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The future of brain–machine interfaces  
is optical

Nathan Tessema Ersaro, Cem Yalcin & Rikky Muller

Optical interfaces could be used to address 
challenges related to scaling, precision and 
invasiveness in the development of brain–
machine interfaces.

Advances in brain–machine interfaces (BMIs) have been driven by  
a proliferation of neural sensing and stimulating modalities, as well 
as an increase in the number of neurons that can be simultaneously 
recorded. These advances have led to new insights into neural systems 
and the development of novel clinical tools. In basic research, BMIs 
allow neuroscientists to explore the interplay between brain–behaviour 
causality and self-observation, and to study neural plasticity, coding 
and pathophysiology1. In applied research, BMIs can help patients 
with limited ability to communicate and patients with restricted  
motor function2.

Ideally, a BMI should be minimally invasive, extremely safe and 
offer sufficient longevity. It should have a feedback system to close 
the communication loop. It should also have high spatiotemporal 
resolution and throughput for communication depth to enable both 
complex brain encoding (via arbitrary and precise neurostimulation 
patterns) and brain decoding (via sufficiently large readout data with 
precise features)3. However, the human brain has roughly 80 billion 
neurons, with a density of around 105 neurons per mm3 (ref. 4). Thus, 
the trade-off between spatial scale and resolution has emerged as a 
key challenge in achieving meaningful communication with the tissue 
regions responsible for sensory, motor and cognitive functions in the 
central nervous system.

Non-invasive BMIs avoid surgery and can ensure longevity by 
employing external tools for recording (such as electroencephalog-
raphy (EEG)) and stimulation (such as transcranial magnetic stim-
ulation)5. However, this approach has fundamental limits in terms 
of communication complexity since the measurements constitute 
summed electrical signals recorded from a distance (true of EEG and 
also electrocorticography, where electrodes are placed on the surface 
of the cortex) and since stimulation targets relatively large volumes 
of tissue.

Microelectrodes surgically inserted into brain tissue can be used 
to record signals with the resolution of a single neuron and to perform 
intracortical microstimulation. However, even such high-precision 
microelectrodes have only been able to perform concurrent record-
ing on up to hundreds of distinct neurons6. In addition, the longevity, 
reliability and safety of such electrode arrays is limited by physical 
damage during insertion, the immune response to the implant and 
the reorganization of neural circuits over time. While it has been sug-
gested that it may be possible to simultaneously electrically record 
from every neuron in a mammalian cortex7, charge density limits rule 
out safe stimulation at the proposed electrode size8.

Optics could provide an answer here. The advent of gene edit-
ing has enabled the development of fluorescent voltage indicators 
located within neuron membranes that track individual firing events9 
and actuating proteins known as opsins that respond to light by trig-
gering or inhibiting neuron firing10. Thus, through the use of cranial 
windows, both recording and stimulation can be performed across 
different optical wavelengths to avoid read–write crosstalk and with-
out physically penetrating brain tissue. With such methods, optical 
neural interfaces can precisely control and interrogate mammalian 
neural circuits, creating BMIs that can achieve stimulation patterns 
capable of driving realistic sensory precepts11. The precision offered 
by optical neural interfaces is further aided by auxiliary techniques, 
including multiphoton excitation and temporal focusing, which can 
confine illuminated target regions12. In addition, existing bottlenecks 
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Fig. 1 | Volumetric patterning in optical neural interfaces. a, Optical diagram 
for scan-based light delivery systems. A varifocal element for axial scanning 
is complemented with a lateral scanner to precisely position a focused spot of 
light across the target volume. b, Optical diagram for holographic light delivery 
systems. An SLM imprints a phase mask onto an incident laser beam, which 
forms the desired 3D point cloud intensity distribution through downstream 
interference. Credit: © 2022 IEEE. Reprinted, with permission, from ref. 31.
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state-of-the-art commercially available SLMs continue to suffer from 
bottleneck speeds of less than 500 Hz due to the optofluidic settling 
of liquid-crystal-based phase-modulating pixels21.

The critical need for high-speed SLMs in optical BMIs therefore 
remains unmet. Importantly, pixel count requirements for such 
high-speed SLMs need not match the megapixel regime of current 
liquid-crystal-on-silicon SLMs21, as even pixel counts on the order 
of 104 (that is, around 100 × 100) would be capable of matching 
state-of-the-art targeting throughput performance with 10 kHz speed. 
Any available excess refresh rate may also be used to further improve 
image fidelity and signal-to-noise ratio via time-averaged speckle 
reduction22.

Opportunities for hardware and electronics
Several technologies are being explored for kilohertz-to-megahertz-rate 
array-scale phase modulation. These include ferroelectric liquid 
crystals23, silicon photonic phased arrays employing thermo-optic 
or microelectromechanical system (MEMS)-based phase shifters24, 
and tunable metasurfaces and resonant optical antennas25. Yet chal-
lenges hampering array scaling and functional deployment persist as 
these technologies achieve high SLM speeds at the expense of various 
trade-offs, including binary-only phase modulation in ferroelectric 
liquid crystals23, high power consumption in thermo-optic phase  
shifters24, large size and insertion loss in MEMS-based photonic MEMS 
shifters24, and limited or co-dependent phase and amplitude modula-
tion in tunable nanoantennas25.

Nevertheless, advanced commercialization efforts for high-speed 
SLMs exist, particularly around piston-motion electrostatically actu-
ated micromirror arrays, which underpin existing products such  
as continuous deformable mirror arrays26 and grating light valves27. 
Similarly, Texas Instruments recently leveraged its surface microma-
chined complementary metal–oxide–semiconductor (CMOS) platform 
for digital micromirror devices to develop a phase light modulator 
SLM28. These SLMs typically exhibit large pixel pitches on the order of 
tens of micrometres, which limits native SLM field of view and requires 
demagnification optics. However, phase-shifting micromirror arrays 
are promising as high-speed SLMs because they can surpass 10 kHz 
refresh rates, allow for random-access patterning via quasi-static opera-
tion, and are agnostic to polarization, which is not the case for liquid 
crystals and metasurfaces28,29.

Regardless of the underlying technology, the use of high-speed 
SLMs to increase optical targeting throughput requires an electronic 
addressing scheme with sufficiently dense integration to simulta-
neously drive all available degrees of freedom (that is, pixels) and 
with sufficient bandwidth to achieve settling limited only by the 
phase-modulation mechanism. Off-the-shelf driver solutions often fail 
to fully mobilize SLM capabilities, bottlenecking refresh rate and modu-
lation depth28, or employ inefficient integration schemes, resulting in 
heavy and cumbersome form factors30. Accordingly, a tight co-design 
process between an SLM array and integrated circuit driver is required 
in order to achieve a level of tailorability that can alleviate driver burden 
for nimble, low-power and compact operation. For example, custom-
ized digital-to-analogue converter architectures could be employed to 
avoid wasted drive precision for nonlinear phase-modulation behav-
iour, which is common in piston-motion micromirror arrays29,31.

Custom drivers could also be used to automate typically oner-
ous global or local calibration approaches, which are often required 
post-fabrication due to mismatches across SLM pixels and arrays25,31. 
Lastly, operating smaller SLMs at higher speeds could allow for on-chip 

with optical methods — including photoresponse kinetics, off-target 
effects and tissue heating — are being targeted by ongoing innovations 
in biological probe engineering13,14.

The dual challenge of precision and throughput
To fully exploit the level of targeting precision offered by optical 
BMIs, volumetric patterning at neuron-soma-level resolution (around  
10 μm) is required in both fluorescent excitation of indicator probes15 
(for imaging) and optogenetic activation of opsins (for photostimula-
tion)10. Previous studies have achieved such dynamic optical patterning 
through three-dimensional (3D) point scanning methods (Fig. 1a)16. Yet 
despite speeds that exceed the kilohertz timescales of neuronal activity, 
the serial nature of point scanning precludes concurrent addressing, 
which severely limits targeting throughput.

Parallel addressing via computer-generated holography has thus 
emerged as a popular approach to photostimulation and imaging in 
neuroscience (Fig. 1b)11. In such systems, dynamic holographic projec-
tion is achieved using a spatial light modulator (SLM). This is typically 
a configurable diffractive surface, such as an optical phased-array sur-
face, capable of imparting pixel-level phase and amplitude modulation 
to a coherent input beam in order to generate desired 3D illumination 
patterns via downstream interference. Holographic patterning efforts 
in neuroscience have demonstrated the ability to target up to 750 neu-
rons with a single frame of a 0.5-megapixel SLM10. Several studies have 
also employed computer-generated holography patterning jointly 
with raster scanning for expanded system capabilities, including an 
extended field of view17 and spiral beam tracing across neuron soma 
for stronger photostimulation11.

Ensuring precision in optical neural interfaces also entails elimi-
nating the impact of motion artefacts and aberrations from scatter-
ing in neural tissue via dynamic wavefront shaping18. Such shaping is 
typically achieved using kilohertz-rate adaptive optics tools such as 
continuous deformable mirror arrays19. Ideally, all point-cloud pat-
terning and aberration-correction functionality across imaging and 
photostimulation would be consolidated to one SLM for optimal com-
pactness. However, this requires SLM refresh rates that match those of 
adaptive optics tools, which highlights the importance of modulation 
speed in optical neural interfaces.

Moreover, a fundamental consideration with SLMs is that the 
available space–bandwidth product, given by SLM pixel count, is only 
conserved when patterning across a single depth plane, such that 
SLM pixel count scales linearly with the number of possible targets 
per SLM frame. When patterning is extended to a 3D volume consist-
ing of multiple depth planes, a space–bandwidth product mismatch 
emerges, with larger SLM formats that target more spots per frame 
suffering from diminishing performance in terms of optical efficiency 
and image fidelity. Therefore, operating the SLM at a higher frame rate 
with fewer targets per SLM frame would improve efficiency and fidel-
ity as a result of reduced unwanted interference between beamlets 
targeting different neurons, making SLM speed doubly important to 
the deployment of optical BMIs.

In practice, the minimum allowable SLM switching period is given 
by the sum of the SLM settling time (during which illumination is turned 
off) and the response time for photostimulation with opsins or for 
indicators such as genetically encoded voltage indicators (during which 
illumination is turned on)20. Eclipsing the impact of SLM switching 
times for millisecond-scale biological probes requires SLM speeds in 
excess of 10 kHz. Yet, although recent opsins and genetically encoded 
voltage indicators have entered the regime of kilohertz-rate kinetics13,14, 
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real-time computation of SLM phase masks. Indeed, since phase-mask 
computation relies on fast Fourier transform operations, which scale 
with N × logN (where N is the total SLM pixel count)22, fast and small 
SLMs offer improvements of several orders of magnitude in terms of 
compute time compared with large but slow SLMs for a given target-
ing throughput.

Safety, longevity and portability pose considerable challenges for 
the development of BMIs. These issues could be improved through the 
use of optically transparent, hermetically sealed cranial windows under 
all-optical schemes32. Yet, whereas optogenetics has entered the clinical 
realm, clinical implementations of all-optical BMIs remain out of reach 
with current capabilities. Nevertheless, the precise level of control that 
patterned illumination offers for the manipulation of neural activity has 
opened up an entirely new class of experiments to interrogate neural 
circuits and elucidate gaps in our understanding of neural coding33.
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