
RARE BONE DISEASE (CB LANGMAN AND E SHORE, SECTION EDITORS)

Multicentric Carpotarsal Osteolysis: a Contemporary Perspective
on the Unique Skeletal Phenotype

Nina S. Ma1 & S. Mumm2
& S. Takahashi3 & M. A. Levine4

Accepted: 18 October 2022
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Purpose of Review Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal
and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are
not well understood.
Recent Findings MCTO is caused by heterozygous mutations inMAFB, which encodes the widely expressed transcription factor
MafB. AllMAFBmutations in patients with MCTO result in replacement of amino acids that cluster in a phosphorylation region
of the MafB transactivation domain and account for a presumed gain-of-function for the variant protein. Since 2012, fewer than
60 patients with MCTO have been described with 20 missense mutations inMAFB. The clinical presentations are variable, and a
genotype-phenotype correlation is lacking. Osteolysis, via excessive osteoclast activity, has been regarded as the primary
mechanism, although anti-resorptive agents demonstrate little therapeutic benefit.
Summary This paper appraises current perspectives of MafB protein action, inflammation, and dysfunctional bone formation on
the pathogenesis of the skeletal phenotype in MCTO. More research is needed to understand the pathogenesis of MCTO to
develop rational therapies.
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Introduction

Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare
autosomal dominant disorder (OMIM #166300) that typically

presents as a skeletal dysplasia. It is characterized by the pro-
gressive destruction of carpal and tarsal bones (see Fig. 1A,
B). Bones in the shoulders, elbows, and knees can also be
affected by localized osteolysis. Patients often have subtle
craniofacial deformities, and many patients will manifest focal
segmental glomerulosclerosis (FSGS) that can lead to chronic
renal insufficiency. Symptoms begin during early childhood
and frequently include painful joint swelling and stiffness that
are usually misdiagnosed as an inflammatory polyarthropathy.
The involvement of the feet and ankle joints leads to delayed
attainment of early motor milestones such as walking. Some
children first learn to “walk on their knees” to avoid pain
associated with typical ambulation and weightbearing.
Virtually all patients with MCTO have osseous lesions and
two-thirds of patients have FSGS with podocyte foot process
microvillus transformation and effacement [1••, 2•]. Half of
patients with renal disease progress to renal failure [2•].

In 2012, mutations in MAFB (V-maf musculoaponeurotic
fibrosarcoma oncogene ortholog B [avian]), a single-exon
gene on chromosome 20q12 that encodes the MafB transcrip-
tion factor, were identified as the cause of MCTO [3, 4••].
MafB is a member of the Maf family of basic leucine zipper

This article is part of the Topical Collection on Rare Bone Disease

* Nina S. Ma
nina.ma@childrenscolorado.org

1 Section of Pediatric Endocrinology, Children’s Hospital Colorado
and Department of Pediatrics, University of Colorado School of
Medicine, 13123 E. 16th Ave, B265, Aurora, CO 80045, USA

2 Division of Bone and Mineral Diseases, Washington University
School of Medicine and Center for Metabolic Bone Disease and
Molecular Research, Shriners Children’s, St. Louis, MO, USA

3 Laboratory Animal Resource Center in Transborder Medical
Research Center, Faculty of Medicine, University of Tsukuba,
Ibaraki, Japan

4 Center for Bone Health and Division of Endocrinology and Diabetes,
The Children’s Hospital of Philadelphia and the Department of
Pediatrics, University of Pennsylvania Perelman School ofMedicine,
Philadelphia, PA, USA

Current Osteoporosis Reports
https://doi.org/10.1007/s11914-022-00762-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11914-022-00762-7&domain=pdf
mailto:nina.ma@childrenscolorado.org


(b-Zip) transcription factors. The Maf family includes seven
members that are divided into two subgroups: the large and
small Maf proteins. Members of the large Maf subgroup
(MafA, MafB, c-Maf or v-Maf, and the neural retina-specific
leucine zipper [NRL] protein) are characterized by a b-Zip
structure, a motif for DNA binding and protein dimerization,
and a transactivation domain [5] (see Fig. 1C). By contrast, the
small Maf proteins (MafF, MafG, and MafK) lack the
transactivation domain [6].

MafB is a member of the activator protein 1 (AP-1) super-
family of transcription factors, which form homo- and hetero-
dimers via their leucine zipper domains with other AP-1 fam-
ily members (e.g., Fos and Jun) [7, 8]. Large Maf proteins
regulate the transcription of their target genes by binding to
two types of palindromic sequences in DNA called TRE- or

CRE-type Maf-recognition elements (MAREs) [9]. The basic
domain that precedes the leucine zipper enables the interaction
of the Maf protein dimers with these recognition elements on
target genes (see Fig. 1C).

Since 2012, fewer than 60 subjects with MCTO have been
reported. Although the precise incidence and prevalence of
MCTO are unknown, MCTO is considered to be exceedingly
uncommon and is recognized as a rare disease in Orphanet
(ORPHA: 2774) and the National Institutes of Health,
National Center for Advancing Translational Sciences
(Genetic and Rare Diseases [GARD]: 13042). Affected patients
carry heterozygous missense mutations, each changing one of
12 amino acids within a short region of the MafB
transactivation domain (residues 54–71) that is highly con-
served in all large Maf proteins (see Table 1 [2•, 4••, 10–20,
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Fig. 1 A and B Radiographs of the right wrist and ankle of a 4-year–9-
month-old child with MCTO. The wrist and mid-foot compartments
appear small. The one carpal bone that is present (hamate) is small and
irregular in shape. The erosion and tapering of the proximal second and
third metacarpal bones are noted. There is a significant deformity of the
talus bone and irregularity of the distal calcaneus and proximal cuboid
bones. C MAFB is a single exon gene that codes for a 323 amino acid
protein. Functional domains of MafB are represented by solid-colored

boxes [3]. The numbered residues represent the priming Ser70 and four
additional amino acids (Ser54, Thr58, Thr62, Ser66) that are
phosphorylation sites. Red circles are underneath codons that are
involved in MCTO-causing mutations in MAFB (see Table 1). The
grey-shaded amino acids are conserved in proteins encoded by genes
related to MAFB (see text) and the small blue, green, and black open
boxes indicate the site of missense mutations in these other genes that
cause various syndromes (see text)
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21•, 22, 23] and Fig. 1C). This small region contains five serine
and threonine residues (numbered in Fig. 1C) that when phos-
phorylated result in both increased transactivating function and
decreased stability of all large Maf proteins [24–27].
Phosphorylation of these residues occurs through a hierarchal
process that is highly conserved among all the large Maf pro-
teins as well as other transcription factors that have
transforming potential (e.g., Kruppel-like factor 5) [28, 29]. In
the case of MafB, a priming phosphorylation at Ser70 by an
unknown kinase first occurs. Next, glycogen synthase kinase-3
(GSK3) catalyzes sequential phosphorylation of four serine/
threonine residues proceeding toward the N-terminus (Ser66,
Thr62, Thr58, and Ser54 in MafB; see Fig. 1C), which are
organized in four tandemly arranged phosphorylate-able motifs
[24–27]. GSK3-mediated phosphorylation ofMaf proteins may
lead to increased transactivation activity via the recruitment of
accessory proteins such as p300 and CREB-binding protein
[25, 30]. At the same time, phosphorylation decreases protein
stability via increased ubiquitination and proteosomal degrada-
tion [24, 25, 31–33]. Phosphorylation also decreases the asso-
ciation of Maf proteins with the ubiquitin-specific protease 7,
which blocks polyubiquitination and degradation [34].

Six MCTO mutations result in the replacement of residues
(Ser54, Thr58, Thr62, and Ser66) that are GSK3 phosphory-
lation target sites [2•, 4••, 10–15]. In addition, other mutations
are predicted to impair GSK3-mediated phosphorylation by
altering residues adjacent to phosphorylation sites or the C-

terminal priming site (Ser70) that is required as the priming
phosphorylation [27] (see Table 1 and Fig. 1C).

MCTO has been reported in patients of various ethnic
groups and nations around the world. The majority of
MCTO cases are sporadic, but autosomal dominant transmis-
sion with variable expressivity does occur [4••, 10, 12, 14, 16,
17]. Moreover, although MAFB mutations have high pene-
trance, rare cases of incomplete penetrance have been report-
ed. For instance, the MAFB variant, c.167C>T, p.Ser56Phe,
was identified in an index case with typical features ofMCTO.
However, the patient’s mother, sister, and maternal grand-
mother carried the same genetic mutation but were clinically
unaffected [18]. These and other authors have suggested that
modifier genes, epigenetic mechanisms, or environmental fac-
tors may influence the MCTO phenotype.

There does not appear to be an obvious genotype-
phenotype correlation. For example, clinical heterogeneity
and even intrafamilial variability are observed in the clinical
presentation of MCTO among patients who carry the same
MAFB mutation [4••, 10]. Genetic mosaicism may partially
explain some of the clinical heterogeneity although there has
been only one reported case of mosaicism so far. In this case
[21•], the father required kidney transplantation at the age of
27 years due to renal failure from FSGS but did not have
osteolysis on radiographs of the hands or feet. His son was
diagnosed with MCTO at a young age with classical skeletal
features as well as FSGS. While they both carried the same

Table 1 Summary of missense
variants in MAFB reported to
cause MCTO

Nucleotide change Amino acid change Reference [2•, 4••, 10–20, 21•, 22, 23]

161 C>G Ser 54 Trp Mehawej 2013

161 C>T Ser 54 Leu Zankl 2012, Zhuang 2017, Wu 2021, Chen 2021

167 C>T Ser 56 Phe Dworschak 2013

173 C>G Thr 58 Arg Li 2020

176 C>T Pro 59 Leu Zankl 2012, Mehawej 2013, Mumm 2014, Sun 2016

183 C>A Ser 61 Arg Park 2018

184 A>C Thr 62 Pro Zankl 2012

185 C>T Thr 62 Ile Mumm 2014

188 C>G Pro 63 Arg Zankl 2012, Mehawej 2013, Narhi 2021

188 C>T Pro 63 Leu Mehawej 2013, Stajkovska 2018

188 C>A Pro 63 Gln Wu 2021

194 G>T Ser 65 Ile Mehawej 2013

197 C>G Ser 66 Cys Zankl 2012, Choochuen 2018

206 C>T Ser 69 Leu Zankl 2012, Upadia 2018, Regev 2021, Mumm 2014

208 T>G Ser 70 Ala Zankl 2012

209 C>T Ser 70 Leu Zankl 2012, Mumm 2014

211 C>G Pro 71 Ala Park 2018

211 C>T Pro 71 Ser Zankl 2012, Mumm 2014

212 C>G Pro 71 Arg Ma 2020

212 C>T Pro 71 Leu Zankl 2012, Park 2018
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mutation in the transactivation domain ofMAFB (c.188 C>G,
p.Pro63Arg), the father’s DNA sequencing chromatograph
showed an unequal ratio of wild-type to mutant allele and
the son’s chromatograph showed an equal ratio. The unequal
allele ratios in the father were confirmed by sequencing DNA
that was extracted from hair obtained from different body
parts.

Current Perspectives on Pathogenesis
of MCTO

MafB Protein Function and MCTO

Large Maf transcription factors are expressed in multiple tis-
sues and regulate gene transcription by binding to MAREs in
target genes as homo- or heterodimers [9]. MafB has diverse
biological functions and is involved in the segmentation of the
hindbrain [35, 36], in the differentiation and survival of pan-
creatic α- and β-cells [37–40] and parathyroid glands [41], in
the survival of podocytes in the kidney [1••, 42–44], and in the
differentiation of monocytes [45–47]. Within the murine my-
eloid lineage, MafB is preferentially expressed in most tissue-
resident macrophages whose specific enhancers contain an
over-representation of MARE sequences [48]. MafB restricts
the ability of M-CSF to instruct myeloid cell proliferation,
promotes macrophage differentiation [49] through repression
of self-renewal enhancers in macrophages in vivo [50], and
(paradoxically from the perspective of MCTO) prevents oste-
oclast generation via inhibition of c-Fos, Mitf and NFATc1
[45]. In addition to these physiological and developmental
processes, the large Maf proteins also have transformational
potential and can act as oncogenes. Notably, theMAF gene is
upregulated in over 50% of human multiple myelomas and
60% of angioimmunoblastic T-cell lymphomas [51, 52]. In
addition, recurrent translocations that lead to the high expres-
sion of MafA, MafB, and c-Maf are present in 5–10% of
patients with multiple myeloma and predict a poor clinical
outcome [26, 51].

Missense mutations affecting homologous residues of the
closely related Maf, MafA, and NRL proteins have also been
identified (see Fig. 1C), leading to the hypothesis that these
are dominant, gain-of-function mutations that share a com-
mon pathophysiological mechanism by which they cause dis-
ease. For example, theMAFAmissense mutation, p.Ser64Phe
(corresponding to p.Ser69Phe in MafB), is present in patients
with familial insulinomatosis and diabetes mellitus and was
shown to impair phosphorylation within the transactivation
domain [38]. The mutant MafA protein shows increased sta-
bility and enhanced activity in pancreatic β-cell lines but not
in non-β HeLa cells, suggesting that the mutation can cause a
cell-specific increase in oncogenic potential [38]. Patients
with MAFA mutations do not have a skeletal phenotype,

which may be explained by the absence of a role for MafA
in chondrocyte differentiation or bone development. By con-
trast, skeletal defects do occur in patients withMAFmutations
that cause the Aymé-Gripp syndrome (AYGRPS) [53–55].
Patients with AYGRPS haveMAF genemutations that replace
residues Ser54, Thr58, Pro59, Thr62, and Pro69 that are also
affected in MAFB in patients with MCTO [27]. In contrast to
MafA,Maf is highly expressed in cartilage and bone cells, and
patients with AYGRPS manifest skeletal abnormalities, some
of which (e.g., midface hypoplasia and carpal/tarsal develop-
ment defects) also occur in MCTO. The overlapping skeletal
findings in AYGRPS andMCTO are not unexpected asMaf is
expressed in hypertrophic chondrocytes of the femur epiphy-
sis and in embryonic rib and limb cartilage [56], andMAF and
MAFB both control the expression of the CTGF gene
encoding connective tissue growth factor [57], which has been
implicated in endochondral ossification defects by perturbing
the transforming growth factor-β pathway [58]. Finally, pa-
tients with similar mutations in NRL develop autosomal dom-
inant retinitis pigmentosa 27 (OMIM #613750) [59], further
highlighting the critical role of this phosphorylation domain.

Amino acid replacements within the phosphorylation do-
main of large Maf proteins generate proteins with increased
stability, but the basis for a putative gain-of-function pheno-
type remains speculative. For example, Niceta and colleagues
[27] showed that variant Maf proteins lacking full phosphor-
ylation exhibited more rapid migration as well as an increased
expression on immunoblots, but that these mutant proteins
have decreased ability to activate an IL4-luciferase reporter
gene when expressed in COS1 cells. By contrast, Rocques
and colleagues [25] showed that overexpression of normal
Maf proteins in multiple myeloma and other tumors leads to
increased transforming potential and oncogenesis.

Phosphorylation of Maf proteins is an important mecha-
nism for regulating protein abundance and activity.
Tanahashi and colleagues demonstrated (in COS7 cells) that
proteosomal degradation of MafB is promoted by c-Jun N-
terminal kinase (JNK) phosphorylation and the introduction
of JNK phosphorylation target site mutations in the
transactivation domain of MafB (amino acid positions 58,
62, 70, and 74) increased MafB protein stability [60]. A sep-
arate study by Cuevas and colleagues demonstrated that MafB
activation domain mutations resulted in increased MafB pro-
tein with an extended half-life when expressed in HEK293T
cells [47].

Phosphorylation increases the association of Maf proteins
with coactivator P/CAF which prevents ubiquitination while
non-phosphorylated proteins are also not ubiquitinated.
GSK3-mediated phosphorylation may provide diversity in
Maf biological responses by differentially affecting gene ex-
pression. For example, microarray analysis of chick embryo-
nal fibroblasts transfected with wild-type MafA or a MafA
mutant (4A protein), in which all four amino acids
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phosphorylated by GSK3 had been replaced by alanine,
showed unanticipated effects on transcription of target genes.
Although many transcripts were induced more by the phos-
phorylated wild-type MafA than by the non-phosphorylated
4A protein, the expression of many genes was insensitive to
MafA phosphorylation. For a few genes, expression was in-
creased more by the 4A protein than by wild-type MafA [25].
Whereas similar effects of GSK3 on MafB stability have re-
cently been reported [26], potential target genes that may be
affected have not been identified. These results suggest that
the hypo-phosphorylated Maf proteins could be more active
on some promoters. Moreover, since hypo-phosphorylated
Maf proteins are more abundant due to their stabilization, it
is possible that this increase compensates for a weaker
transactivation activity in some instances (see above). These
observations may provide an explanation for the apparently
restricted gain-of-function phenotypes that occur in patients
with missense mutations that replace the conserved amino
acids within this phosphorylation domain in widely expressed
MAF genes. These findings support the idea that, besides pro-
moting degradation, GSK3-mediated Maf phosphorylation
impacts protein activity through other mechanisms, as previ-
ously demonstrated for MafA, and suggest a complex patho-
genetic mechanism involving protein stability and functional
dysregulation. Taken together, the overabundance ofMaf pro-
teins may lead to a greater biological effect despite the reduced
specific activity of the variant protein. Thus, cell-specific
gain-of-function may be dependent upon the accumulation
of variant proteins as well as interactions with other proteins
and MAREs that can affect transactivation of target genes.

Further evidence thatMAFBmutations in MCTOmay rep-
resent a gain-of-function comes from studies of inactivating
missense mutations or deletions in Maf family genes that re-
duce protein expression or DNA binding properties. MAF
mutations cause congenital cataracts, microcornea, and iris
coloboma [61–64]. In addition, similar mutations in MAFB
that truncate MafB protein and prevent binding to MAREs
lead to Duane Retraction Syndrome (DRS), a congenital ocu-
lomotor disease that is characterized by impaired horizontal
eye movement and FSGS [65–67]. Loss of Mafb function in
humans with DRS due to haploinsufficiency and dominant-
negativeMAFBmutations does not cause osteolysis. This em-
phasizes the conundrum that although MafB has been shown
to negatively regulate receptor activator of nuclear factor
kappa-β ligand (RANKL)-mediated osteoclast differentiation
[45], putative gain-of-function mutations in MCTO are asso-
ciated with increased osteoclastic bone resorption.

Inflammation

Patients with MCTO are frequently diagnosed with juvenile
idiopathic arthritis (JIA) due to the overlapping clinical fea-
tures ofMCTO and JIA and the greater prevalence of JIA than

MCTO. This results in an estimated delay in diagnosis of
MCTO of 3.82 years (range 0–35 years) [2•]. Early recogni-
tion of the localized destruction of the carpal and tarsal bones
and the frequent coexistence of nephropathy and subtle cra-
niofacial differences should prompt genetic testing and earlier
diagnosis of MCTO.

Elevated levels of biomarkers of systemic inflammation are
not typical features of MCTO. Nevertheless, magnetic reso-
nance imaging and musculoskeletal ultrasound have docu-
mented localized joint inflammation [16, 23]. Moreover, pa-
tients with MCTO report symptomatic relief of joint pain with
anti-inflammatory therapy, further supporting the notion that
joint inflammation is present. More evidence is needed to
support the potential benefit of anti-inflammatory treatments
because of their side effects and toxicities, particularly to renal
health in a cohort of patients already at-risk for terminal renal
insufficiency. However, it is plausible that there could be an
adjunctive role for anti-inflammatory therapies with careful
supervision in a subset of patients with inflammatory joints
[16, 68]. In a 21-month-old child with MCTO, methotrexate
and IL-6 receptor antagonist combination therapy helped re-
lieve pain and improve range of motion and joint function
such that she began to weight bear and walk independently
[23]. It is uncertain how common joint inflammation is in
MCTO, but the consistent observation that patients present
with arthritic symptoms is intriguing and may offer insights
into the underlying pathophysiology.

Patients with MCTO typically receive anti-inflammatory
therapies (e.g., IL-6 or TNF inhibitors) when they are initially
diagnosed with JIA. It is common for them to discontinue
these anti-rheumatic treatments after a diagnosis of MCTO
is made due to a perceived lack of clinical effectiveness of
treatment on the progressive nature of their bone and joint
disease. The significance of inflammation in the pathogenesis
of MCTO is unclear, but there is an urgency to understand its
role since inflammation of any cause may aggravate bone
destruction in affected joints.

Many aspects of the inflammation hypothesis remain un-
known. It is uncertain whether the inflammation occurs before,
during, or after the onset of osteolysis and joint destruction.
Prospective studies are needed to better characterize the joint
disease over time to learn if joint inflammation occurs at initial
presentation only and is self-limited, or could it be chronic and
recurrent. The larger joints such as the elbows and knees are
less frequently involved, compared to the wrists and ankles. A
better understanding of the natural history of the arthritic pre-
sentation of MCTO will inform future studies that examine the
safety and efficacy of potential treatments for MCTO.

Dysfunctional Endochondral Ossification

MCTO is characterized by aggressive osteolysis of the carpal
and tarsal bones, and MafB has been shown to play a role in
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RANKL-mediated osteoclast differentiation [45]. MafB is spe-
cifically expressed in the monocytes and macrophages of the
myeloid lineage that includes osteoclasts. MafB induces the dif-
ferentiation of multipotent progenitor cells into monocytes and
macrophages, but paradoxicallyMafB inhibits the differentiation
of these cells into osteoclasts. The proposed mechanism for
MafB-dependent inhibition of osteoclast differentiation is via
inhibition of RANKL-mediated osteoclastogenesis at the tran-
scriptional level by binding to the related transcription factors c-
Fos, Mitf, and NFATc1 [45]. However, these observations ob-
tained in vitro using cell models may not be relevant to condi-
tions in vivowhere additional paracrine, autocrine, and endocrine
factors may modify the effect of the MAFB mutation.

Based on the presence of progressive and debilitating
osteolysis, anti-resorptive agents such as bisphosphonates
and denosumab have been administered in an attempt to pre-
vent or reduce osteoclastic activity [2•, 11, 16, 17, 20, 23].
Unfortunately, these agents have not proven to be effective
and bone destruction usually continues with further loss of
carpal and tarsal bones. On the other hand, anti-resorptive
therapy does seem to improve generalized osteopenia and in-
crease bone mass at other skeletal sites [17]. It is uncertain
whether higher doses or more frequent administration of anti-
resorptive agents than are typically used for other bone disor-
ders may be necessary to inhibit the intense, localized osteo-
clastic bone destruction in patients with MCTO. The limited
benefit of denosumab (RANKL inhibitor) in MCTO may in-
dicate that there is a cell-autonomous defect in the osteoclast
or that post-RANK pathways are involved in driving the os-
teoclast. On the other hand, bisphosphonate treatment that
inhibits bone resorption by impairing osteoclasts has also
shown limited benefit in preventing site-specific osteolysis
in MCTO. The limited efficacy of bisphosphonates suggests
that other bone cells involved in endochondral bone formation
may be affected by MAFB mutations (see below).

The site-specific distribution ofMCTOmay provide addition-
al insight into the molecular pathways contributing to carpal and
tarsal bone growth and development. MCTO and two other
osteolysis disorders share a similar site-specific skeletal pheno-
type. Multicentric osteolysis, nodulosis, and arthropathy
(MONA; also called Torg syndrome; OMIM #259600) is char-
acterized by osteolysis in the hands and feet, subcutaneous nod-
ules on the palms and soles, osteopenia, and arthropathy.
Additional features may include coarse facial features, cardiac
defects, and corneal opacities [69]. Winchester syndrome
(OMIM #277950) presents similarly to MONA, except without
subcutaneous nodules. MONA and Winchester syndrome are
caused by recessive mutations in matrix metalloproteinases
(MMP), MMP2 and MMP14, respectively [70–72]. MMPs are
endopeptidases that hydrolyze the extracellular matrix and are
involved in collagen remodeling.MMP-2 is a gelatinase and type
IV collagenase, and MMP-14 is an upstream activator of MMP-
2. This interaction between MMP-14 and MMP-2 explains how

mutations in these genes lead to decreased MMP-2 activity and
the shared clinical features ofMONA andWinchester syndrome.

MafB has been shown to be expressed in the proliferative
and hypertrophic chondrocytes of the growth plate in neonatal
rats and to regulate cartilage formation [73]. MMP-2 is
expressed in adult human articular chondrocytes and is sug-
gested to play a role in early skeletal development [74, 75]. To
that end, MafB, MMP-2, and MMP-14 were hypothesized to
play important roles in carpal, tarsal, and epiphyseal bone
development, and that altered bone formation (rather than
osteolysis) contributes to the anatomic distribution of osseous
abnormalities in carpotarsal osteolysis syndromes. Lazarus
and colleagues [76] demonstrated that in normal mice, the
carpal bones as well as the distal ulna and radius and second
to fifth proximal metacarpals undergo a distinct variation of
(subarticular) endochondral ossification compared with clas-
sic growth plate ossification. Also,MafB,MMP-2, andMMP-
14 were highly expressed in areas of new bone formation,
supporting the hypothesis that dysfunctional bone develop-
ment and modeling may be the driving pathophysiology in
the affected bones of carpotarsal osteolysis syndromes.

Children with MCTO are observed to have narrow joint
compartments starting at a very young age [23]. This suggests
dysfunctional cartilaginous template and defective prepared-
ness of the joint space for carpal and tarsal bone formation
during the early stages of endochondral bone formation. In a
preliminary report, MAFB mutations causing MCTO were
shown to disrupt osteoblast and chondrocyte development in
a MCTO patient-derived induced pluripotent stem cell line
(with patient mutation Pro59Leu) [77]. When comparing
patient-derived osteoblasts to control cells, osteoblast markers,
OPN,OCN,OSX, and RUNX2were decreased, while COL1A1
was expressed similarly and ALPL was increased in theMAFB
mutant cells vs. control cells. When comparing patient-derived
chondrocytes to control cells, SOX9 expression was similar, but
COL2 and aggrecan expression were reduced in the patient-
derived cells compared to the controls. These preliminary find-
ings add further support that bone formationmay be affected by
MAFB mutations causing MCTO.

A mouse model developed from the homologous human
MAFB mutation Pro59Leu exhibits renal failure resembling the
FSGS nephropathy seen in human patients with MCTO [1••].
MafbMCTO/MCTO mice demonstrate higher urine albumin to cre-
atinine ratios than wild-type from four weeks of age. However,
the body weights of these MafbMCTO/MCTO mice are already re-
duced from postnatal day zero, and the growth deficiency persists
as the mice age [1••]. The reduced body weights at birth may be
from an early developmental bone defect in MCTO. The skeletal
phenotype of the MCTO mouse model requires further analysis.

A zebrafish model with a mafbb mutant line has been de-
veloped and analyzed for the bone phenotype [78]. Zebrafish
have two paralogs of humanMAFB,mafba andmafbb.Mafbb
is preferentially expressed in myeloid cells, which are
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precursors of osteoclasts, so this gene was targeted [78]. The
11 bp coding region deletion results in a frameshift mutation,
giving a haploinsufficiency phenotype. The zebrafish demon-
strated enhanced osteoclast cell differentiation and morpho-
logical defects such as abnormal tail bending during embryo-
genesis, and protruding lower jaw, asymmetric caudal fin, and
curved spine in adult zebrafish. While giving insight into the
function of mafbb in zebrafish, this model does not fully re-
capitulate MCTO. However, the early timing of abnormal tail
bending during embryogenesis may suggest an early develop-
mental deficit in cartilage and bone formation.

Taken together, if it is correct that MCTO is a disorder of
bone formation rather than bone resorption, or, more likely, a
combination of both defective bone formation and excessive
osteolysis, it may make sense why anti-resorptive therapies
have shown minimal benefit.

Conclusion

MCTO is a rare skeletal dysplasia that presents during early
childhood with joint pain and swelling, site-specific osteolysis
of the carpal and tarsal bones, and nephropathy that progresses
to terminal renal insufficiency. There may also be subtle cra-
niofacial changes and the involvement of larger joints such as
the knees and elbows. Due to the rareness of this condition, a
diagnosis of MCTO is delayed on average by 3–4 years, with
some adults not receiving a diagnosis of MCTO until after
their child undergoes genetic testing. It is critically important
to raise awareness ofMCTO across various pediatric and adult
disciplines to decrease the time to diagnosis. An earlier diag-
nosis of MCTO may enable screening for nephropathy and
preventative measures to avoid nephrotoxic medications and
preserve renal function for as long as possible. Also, the bone
and joint destruction that progressively worsens over time can
result in substantial debilitation and crippling of joints that are
used for activities of daily living. Early recognition of MCTO
as a chronic condition may prompt sooner referrals to physical
and occupational therapy to assist patients as they adapt to
changes in their mobility and joint function.

The pathophysiological underpinnings of MCTO are not well
understood. Patients with MCTO are frequently diagnosed with
JIA initiallywhen they present with arthritic symptoms (e.g., pain,
swelling, stiffness). There are documented reports of joint inflam-
mation in imaging studies and pain relief with anti-rheumatic
therapies. Also, osteolysis has traditionally been viewed as the
primary mechanism underlying bone destruction in MCTO.
However, anti-resorptive agents have offered minimal benefit to
prevent the eventual disappearance of the carpal and tarsal bones.
Mouse studies and preliminary human cell studies suggest other
bone cells are also impacted byMAFBmutations. Taken together,
these observations suggest that a reappraisal is warranted of our
current understanding and treatment approach to MCTO.

In the presence of MafB protein overabundance, targeted
molecular strategies to decrease its expression or facilitate
protein clearance may help modulate the clinical phenotype.
Patients commonly discontinue anti-rheumatic treatments af-
ter receiving a diagnosis of MCTO. However, this class of
drugs may play an adjunctive role in the treatment of joint
pain and inflammation in some patients with MCTO. More
research is desperately needed to better understand the natural
history of disease progression across the lifespan. More de-
tailed clinical phenotyping and examination of the mechanis-
tic pathways and biological underpinnings are crucial to in-
form better-targeted therapies and to guide the development of
prudent and cost-effective screening andmonitoring practices.
Meanwhile, a multidisciplinary approach to care would in-
clude coordinated evaluations by primary care, genetics, en-
docrinology, rheumatology, or other provider experienced
with pediatric bone disorders, nephrology, orthopedics, phys-
ical and occupational therapy, and social work teams.
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