One can apply these decompositions to any VAR, or to the impulse-responses

of theoretical models. Such calculations beckon.785

In particular, it is interesting to apply the inflation decompositions to model

predictions or empirical estimates of monetary and fiscal policy shocks. Cochrane

(2020a) presents such calculations from a simple fiscal theory of monetary pol-

icy model. Making such calculations in data require one to solve the formidable

identification problems of estimating policy rules, given that the right-hand vari-790

ables react to the disturbances, and identifying sufficiently orthogonal shocks.

The state of the art goes well beyond the simple recursive and long-run strategies

available in the annual VAR here, to include instruments, high frequency data,

narrative approaches, and other devices. The literature still does does not offer

a robustly successful approach (Ramey (2016), Cochrane (2011a)). Teasing out795

monetary policy shocks that are also orthogonal to fiscal policy shocks requires

some thought. I attempted monetary and fiscal policy shocks by recursive iden-

tification in this data, but one-year interest-rate, inflation, and growth shocks

are all highly correlated. Assuming all of that correlation flows from interest
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rates to inflation and growth results in positive effects of interest rates on infla-800

tion and growth. Assuming all correlation reflects rule-like responses of interest

rates to inflation and growth eliminates the unexpected inflation response we

wish to measure. Obviously, reality lies in between.

Additional measurements beckon. Quarterly or monthly data are attractive,

offering potentially better measurement of correlations and shock orthogonal-805

ization but requiring us to model the strong seasonality in surpluses, and not

to let seasonal adjustment, which uses ex-post data, influence forecasts. Debt

data go back centuries, allowing and requiring us to think what is the same

and different across different periods of history. Inflation through wars and

under the gold standard may well have different fiscal foundations than in the810

postwar environment. The Online Appendix finds quite different behavior in

1930-1947, though that sample is dominated by a few influential data points

and does not offer by itself enough evidence to measure a different regime. A

narrative counterpart, especially for big episodes such as the 1970s and 1980s,

awaits. Different countries under different monetary and exchange rate regimes815

and different fiscal constraints will behave differently. US interest rates go down,

and the dollar rises in recessions, from a flight to quality. Other countries’ in-

terest rates go up, and their currencies fall. A parallel investigation of exchange

rates beckons, following Jiang (2019a), Jiang (2019b). One could define shocks

in many additional interesting ways.820

I omitted analysis of the remaining shocks in the VAR. A shock to any other

variable, orthogonal to the inflation shock, can move all of the other terms of

the inflation identities. Such movements must offset: In (5), if a shock does

not move the inflation term, but does move the sum of future surpluses, then

it must also move the sum of growth rates or discount rates. These additional825

effects are large. The variation in ∆E1

∑∞
j=0 s1+j when other shocks move is

large; the corresponding movement in the discount rate term is also large, and

the two movements are negatively correlated. We get a hint of that behavior

in the surplus+growth and discount rate shock responses. I do not pursue this

question because it is much more interesting if one can give some structural or830
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economic interpretation to the shocks to other variables.

Perhaps most of all, linking these theory-free characterizations to explicit

models is an obviously important step. Why do discount rates vary as they

do? What fiscal policies generate the observed pattern of surpluses? One needs

economic models to answer such questions, but the identities help to summarize835

and characterize the forces at work in models.
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Appendix A. Derivation of the linearized identities

In this appendix I derive the linearized identities (1), (2), and (3),905

ρvt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1 (A.1)

vt =

∞∑
j=1

ρj−1st+j +

∞∑
j=1

ρj−1gt+j −
∞∑
j=1

ρj−1
(
rnt+j − πt+j

)
and

∆Et+1πt+1 −∆Et+1r
n
t+1 = −

∞∑
j=0

ρj∆Et+1st+1+j−

−
∞∑
j=0

ρj∆Et+1gt+1+j +

∞∑
j=1

ρj∆Et+1

(
rnt+1+j − πt+1+j

)
.

(A.2)

I also define the variables more carefully.

The symbols are as follows:

Vt = Mt +

∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t

is the nominal end-of-period market value of debt, where Mt is non-interest-

bearing money, B
(t+j)
t is zero-coupon nominal debt outstanding at the end of

period t and due at the beginning of period t+ j, and Q
(t+j)
t is the time t price

of that bond, with Q
(t)
t = 1. Taking logs,

vt ≡ log

(
Vt
YtPt

)
is log market value of the debt divided by GDP, where Pt is the price level and

Yt is real GDP or another stationarity-inducing divisor such as consumption,

potential GDP, etc. I use consumption times the average GDP to consumption

1



ratio in the empirical work, but I will call Y and ratios to Y “GDP” for brevity.

The quantity

Rnt+1 ≡
Mt +

∑∞
j=1Q

(t+j)
t+1 B

(t+j)
t

Mt +
∑∞
j=1Q

(t+j)
t B

(t+j)
t

(A.3)

is the nominal return on the portfolio of government debt, i.e. how the change

in prices from the end of t to the beginning of t + 1 affects the value of debt

held between periods. The quantity

rnt+1 ≡ log(Rnt+1)

is the log nominal return on that portfolio. The symbols

πt ≡ log

(
Pt
Pt−1

)
, gt ≡ log

(
Yt
Yt−1

)
are log inflation and GDP growth rate.

We can accommodate explicit default, so the formulas can also apply to

countries that borrow in foreign currency such as the members of the Euro. An

explicit default is a reduction in the nominal quantity of debt between periods.910

The B
(t+j)
t in the numerator of (A.3) represents the post-default number of

bonds outstanding, i.e. at the beginning of period t + 1, while the B
(t+j)
t in

the denominator represents the pre-default number of bonds outstanding, i.e.

at the end of period t. A partial default then shows up as a low return. To

handle default one would, of course, add notation distinguishing the pre- and915

post-default quantity of debt in the definition of return.

We start with the nonlinear flow identity,

Mt +

∞∑
j=1

Q
(t+j)
t+1 B

(t+j)
t = Pt+1spt+1 +Mt+1 +

∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1 . (A.4)

Here, spt+1 denotes the real primary (not including interest payments) surplus

or deficit. At the beginning of period t+ 1, money Mt and bonds B
(t+1+j)
t are

outstanding. Money Mt+1 at the end of period t+1 and beginning of period t+2

then equals money Mt, money printed up to redeem bonds B
(t+1)
t+1 , less money920

soaked up by a primary surplus Pt+1spt+1, or conversely printed to finance a

2



primary deficit, and less money soaked up by net new bond sales, or printed to

finance long-term bond purchases,
∑∞
j=1Q

t+1+j
t+1 (B

(t+1+j)
t+1 −B(t+1+j)

t ).

Using the definition of return, (A.4) becomesMt +

∞∑
j=1

Q
(t+j)
t B

(t+j)
t

Rnt+1 = Pt+1spt+1+

Mt+1 +

∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1

 ,

or,

VtR
n
t+1 = Pt+1spt+1 + Vt+1.

The nominal value of government debt is increased by the nominal rate of return,

and decreased by primary surpluses. This seems easy. The algebra all comes925

from properly defining the return on the portfolio of government debt.

Expressing the result as ratios to GDP, we have a flow identity

Vt
PtYt

×
Rnt+1

Gt+1

Pt
Pt+1

=
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1
, (A.5)

where Gt+1 ≡ Yt+1/Yt.

We can iterate this flow identity (A.5) forward to express the nonlinear

government debt valuation identity as

Vt
PtYt

=

∞∑
j=1

j∏
k=1

1

Rnt+k/(Πt+kGt+k)

spt+j
Yt+j

. (A.6)

where Πt+1 ≡ Pt+1/Pt. The market value of government debt at the end of

period t, as a fraction of GDP, equals the present value of primary surplus to

GDP ratios, discounted at the government debt rate of return less the GDP930

growth rate.

The nonlinear present value identities (A.5) and (A.6) are cumbersome, and

as explained below they may not converge even when the true present value and

linearized identities do converge. I linearize the flow equation (A.5) and then

iterate forward to obtain a linearized version of (A.6). Taking logs of (A.5), we

have

vt + rnt+1 − πt+1 − gt+1 = log

(
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1

)
. (A.7)
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I linearize this equation in the level of the surplus, not its log as one conven-

tionally does in asset pricing, since the surplus is often negative. To linearize in

terms of the surplus/GDP ratio, Taylor expand the last term,

vt+rnt+1−πt+1−gt+1 = log(ev +sy)+
ev

ev + sy
(vt+1−v)+

1

ev + sy
(syt+1 − sy)

where

syt+1 ≡
spt+1

Yt+1
(A.8)

denotes the surplus to GDP ratio, and variables without subscripts denote a

steady state of (A.7). With r ≡ rn − π,

r − g = log
ev + sy

ev
.

Then,

vt+r
n
t+1−πt+1−gt+1 =

[
log(ev + sy)− ev

ev + sy

(
v +

sy

ev

)]
+

ev

ev + sy
vt+1+

ev

ev + sy

syt+1

ev

vt+r
n
t+1−πt+1−gt+1 =

[
v + r − g − ev

ev + sy

(
v +

ev + sy

ev
− 1

)]
+ρvt+1+ρ

syt+1

ev

vt + rnt+1 − πt+1 − gt+1 = [r − g + (1− ρ) (v − 1)] + ρvt+1 + ρ
syt+1

ev
(A.9)

where

ρ ≡ e−(r−g). (A.10)

Suppressing the small constant, and thus interpreting variables as deviations

from means, the linearized flow identity is

vt + rnt+1 − πt+1 − gt+1 = ρ
syt+1

ev
+ ρvt+1. (A.11)

Iterating forward, the present value identity is

vt =

T∑
j=1

ρj−1
[
ρ
syt+j
ev
−
(
rnt+j − πt+j − gt+j

)]
+ ρT vT . (A.12)

If we linearize around r − g = 0, then the constant in (A.11) is zero (sy = 0),

and we obtain the linearized flow and present value identities (A.1) and (A.2),
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with the symbol st representing syt/e
v. There is nothing wrong with expanding

about r = g. The point of expansion need not be the sample mean.935

To approximate in terms of the surplus to value ratio, write (A.7) as

vt + rnt+1 − πt+1 − gt+1 = log

(
Vt
PtYt

spt+1

Yt+1

Vt
PtYt

+
Vt+1

Pt+1Yt+1

)

rnt+1 − πt+1 − gt+1 = log

( spt+1

Yt+1

Vt
PtYt

+

Vt+1

Pt+1Yt+1

Vt
PtYt

)
rnt+1 − πt+1 − gt+1 = log

(
svt+1 + evt+1−vt

)
.

At a steady state

r − g = log (1 + sv) . (A.13)

er−g = 1 + sv.

Taylor expanding around a steady state,

rnt+1 − πt+1 − gt+1 = log (1 + sv) +
1

(1 + sv)
(svt+1 − sv + vt+1 − vt)

vt + (1 + sv)
[
rnt+1 − πt+1 − gt+1

]
= [(1 + sv) log (1 + sv)− sv] + svt+1 + vt+1.

(A.14)

The linearized flow identity (A.1) follows, with the symbol st representing the

surplus to value ratio st = svt, if we suppress the constant, using deviations from

means in the analysis, or if we use r = g or sv = 0, as a point of expansion.

The linearizations in terms of the surplus to value ratio svt are more accurate.

The units of the flow identities (A.1), (A.11) are rates of return. Dividing the940

surplus by the previous period’s value gives a better approximation to the growth

in value, when the value of debt is far from the steady state.

A constant ratio of surplus to market value of debt for any price level path

leads to a passive fiscal policy: An unexpected deflation raises the real value of

debt. If surpluses always rise in response, they validate the lower price level.945

Thus, although on the equilibrium path one can describe dynamics via either

linearization, if one wants to think about how fiscal-theory equilibria are formed,
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it is better to describe a surplus that does not react to price level changes, so

only one value vt emerges, as is the case in (A.12). For such purposes, the

surplus to GDP definition is appropriate, as well as adopting a linearization950

point r > g and ρ < 1. It’s also better to use the nonlinear versions of the

identities for determinacy issues. The analysis of this paper is about what

happens in equilibrium, and does not require an active-fiscal assumption, so the

difference is irrelevant here.

I infer the surplus from the linearized flow identity (A.1) so which concept955

the surplus corresponds to makes no difference to the analysis. The difference

is only the accuracy of approximation, how close the surplus recovered from the

linearized flow identity corresponds to a surplus recovered from the nonlinear

exact identity (A.7).

Appendix B. Linearizing the bond return formula960

Here I derive the linearized identity

rnt+1 ≈ ωqt+1 − qt,

which leads to (4),

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
.

I also derive expectations-hypothesis bond-pricing equations.

Etr
n
t+1 = it

ωEtqt+1 − qt = it.

These equations are used in the sticky-price model Cochrane (2020a).

Denote the maturity structure by

ωj,t ≡
B

(t+j)
t

B
(t+1)
t

and Bt ≡ B(t+1)
t . Then the end of period t nominal market value of debt is

∞∑
j=1

B
(t+j)
t Q

(t+j)
t = Bt

∞∑
j=1

ωj,tQ
(t+j)
t .
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(I ignore money to keep the formulas simple.) Define the price of the government

debt portfolio

Qt =

∞∑
j=1

ωj,tQ
(t+j)
t .

The return on the government debt portfolio is then

Rnt+1 =

∑∞
j=1B

(t+j)
t Q

(t+j)
t+1∑∞

j=1B
(t+j)
t Q

(t+j)
t

=

∑∞
j=1 ωj,tQ

(t+j)
t+1∑∞

j=1 ωj,tQ
(t+j)
t

=
1 +

∑∞
j=1 ωj+1,tQ

(t+1+j)
t+1

Qt
.

(B.1)

I loglinearize around a geometric maturity structure, B
(t+j)
t = Btω

j−1, or

equivalently ωj,t = ωj−1. I use variables with no subscripts to denote the

linearization points, and tildes to denote deviations from those points.

When we linearize, we move bond prices holding the maturity structure at

its steady-state, geometric value, and then we move the maturity structure while

holding bond prices at their steady-state value. As a result, changes in maturity

structure have no first-order effect on the linearized bond return. At the steady

state Qt+jt = 1/(1 + i)j ,

Rnt+1 =

∑∞
j=1 ωj,t/(1 + i)j−1∑∞
j=1 ωj,t/(1 + i)j

= (1 + i)

independently of {wj,t}. Intuitively, at the steady state bond prices, all bonds965

give the same return, so all portfolios of bonds give the same return. More-

over, maturity structure is a time-t variable in the definition of return Rnt+1.

The return from t to t+ 1 is not affected by the time t+ 1 maturity structure.

(Changes in maturity structure might affect returns if there is price pressure

in bond markets. These are formulas for measurement, however, and such ef-970

fects would show up as changes in measured prices coincident with changes in

quantities.)

Maturity structure only has a second-order interaction effect on the bond

portfolio return. For example, a longer maturity structure at t raises the bond

portfolio return at t+ 1 if there is also a level shock, raising long-maturity bond975

returns at t + 1. A longer maturity structure at t raises the expected return if

the yield curve at t is also temporarily upward sloping. But a linear VAR and

a linear decomposition do not include interaction effects.
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To be clear, I measure the bond portfolio return rnt+1 directly, and exactly,

and this measure includes effects of maturity structure, as well as liquidity and980

other effects. With a longer maturity structure, the same movement in interest

rates will give a larger return. The linearization only affects the decomposition

of the bond portfolio return to future inflation and future expected returns. A

second-order approximation would effectively use a different ω in the decompo-

sition formula for different dates, as well as estimate a VAR with parameters985

that depend on the maturity structure or interaction terms. But variation in

the geometric maturity structure parameter ω makes little difference to the re-

sults. And the sample is too short to add more variables, interaction terms, or

time-varying parameters.

The term of the linearization with steady-state bond prices and shocks to

maturity thus adds nothing. The linearization only includes a linearization with

steady-state, geometric maturity structure and changing bond prices. Lineariz-

ing (B.1) then, we have

rnt+1 = log (1 + ωeqt+1)− qt ≈ log

(
1 + ωQ

Q

)
+

ωQ

1 + ωQ
q̃t+1 − q̃t (B.2)

where as usual variables without subscripts are steady state values and tildes

are deviations from steady state. In a steady state,

Q =

∞∑
j=1

ωj−1
1

(1 + i)
j

=

(
1

1 + i

)(
1

1− ω
1+i

)
=

1

1 + i− ω
. (B.3)

The limits are ω = 0 for one-period bonds, which gives Q = 1/(1+ i), and ω = 1

for perpetuities, which gives Q = 1/i. The terms of the approximation (B.2)

are then

1 + ωQ

Q
= 1 + i

ωQ

1 + ωQ
=

ω

1 + i

so we can write (B.2) as

rnt+1 ≈ i+
ω

1 + i
q̃t+1 − q̃t.
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Since i < 0.05 and ω ≈ 0.7, I further approximate to

rnt+1 ≈ i+ ωq̃t+1 − q̃t. (B.4)

I find the value of ω that best fits the return identity, rather than measure the990

maturity structure directly, so the difference between ω and ω/(1 + i) makes no

practical difference.

To derive the bond return identity (4), iterate (B.4) forward to express the

bond price in terms of future returns,

q̃t = −
∞∑
j=1

ωj r̃nt+j .

Take innovations, move the first term to the left hand side, and divide by ω,

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1r̃
n
t+1+j . (B.5)

Then add and subtract inflation to get (4),

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(r̃nt+1+j − π̃t+1+j) + π̃t+1+j

]
. (B.6)

The expectations hypothesis states that expected returns on bonds of all

maturities are the same,

Etr
n
t+1 = it

i+ ωEtq̃t+1 − q̃t = it

ωEtq̃t+1 − q̃t = ı̃t.

In the text, all variables are deviations from steady state, so I drop the tilde

notation.

Appendix C. What if r is less than g?995

Does r < g imply that the present value of debt is infinite, so deficits do

not have to be repaid by subsequent surpluses, and the forward-looking present

value is fundamentally wrong? I give here a deeper treatment of the issue.
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Again, the present value of debt can be well defined, properly using the

stochastic discount factor, contingent claim price, or marginal utility to dis-1000

count, and large deficits still need to be repaid by subsequent surpluses, yet the

economy displays E(r) < E(g).

In essence, though debt is grown out of on many paths and on average,

there are paths with low growth and high contingent claim value where growing

out of debt fails. The lesson is that one should not take the mean values of r1005

and g from a stochastic economy and use them in perfect certainty discounting

formulas. (Bohn (1995), Bassetto and Cui (2018), Bassetto and Sargent (2020),

Reis (2021), Cochrane (2021))

The approach here, which discounts using the stochastic ex-post return,

is still not out of the woods. While one can always use the ex-post return to1010

discount a finite stream of payoffs – 1 = Et(R
−1
t+1Rt+1) – that assurance does not

extend to an infinite stream. Discounting using returns can fail, even stochastic

returns, while the true present value formula holds.

Here is what can happen. Suppose the value of debt is well-defined using

the stochastic discount factor, contingent claims price, or marginal utility Λt.

Suppose

Vt
Yt

= Et

T∑
j=0

Λt+j
Λt

Yt+j
Yt

st+j
Yt+j

+ Et
Λt+T

Λt

Yt+T
Yt

Vt+T
Yt+T

(C.1)

is well defined, and the right hand term tends to zero. I include GDP terms

which complicate the formula but you can see they just multiply and divide the1015

basic present value formula.

Now, try to discount using ex post returns rather than the discount factor.

Start with the identity

Vt+1 = Rt+1 (Vt − st) .

Rearrange to
Vt
Yt

=
st
Yt

+
1

Rt+1

Yt+1

Yt

Vt+1

Yt+1

and iterate forward

Vt =

T∑
j=0

j∏
k=0

1

Rt+k

Yt+k
Yt+k−1

st+j +

T∏
k=0

1

Rt+k

Yt+k
Yt+k−1

Vt+T
Yt+T

. (C.2)
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This is the exact nonlinear version of the present value identity (2). It can

happen that the expected value of this limiting term explodes, and the present

value term explodes in the opposite direction, even though the true present

value formula (C.1) is well-behaved. And, with stationary debt to GDP ratio,1020

you can see that a nonlinear stochastic version of r < g is exactly the condition

for this pathological case.

In sum, by 1 = Et(R
−1
t+1Rt+1), the inverse return is a discount factor under

mild conditions, basically that moments exist. The inverse return is only an

infinite period discount factor if in addition the sums and terminal condition1025

converge.

This result seems to put the whole project of discounting by returns in

jeapordy. But that is not necessarily so. For the terms of the linearized identity

(6) and those of the true present value formula (C.1) may converge, while the

terms of the the nonlinear identity (C.2) do not converge. I linearize the return1030

formula and then iterate forward. I do not take a direct Taylor approximation

of the return-based identity (C.2). The condition for a substitute discount

factor to work is, first, that it prices one-period claims, and second, that the

sums converge. The linearized return-based present value formula can work

when the nonlinear one does not. “Work” means that the formula gives a good1035

approximation to the true, discount-factor, based result.

For example, if E(rn − π) < E(g), the linearized identity (2) indicates that

the government can finance a small steady deficit/GDP ratio E(s) < 0, while

maintaining a steady debt/GDP ratio. But any large additional deficits must

still be financed by subsequent surpluses.1040

If the government issues only non-interest-bearing money, then rn = 0. This

is the familiar case of seignorage, which can finance a small steady deficit, but

large additional spending must still be financed by borrowing and repayment.

The identity indicates that the same principle applies for other sources of r < g.

The linearized identity captures this fact of the true present value formula,1045

that the nonlinear return-based present value formula may not capture.
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Appendix D. A variance decomposition

I use the elements of the impulse response function and their sums to cal-

culate the terms of the unexpected inflation identity (3). We can interpret this

calculation as an decomposition of the variance of unexpected inflation. Multi-

ply both sides of (3) by ∆Et+1πt+1 and take expectations, giving

var (∆Et+1πt+1)− cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1 − gt+1

)]
= (D.1)

= −
∞∑
j=0

cov [∆Et+1πt+1,∆Et+1st+1+j ] +

+

∞∑
j=1

cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

Unexpected inflation may only vary to the extent that it covaries with current

bond returns, or if it forecasts surpluses or real discount rates.

Dividing by var (∆Et+1πt+1), we can express each term as a fraction of the1050

variance of unexpected inflation coming from that term. This decomposition

adds up to 100%, within the accuracy of approximation, but it is not an orthog-

onal decomposition, nor are all the elements necessarily positive. Each term is

also a regression coefficient of future long-run variables on unexpected inflation.

The two approaches give exactly the same result – the terms of (D.1) are1055

exactly the terms of the impulse-response function, to an inflation shock orthog-

onalized last, i.e. a shock that moves all variables at time 1 including ∆E1π1.

To see this fact, write the VAR in standard notation

xt+1 = Axt + εt+1 (D.2)

so

∆Et+1

∞∑
j=1

xt+j = (I −A)−1εt+1.

Let a denote vectors which pull out each variable, i.e.

πt = a′πxt, st = a′sxt, (D.3)

etc. Then the present value identity (3) reads and may be calculated as

a′πεt+1 − (arn − ag)′εt+1 = −a′s(I −A)−1εt+1 + a′rg(I −A)−1Aεt+1 (D.4)
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where

arg ≡ arn − aπ − ag.

We can calculate the variance decomposition (D.1) by

a′πΩaπ − (arn − ag)′Ωaπ = −a′s(I −A)−1Ωaπ + a′rg(I −A)−1AΩaπ

where Ω = cov(εt+1, ε
′
t+1), and then divide by a′πΩaπ to express the result as a

fraction,

1− (arn − ag)′
Ωaπ
a′πΩaπ

= −a′s(I −A)−1
Ωaπ
a′πΩaπ

+ a′rg(I −A)−1A
Ωaπ
a′πΩaπ

. (D.5)

To show that this variance decomposition is the same as the elements and

sum of elements of the impulse-response function to an inflation shock, orthog-

onalized last, note that the regression coefficient of any other shock εz on the

inflation shock is

bεz,επ =
cov(εzt+1, ε

π
t+1)

var(επt+1)
=
a′zΩaπ
a′πΩaπ

,

so the VAR shock, consisting of a unit movement in inflation επ1 = 1 and move-

ments εz1 = bεz,επ in each of the other variables is given by

ε1 =
Ωaπ
a′πΩaπ

.

We recognize in (D.5) the responses and sums of responses to this shock. Di-

viding (D.1) by the variance of unexpected inflation, or examining the terms of

(D.5), we recognize that each term is also the coefficient in a single regression1060

of each quantity on unexpected inflation.

In an analogous way, we can interpret the responses to other shocks as a

decomposition of the covariance of unexpected inflation with that shock, based

on

cov (∆Et+1πt+1εt+1)− cov
[
εt+1,∆Et+1

(
rnt+1 − gt+1

)]
= −

∞∑
j=0

cov [εt+1,∆Et+1st+1+j ] +

∞∑
j=1

cov
[
εt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

This variance decomposition is similar in style to the decomposition of return

variance in Campbell and Ammer (1993). To avoid covariance terms, however, it
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follows the philosophy of the price/dividend variance decomposition in Cochrane

(1992), extended to a multivariate context. With x = y+ z, I explore var(x) =1065

cov(x, y) + cov(x, z) rather than var(x) = var(y) + var(z) + 2cov(y, z).

Appendix E. Monte Carlo details

To evaluate sampling distributions I run a simple Monte Carlo. I start with

the estimated VAR. I find the covariance matrix of the residuals εt+1. The

identity (1) implies

εs,t+1 = εrn,t+1 − εg,t+1 − επ,t+1 − εv,t+1. (E.1)

Since I infer the surplus data st from (1), the data obey this identity and the

covariance matrix of residuals is singular. Thus I simulate iid shocks from the

covariance matrix of all shocks except the surplus, and then I infer the surplus1070

shock from the identity (E.1).

I initialize the VAR at the first data point, thereby generating the conditional

sampling distribution. I simulate forward 50,000 artificial data samples using

the estimated VAR parameters. I re-estimate the VAR and I calculate impulse

responses and inflation decompositions in each artificial sample. I tabulate the1075

sampling distribution of these quantities and report quantiles.

In a very few artificial samples, the VAR estimate has eigenvalues greater

than or equal to one, so (I − A)−1 cannot be computed. I omit these 38 out

of 50,000 samples. As a result the reported quantiles are slightly smaller than

actual quantiles. Avoiding these infinities and beyond is one reason that I1080

report quantiles rather than standard errors. More generally, the distribution

of statistics is not normal.

It is also not always possible to find ω ∈ [0, 1] to satisfy the return identity, so

many Monte Carlo draws use a best fit value of ω in which the return identity

does not hold. Weights have little effect on the results however, so this fact1085

seems to have little effect. Since this is what I would have done in sample had

I not been able to find an ω ∈ [0, 1] that satisfied the return identity, this fact

just fills out the correct sampling distribution.
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I run the Monte Carlo using sample estimates, and in particular the esti-

mated 0.98 coefficient of debt on lagged debt. Near unit roots are biased down,1090

and one might wish also to run a Monte Carlo with a bias-corrected estimate

with eigenvalues closer to one. That procedure would likely lead to somewhat

larger sampling distributions.

Between the conditional Monte Carlo – starting at the first data point –

the problem of draws with A eigenvalues greater than one, near-unit roots, and1095

non-normal error distributions, one could likely find sampling experiments that

produce even larger distributions.

But remember, I am not testing anything, so the point is simply to give a

sense of the sampling error of the measurements. My main conclusion is that

the sampling distribution of the response functions and decompositions, though1100

narrow enough that the qualitative results are reasonably reliable, is still pretty

wide already, steering me away from model complications. Sampling exercises

that produce even wider distributions would only emphasize that point.

Appendix F. Sources of sampling variation

Table F.4 includes the regression of other shocks on inflation shock that starts1105

off the main inflation decomposition, and thus determines the instantaneous

response in Figures 2 and 9. The table also includes the correlation matrix of

the shocks.

To measure the relative contribution of the shock correlation and the long-

run response function given the shock identification as sources of variation, Table1110

F.5 includes two other sampling calculations. The “no b” columns resample

data using the original regression of shocks εzt+1 on inflation shocks επt+1, the

top row of Table F.4, in each sample. The VAR coefficients still vary across

samples, but the identification of the inflation shock does not. The “no A”

columns likewise keep constant the VAR regression coefficients, but reestimate1115

the shock regression in each sample. Turning off either source of sampling

variation reduces that variation, but not as much as you might think. Sampling
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rn g π s v i y

Regression of other shocks on inflation shock

Coefficient -0.56 -0.33 1.00 -0.58 -0.65 0.24 0.23

Std. err. (0.24) (0.17) (0.00) (0.53) (0.74) (0.14) (0.24)

Correlation matrix of VAR shocks

rn 1.00 -0.25 -0.29 -0.27 0.63 -0.74 -0.93

g -0.25 1.00 -0.24 0.39 -0.56 0.41 0.20

π -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31

s -0.27 0.39 -0.14 1.00 -0.88 0.35 0.26

v 0.63 -0.56 -0.11 -0.88 1.00 -0.63 -0.60

i -0.74 0.41 0.21 0.35 -0.63 1.00 0.75

y -0.93 0.20 0.31 0.26 -0.60 0.75 1.00

Table F.4: Regression of other shocks on inflation shock, and correlation matrix of VAR shocks

Fraction No b No A

Component Estimate 25% 75% 25% 75% 25% 75%

Inflation π1 1.00

Bond return (rn1 − g1) -0.23 -0.45 0.00 -0.23 -0.23 -0.45 0.00

Future Σs -0.06 -0.69 0.23 -0.60 0.14 -0.69 0.23

Future Σr − g 1.17 0.42 1.57 0.63 1.37 0.42 1.57

Table F.5: Decomposition of unexpected inflation variance – distribution quantiles. No b

holds the initial response constant across trials. No A holds the VAR regression coefficients

constant across trials
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variation is still large in either case, and variances add, not standard deviations.

Moreover the sampling variation associated with shock orthogonalization – the

“no A” exercise – does not go away no matter how small the shocks. Both left1120

and right hand sides of the shock on shock regressions get smaller at the same

rate.

Appendix G. 1980-2018 subsample results

This section presents results using the 1980-2018 subsample. Much monetary

macroeconomics isolates this period as having a different set of correlations that1125

the earlier 1970s inflation, 1960s under Bretton woods, etc. Breaking the sample

also allows us to see if the results are stable across subsamples.

rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.22* 0.05 -0.10** -0.25* 0.08 -0.04 0.07*

gt -0.11 0.13 0.06 0.76 -1.06 0.20* -0.04

πt -0.04 -0.57* 0.67** -1.55 1.41 -0.08 -0.12

st 0.10* 0.07* -0.02 0.38** -0.34* -0.02 -0.04*

vt -0.00 0.00 -0.00 0.05 0.95** 0.01 0.00

it -0.12 -0.27* 0.20* 1.14* -1.19 0.61** 0.31*

yt 1.61** 0.67** -0.08 0.05 0.98 0.32* 0.57**

100× std(εt+1) 2.44 1.10 0.51 5.17 7.00 1.15 0.93

Corr ε, επ -0.40 0.14 1.00 0.11 -0.31 0.27 0.42

R2 0.73* 0.54* 0.88* 0.50* 0.94* 0.85* 0.89*

100× std(x) 4.74 1.63 1.48 7.30 28.88 2.97 2.84

Table G.6: OLS VAR estimate. Sample 1980-2018. One (two) stars means the estimate is

one (two) Monte Carlo standard errors away from zero.

Table G.6 presents OLS VAR regression coefficients, parallel to Table 1.

Table G.7 compiles inflation decompositions, parallel to Table 2. Figures G.10,

G.11 and G.12 plot responses to inflation shocks, paralleling Figures 2, 3, and1130

4.

The broad pattern of Figure G.10 is similar to the full postwar sample.

There are some differences. The surplus and growth shocks are now positively

correlated with the inflation shock, seen in the period 1 responses. There is less
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∑∞
j=0 ω

j∆E1π1+j = −
∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1(1− ωj)∆E1r1+j

π = s g r

Inflation 2.32 = -( 0.19) -( 0.52) +( 3.03)

Recession -2.50 = -( -0.31) -( -1.67) +( -4.49)

Surplus -0.08 = -( -0.46) -( -0.54) +( -1.08)

Disc. Rate -0.12 = -( -0.40) -( -0.49) +( -1.00)

Surplus, no i 0.07 = -( -0.70) -( -0.30) +( -0.92)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 1.00 -( -1.92) = -( 0.19) -( 0.52) +( 3.63)

Recession -1.00 -( 2.44) = -( -0.31) -( -1.67) +( -5.42)

Surplus -0.01 -( 0.32) = -( -0.46) -( -0.54) +( -1.33)

Disc. Rate -0.02 -( 0.35) = -( -0.40) -( -0.49) +( -1.25)

Surplus, no i 0.07 -( -0.01) = -( -0.70) -( -0.30) +( -0.92)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞
j=1 ω

j∆E1π1+j

rn = r π

Inflation -1.92 = -( 0.60) -( 1.32)

Recession 2.44 = -( -0.94) -( -1.50)

Surplus 0.32 = -( -0.25) -( -0.07)

Disc. Rate 0.35 = -( -0.25) -( -0.09)

Surplus, no i -0.01 = -( -0.00) -( 0.00)

Table G.7: Terms of the inflation and bond return identities. Sample 1930-2018.

need to isolate a separate growth+inflation shock in this period, dominated by1135

“aggregate demand” rather than “stagflation” episodes.

However, the surplus and growth responses turn negative after one period, as

they are in the full sample. Higher inflation strongly forecasts a lower surplus,

-1.55 in Table G.6 rather than -0.25 in Table 1, and similarly higher inflation

forecasts lower growth -0.57 rather than -0.14. The overall responses are then1140

similar to the full period.

Surpluses then recover and turn positive as before. The sum of the surplus

response remains small, 0.19 rather than -0.06.
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Figure G.10: Response to inflation shocks, sample 1980-2018.

Figure G.11 explores the long-run surplus response, and you can see the

same dynamics playing out. Inflation forecasts a rise in debt (1.41 in Table1145

G.6), and the period of deficits also raises debt (-0.34). But the rise in debt

leads to a rise in surpluses, which slowly pay down much of that debt.

The expected return also rises in Figure G.10, and accounts for all the in-

flation and more in this subsample as it does in the main estimate.

Figure G.12 shows the interest rate response in more detail. The wiggly1150

response, which I pointed out in the postwar sample and is a result of slight

overfitting there, is even more pronounced here. However, wiggles aside, the

basic picture is similar. Interest rates and the expected bond return rise to-

gether, and almost permanently in response to the inflation shock. They do

not rise as much as inflation, giving a few periods of negative expected returns,1155

but their rise is so much more persistent than that of inflation that we see a

very long period of high expected returns on the right side of the graph. As

in the full sample, the much greater persistence of yield-curve changes than of

inflation generates the long-term discount rate rise which accounts for most of
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Figure G.11: Response to inflation shocks, sample 1980-2018.

the inflation shock.1160

The impulse-response quantiles, plotted in Figure G.13, are even larger than

those of the full sample, but not so large that the results are meaningless.

Overall, we see a comfortingly similar picture, and many signs of weak esti-

mation in a short sample. At least it is comforting not to see the point estimates

paint a much different picture, as they do in the prewar sample studied in the1165

next section.

I do not present results for the 1947-1980 subsample to save space, since it

too paints about the same picture. The near-term (5 years) response functions

are similar. However the point estimate has an eigenvalue of the transition

matrix greater than one, so one must either reduce that or make calculations1170

based on the first few responses only, not (I −A)−1 calculations.
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Figure G.12: Response to inflation shocks, sample 1980-2018.
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Appendix H. Full sample results

This section presents results using the full sample of data that I have been

able to collect, 1930-2018.

rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.23** 0.06 -0.02 -0.12 -0.14 -0.06* 0.05*

gt 0.02 0.42** 0.25** 0.52* -1.17** 0.07* -0.01

πt -0.11* 0.05 0.53** -0.75** 0.05 0.02 0.02

st 0.01 -0.02 -0.02 0.65** -0.61** 0.00 -0.01*

vt 0.01 0.01* 0.01 0.08** 0.91** -0.00 -0.00*

it -0.32* -0.35* 0.26 0.63 -0.87 0.79** 0.31**

yt 1.85** 0.40* -0.05 0.59 0.90 0.14 0.52**

100× std(εt+1) 2.22 2.15 2.28 7.34 9.04 1.24 0.77

Corr ε, επ -0.14 0.21 1.00 -0.07 -0.28 0.15 0.17

R2 0.68* 0.32* 0.56* 0.54* 0.96* 0.84* 0.91*

100× std(x) 3.92 2.61 3.44 10.80 42.76 3.05 2.60

Table H.8: OLS VAR estimate. Sample 1930-2018. One (two) stars means the estimate is

one (two) Monte Carlo standard errors away from zero.

Table H.8 presents OLS VAR regression coefficients, parallel to Table 1.1175

Table H.9 compiles inflation decompositions, parallel to Table 2. Figures H.14,

H.15, and H.16 plot responses to inflation shocks, paralleling Figures 2, 3, and

4. Figure H.17 presents sampling quantiles, paralleling Figure 9.

Start with the impulse response function for the inflation shock, Figure H.14,

paralleling Figure 2. The general pattern is similar. But the magnitudes are1180

completely different. The 1% inflation shock still corresponds to a prolonged

deficit, and the deficit eventually turns to surplus. But the deficit is larger and

longer, and following surpluses no longer pay off the accumulated debts. The

sum of the surplus responses is -2.59, not -0.06, accounting for more than all of

the 1.83% weighted sum of inflation.1185

Discount rates follow the same general pattern as well. But the decline in

discount rate is longer lasting, and the subsequent rise much smaller, so discount

rates now account for -0.52% inflation, not +1.004% inflation.
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∑∞
j=0 ω

j∆E1π1+j = −
∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1(1− ωj)∆E1r1+j

π = s g r

Inflation 1.83 = -( -2.59) -( 0.93) +( 0.17)

Recession -2.00 = -( 2.59) -( -2.13) +( -1.54)

Surplus 0.09 = -( -1.04) -( 0.04) +( -0.91)

Disc. Rate -0.05 = -( -0.89) -( -0.05) +( -1.00)

Surplus, no i 0.30 = -( -1.27) -( 0.27) +( -0.70)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1r1+j

π rn = s g r

Inflation 1.00 -( -0.14) = -( -2.59) -( 0.93) +( -0.52)

Recession -1.00 -( 0.17) = -( 2.59) -( -2.13) +( -0.72)

Surplus 0.07 -( 0.13) = -( -1.04) -( 0.04) +( -1.05)

Disc. Rate -0.01 -( 0.16) = -( -0.89) -( -0.05) +( -1.11)

Surplus, no i 0.26 -( 0.01) = -( -1.27) -( 0.27) +( -0.75)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1r1+j −
∑∞
j=1 ω

j∆E1π1+j

rn = r π

Inflation -0.14 = -( -0.69) -( 0.83)

Recession 0.17 = -( 0.82) -( -1.00)

Surplus 0.13 = -( -0.14) -( 0.02)

Disc. Rate 0.16 = -( -0.11) -( -0.05)

Surplus, no i 0.01 = -( -0.05) -( 0.04)

Table H.9: Terms of the inflation and bond return identities. Sample 1930-2018.

The growth response goes the other way, now rising with inflation rather

than declining, and therefore contributes -0.93% inflation rather than +0.49%.1190

In sum, the full sample data paint a picture more than diametrically oppo-

site. A 1% inflation shock, drawn out to 1.83% cumulative weighted inflation,

is more than accounted for by 2.53% cumulative deficits, and buffered by an

0.52% disinflationary decline in discount rates, and 0.93% disinflationary rise in

growth.1195

The full-sample results appear to support a simple fiscal theory, which would

be convenient – inflation comes from persistent deficits. Discount rates only
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Figure H.14: Response to inflation shocks, sample 1930-2018.

mitigate that result.

Why then do I emphasize the postwar sample in the text, and relegate these

to an online appendix? Clearly, the full sample results do not carry through the1200

postwar period to the present. As in essentially all macroeconomics and mone-

tary economics, which studies the post-1947 sample, the post-1959 sample, or,

increasingly, the post-1980 sample, the war and prewar data behave differently.

My interest in this paper is to characterize the behavior of inflation in postwar

recessions, and the peacetime inflation of the 1970s and 1980s. Making an in-1205

ference about that behavior from war and prewar data, when the central results

switch in a postwar-only sample would be hugely misleading.

The nature of the prewar and war regime is interesting. Alas, the 1930-1947

sample is too short for these VAR methods. An investigation of the prewar

regime with a long historical time series beckons.1210

What are the stylized facts and influential data points behind this switch

in behavior? As before, long-run forecasts are driven by slow-moving state
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Figure H.15: Response to inflation shocks, sample 1930-2018.

variables. Think of a system

xt+1 = αyt + εx,t+1

yt+1 = ρyt + βεx,t+1 + εy,t+1.

In the second equation, I express the y shock in terms of a component correlated

with the x shock and an orthogonal component. In this system, the variable y

is the persistent state variable for long-run responses. The long-response of x

to the εx shock depends on how much the state variable y moves, β, and the

persistence of the y variable. In response to εx,1 = 1, the long-run x response is

∆E1

∞∑
j=0

x1+j = 1 +
αβ

1− ρ
.

With this insight, let us understand the responses of Figure H.14. Three

state variables matter most. From Table H.8, inflation basically follows its own

AR(1), unaffected by other variables, with a a persistence of 0.53, the same value

as the postwar sample. The value of debt is the most important state variable

for long-run responses with an 0.91 coefficient on its own lag. However, this1215
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Figure H.16: Response to inflation shocks, sample 1930-2018.

debt to GDP ratio does respond strongly (-0.61) to surpluses, and to lagged

growth (-1.1) as we would expect, so at medium runs it evolves jointly with

these other variables. The surplus has a strong coefficient on its lag, 0.65, so

in part any shock to surpluses coincident with the inflation shock will persist.

The surplus also responds positively though with a small value 0.08 to the debt.1220

This coefficient does not account for much of the short run dynamics, as the

movements of surplus and debt are roughly the same size, but is the dominant

force behind very long run surpluses which repay debts. The surplus responds

and negatively -0.75 to inflation. This key coefficient is only -0.25 in the postwar

sample. Interest rates also have a persistent response, but they move so little1225

in this estimate that they are not an important state variable.

So, what accounts for the long deficits in Figure H.14? The surplus does

not jump down by a large amount with the shock, declining only 0.25, so the

surplus’ autocorrelation is not a big part of the story. The big decline in surplus

follows from its -0.75 coefficient on inflation, and the inflation AR(1) response.1230

If inflation this year forecasts deficits next year, then a very simple fiscal theory
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Figure H.17: Inflation shock response quantiles, sample 1930-2018.

story that inflation is accounted for by deficits follows swiftly.

But deficits should raise the value of debt, and the rise in the value of debt,

which is very persistent, should pull deficits back to surplus, no? Here, another

difference in the full sample is key. In the full sample, the value of debt v jumps1235

down by 1.10% when inflation jumps up 1%, where in the postwar sample the

value of debt jumps down half as much, 0.65%. Now, a low value of debt does

not put into motion additional surpluses. So, the effect seen in the postwar

sample of Figure 3, that deficits quickly give rise to higher debt which then

triggers surpluses, is absent here because so much debt was wiped out by the1240

inflation shock.

Contrasting Figures H.15 and 3 help to explain the differing behavior of

the discount rate. In both cases, the behavior of nominal interest rates is dis-

turbingly disconnected from the behavior of inflation. In the postwar sample,

nominal rates rise immediately and very persistently. When inflation declines1245

and passes by the higher nominal rates, real rates are higher. In the full sample,

nominal rates move much less, reflecting the zero bound in the great depression
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and interest rate targets in WWII and the early postwar period. The resulting

real rate the inverse of the inflation AR(1), and mostly negative.
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Figure H.18: Surplus and inflation during WWII

The massive deficits of 1943 and 1944 are key influential data points that1250

account for the shift in behavior of the full sample. Estimates from the 1940-

2018 sample, not shown, are similar. Figure H.18 plots inflation and surplus

during WWII. The WWII deficits are immense. Inflation, more volatile in the

pre-1947 period, was above its mean in the years prior to these immense deficits.

Thus, this inflation preceding deficits of 1943 and 1944 drives the result that1255

inflation forecasts deficits in the full sample, and thus the result that inflation

shocks are accounted for by deficits. This is clearly not a robust result, or one

that should be taken as evidence that inflation today is due to deficits.

The strong negative correlation between shocks to inflation and to the value

of debt in the full sample comes from a different set of influential observations.1260

The inflation of 1943 and 1944 was largely expected, according to the VAR,

and preceded rather than coincided with increased debt. Instead, the sharp

and unexpected (by the VAR) postwar inflation of 1947 coincided with a sharp
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decline in the real value of debt, and the sharp deflation of 1932 coincided with

a sharp rise in the real value of debt. These events are conventionally regarded1265

as times in which deflation raised the value of debt, in the first, and inflated it

away, in the second. But again, one is loath to let these two observations double

our estimate of the correlation between shocks to inflation and the value of debt

for the postwar period.

The inflation shock is already positively correlated with a growth shock in1270

the full sample, due to a strong positive correlation in the 1930s. As a result, the

response to the inflation + growth shock (not shown) is not much different from

the response to the inflation shock. Again, the 1% deflation and 2% cumulative

inflation corresponds to 2.6% cumulative rise in surpluses. This time a long-run

decline in discount rate contributes to deflation, but an equally large decline in1275

growth contributes to inflation.

Appendix I. Growth and inflation plots

This section plots growth and inflation, to document that responses to a

shock that combines 1% lower growth and 1% lower inflation is interesting.

Figure I.19 presents GDP growth and CPI inflation.1280

Growth and inflation move in opposite directions during the 1970s stagflation

episodes. By contrast, inflation declined in 1982 along with the comparably

sized recession. This decline was permanent, not a u shape, but nonetheless

coincident with the recession. Inflation moved a bit less than growth in the

2000 recession, but again moved about one for one with growth in 2008. The1285

late 1940s and early 1950s also show roughly one for one positive comovement.

Figure I.20 presents the growth and inflation VAR residuals. These are not

as clear, being annual data, consumption growth, GDP deflator, but tell roughly

the same story.
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Figure I.19: CPI inflation and real GDP growth; percent changes from a year earlier.
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Figure I.20: VAR residuals to growth (consumption growth) and inflation (GDP deflator).

Annual data 1948-2018.
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