
Mass General Brigham CENTER FOR COVID INNOVATION

Ask N95DECON & MGB Webinar **International Outreach Expanding PPE for the** Frontline

N95 Respirator Decontamination & Reuse

Dr. Allison Squires,

PhD

Dr. Martin Purschke,

PhD

Dr. Samantha M. Grist, PhD

Dr. Orhun K. Muratoglu,

PhD

Dr. Hana El-Samad,

PhD

Dr. Thomas Baer,

PhD

Dr. John Doyle, PhD

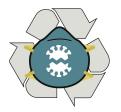
Dr. Felicity Billings,

M.D.

Dr. Andrew Barnard, PhD

Dr. Jill R. Crittenden,

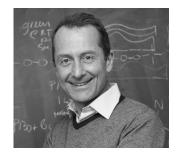
PhD



Cole Meisenhelder, PhD Student

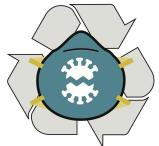
Tyler Chen,

PhD Student


N95DECON

Organizers: N95DECON MGB Re-Use COVID Innovation Group

Dr. Hana El-Samad, PhD University of California, San Francisco


Dr. Orhun K. Muratoglu, PhD Massachusetts General Hospital

2

Best practice is to use new N95 FFRs. Decontamination does not solve the PPE shortage crisis, and is an emergency practice during the COVID-19 pandemic.

N95DECON Consortium

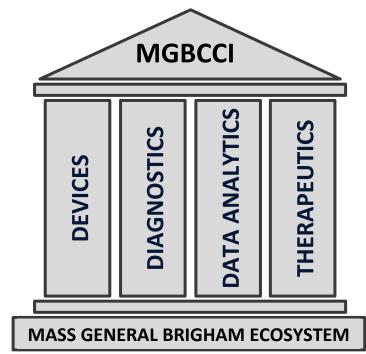
- 105 scientists from 10 different institutions;
 - Unbiased, interdisciplinary, & no financial conflicts
 - PhDs, MDs, RNs, IHs, students
 - ~ 5 weeks ago

- Evaluate existing literature on N95 decontamination methods
- Publish Technical Reports and Fact Sheets
- Coordinate and execute research

<u>Method agnostic</u> - We understand there is no single best solution

<u>Independent</u> - Entirely volunteer-based, not backed by any financial interest

<u>Science-based</u> - All information in our publications is subjected to rigorous review and debate



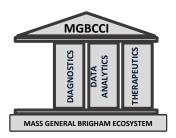
MGB COVID Innovation Center

The mission of the MGB Center for COVID Innovation is to organize and consolidate the **rapid investigation and clinical deployment of devices**, **diagnostics**, **data analytics**, and **therapeutics** developed by researchers and clinicians in the Mass General Brigham (MGB) ecosystem, aimed at combating the COVID-19 crisis.

Gary Tearney (MGH) & David Walt (BWH)

4

MGB COVID Innovation Center - Reuse


 \succ

- ✤ N95
 - Swabs
 - Face Shields
 - > Reuse
 - Ventilators
 - Full Body Protection
 - Surgical Masks
 - Validation

- Response to N95 Shortage
 - 160+ Participants
 - Researchers, engineers, clinicians and innovators
- 6 weeks of innovation and counting

Learn more: https://covidinnovation.partners.org/devices-reuse/

EVICE

What you will learn today - Evidence and Implementation

BACKGROUND

- What is an N95?
- Do's and Don'ts
- Principles for N95
 Decontamination

<u>METHODS</u>

- UV-C
- Heat
- Hydrogen Peroxide Vapor

CONSIDERATIONS

- Filtration Efficiency
- Fit Test
- Bioburden Reduction

Disclaimers: Data and experience pertains to NIOSH-certified N95 respirators only (NIOSH: The U.S. National Institute for Occupational Safety and Health). There may be variation between different mask manufacturers and models

What is an N95 Respirator?

Dr. Allison Squires, Ph.D. Neubauer Family Assistant Professor of Molecular Engineering The University of Chicago

Types of Masks and Respirators (U.S.)

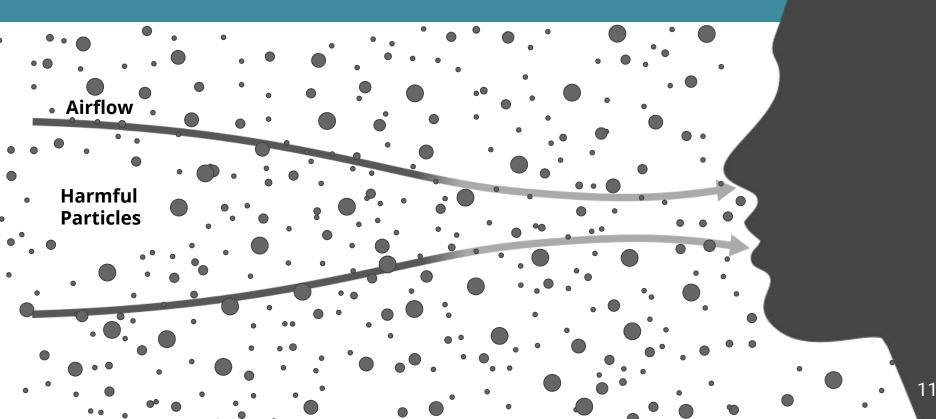
International standards similar to N95

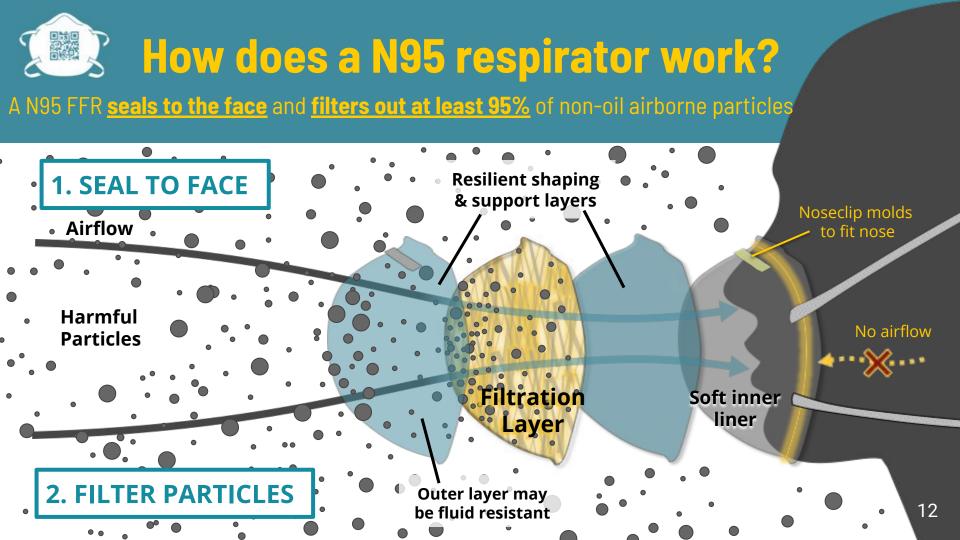
3 Science. Applied to Life. [™]						
	Technical Bulletin					
January, 2020 Revision 2						
USA:	N95					
Europe:	FFP2					
China:	KN95					
Australia:	P2					
Korea:	Korea 1st Class					
Japan:	DS					

Certification/ Class (Standard)	N95 (NIOSH-42C FR84)	FFP2 (EN 149-2001)	KN95 (GB2626-20 06)	P2 (AS/NZ 1716:2012)	Korea 1 st Class (KMOEL - 2017-64)	DS (Japan JMHLW- Notification 214, 2018)
Filter performance – (must be ≥ X% efficient)	≥ 95%	≥ 94%	≥ 95%	≥ 94%	≥ 94%	≥ 95%
Test agent	NaCl	NaCl and paraffin oil	NaCl	NaCl	NaCl and paraffin oil	NaCl
Flow rate	85 L/min	95 L/min	85 L/min	95 L/min	95 L/min	85 L/min
Total inward leakage (TIL)* – tested on human subjects each performing exercises	N/A	≤ 8% leakage (arithmetic mean)	≤ 8% leakage (arithmetic mean)	≤ 8% leakage (individual and arithmetic mean)	≤ 8% leakage (arithmetic mean)	Inward Leakage measured and included in User Instructions
Inhalation resistance – max pressure drop	≤ 343 Pa	≤ 70 Pa (at 30 L/min) ≤ 240 Pa (at 95 L/min) ≤ 500 Pa (clogging)	≤ 350 Pa	≤ 70 Pa (at 30 L/min) ≤ 240 Pa (at 95 L/min)	≤ 70 Pa (at 30 L/min) ≤ 240 Pa (at 95 L/min)	≤ 70 Pa (w/valve) ≤ 50 Pa (no valve)
Flow rate	85 L/min	Varied – see above	85 L/min	Varied – see above	Varied – see above	40 L/min
Exhalation resistance - max pressure drop	≤ 245 Pa	≤ 300 Pa	≤ 250 Pa	≤ 120 Pa	≤ 300 Pa	≤ 70 Pa (w/valve) ≤ 50 Pa (no valve)

https://multimedia.3m.com/mws/media/1791500O/comparison-ffp2-kn95-n95-filtering-facepiece-respirator-classes-tb.pdf

'N95 Respirator': What's in a name?

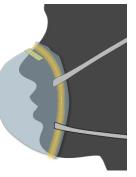

• First letter:


• **'N' = Non-oil resistant** ('R' = Oil-Resistant, 'P' = Oil-Proof)

- Percent efficiency:
 - **'95' means 95% of particles filtered** (tested at 0.3 μm diameter)
 - '100' means > 99.7% filtered; '99' is 99% filtered
- Type:
 - **Respirator implies all inhaled air is filtered**
 - 'Mask': implies a barrier which may not be sealed
 - 'Surgical': Provides a hydrophobic splash barrier
 - 'PAPR': Personal air purifying respirator

Bow does a N95 respirator work?

A N95 FFR seals to the face and filters out at least 95% of non-oil airborne particles



More about... Filtration

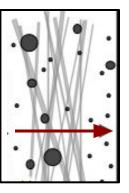
Fit

A tight seal to the face forces air through the filtration layer.

Users **must check seal** qualitatively for each use (seal check) and thoroughly once per year (fit test)

KEY FUNCTIONAL FEATURES

Image of filter layer



Typically non-woven, meltblown polypropylene Electrets trap droplets by **electrostatic charge** Pores larger than virus (breathable) still effective

CAUTION! Processes that damage filtration or fit are unsafe.

Filtration efficiency can be reduced by physical damage to the filter or a change in filter charge

If fibers lose charge, **particles can pass through** to the user.

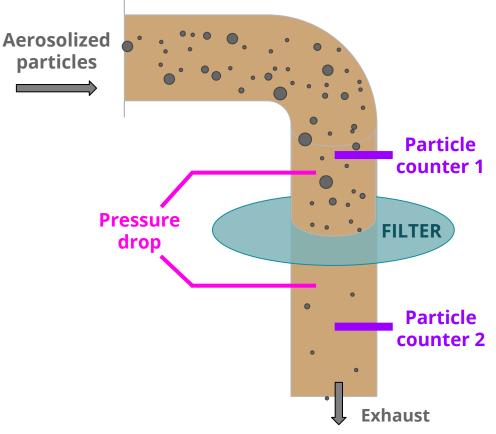
An inadequate seal allows harmful particles to leak around the edge.

A poor seal could be caused by:

- Poor Fit
- Facial Hair
- Structural degradation

Healthcare vs. Non-Healthcare Features

Vented masks provide protection for the wearer, but **no protection for others**


N95 respirator **for healthcare use** N95 respirator with vent for industrial use (**not for healthcare use**)

How to validate N95s in the lab

Counterfeit N95s can be identified by **quantitative testing** of filtration

Standard **NIOSH TSI 8130A** measures **filtration efficiency** (%)¹ and **pressure drop** (mm H2O)²

^{1. &}lt;u>https://www.tandfonline.com/doi/full/10.1080/15459624.2016.1225157?src=recsys&</u>

<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499853/</u>

Do's and Don'ts of N95 Wear

Dr. Felicity Billings, M.D. Anesthesiologist, Brigham and Women's Hospital Instructor in Anesthesia, Harvard Medical School

16

Fit Testing: Finding Appropriate N95 for Each User

- Determines which N95 model fits a user's face
- After fit test, wearer is approved for specific model of N95
- Occupational regulations (US OSHA) normally require this annually
- Emergency guidance March 2020
 - Only initial fit testing required
 - Annual fit testing suspended

Fit testing procedure:

- Hood placed over head, then aerosolized substance sprayed into hood
 - User tastes sweet (saccharin) or bitter (bitrex)
- Education in proper N95 donning (how to put on and adjust N95)
- User puts N95 on, then aerosolized spray applied again inside hood. Fit test passed if user does NOT taste the aerosolized spray.
- Normal as well as deep breathing (by reading text out loud)
- Position changes: turning head, bending

Proper Donning & Doffing of N95

Donning (putting PPE on):

- Label mask: permanent marker (e.g. Sharpie)
- \circ $\,$ Cup N95 in hand and place onto chin and nose
- Place upper strap
- Place lower strap
- Adjust straps and nosepiece
- Perform <u>user seal check</u> with clean gloves

• Don other PPE, following hospital guidelines

Doffing (taking PPE off):

- Risk of self-contamination
- Follow hospital guidelines specific to PPE worn
- PPE varies by role, hospital, country

- N95 is removed last, outside of patient room
- Use clean gloves
- Do not touch front of N95
- Front of all PPE considered contaminated
- Only touch the straps behind your head
- Perform hand hygiene after doffing

N95 Extended Use and Reuse Due to PPE Shortage

- CDC recommends extended use/reuse due to COVID-related PPE shortage
 - PPE conservation strategy also includes limiting N95 use to necessary personnel, and using alternative respirators when possible (e.g. PAPR)
- Extended use: wearing same N95 respirator for extended period of time
 - \circ Same staff member wearing N95 without doffing
 - Patients with same pathogen or in same ward/hospital area
- Reuse: using same N95 respirator for multiple patient encounters, donning and doffing N95 between encounters
 - Requires storage of N95 between patient encounters
 - Proper storage and donning/doffing technique important due to risk of self-contamination

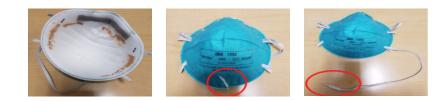
N95 Storage for Reuse: Do's and Don'ts

Do:

- Encourage staff to save and reuse N95s instead of throwing them in the trash
- Provide containers that staff can label and keep with them
 - Take-out containers
 - Plastic food storage container with holes
 - \circ Aerated
 - \circ These become contaminated

Don't:

- Save and store heavily contaminated N95 (e.g. aerosol-generating procedures)
 - These should be immediately decontaminated
- Share N95 between users without decontamination
- Allow straps to touch front of used N95
- Use sealed plastic containers without air flow


Which N95s Can be Decontaminated?

Do Decontaminate:

- After aerosol-generating procedures in COVID+ patients
- Based on their PPE shortage, each hospital must give guidance to staff on how long to reuse before decontamination
 - Stock levels
 - Decontamination turnaround time
 - Number of decontamination cycles planned

Don't Decontaminate:

- Visibly soiled
 - o Makeup
 - Oils such as vaseline
 - $\circ \quad \text{Blood or bodily fluids} \\$
- Straps torn or inelastic
- Visible structural issues (e.g. tears)

Setting Up an Infrastructure for Decontamination

Communication

- Early communication
- Frequent communication as process changes
- Use pictures

• Staff empowerment - ask for their help!

Organization

- Start collecting early
- Set up a collection and delivery process
 - Use existing infrastructure
 - Re-task personnel from idle departments
 - Ensure proper PPE
- Use a simple mask labelling system
 - If returning to user: name & unit location
 - Mark decontamination cycle number on N95
- Do not combine methods
 - \circ e.g. UVC and H₂O₂
 - No scientific evidence of effects of combining methods on N95 integrity

N95 Decontamination Principles: Filtration, Fit, Bioburden, Residue

Tyler Chen, PhD Student Bioengineering Knight-Hennessy Scholar Stanford University

Filtration, Fit, Bioburden, Residue

An effective decontamination method must...

- Preserve N95 filtration (>95% of particles)
- Preserve N95 fit (tight seal to face)
- Reduce bioburden (kill viruses and other pathogens)
- □ Not introduce additional hazards (e.g. hazardous residue)

N95 Performance: Filtration and Fit

The number of decontamination cycles before an N95 is damaged depends on the N95 model and the decontamination method. See www.n95decon.org/publications.

Even without decontamination, some N95 models lose proper fit (seal to face) after putting on mask 5 times, others lose fit after >15 times.¹ User seal check is crucial before each reuse!

¹(Bergman et al. 2012) http://dx.doi.org/10.1016/j.ajic.2011.05.003

Bioburden Reduction - Hierarchy

Resistant Level Prions (Creutzfeldt-Jakob Disease) Prion reprocessing Sterilization: Sterilization Bacterial spores (Bacillus atrophaeus) > 6-log kill of spores Disinfection (99.9999%)Coccidia (Cryptosporidium) High Mycobacteria (M. tuberculosis, M. terrae) Nonlipid or small viruses (polio, coxsackie) **Minimum Viral** Intermediate Fungi (Aspergillus, Candida) Inactivation: > 3-log kill of SARS-CoV-2 Low Vegetative bacteria (S. aureus, P. aeruginosa) (99.9%)Lipid or medium-sized viruses (HIV, herpes, hepatitis B)

Susceptible

FDA: "Enforcement Policy for Face Masks and Respirators During the Coronavirus Disease (COVID-19) Public Health Emergency (Revised)"

26

Bioburden Inactivation -Evaluation of Decontamination Methods

Ideally: Validate sterilization with appropriate bacterial spore indicators

- SARS-CoV-2 virus (BSL3 facility high biosafety level)
- Surrogate virus (e.g. Phi6, MS2 phage) (BSL1-2 facility lower biosafety level)
- Consider other pathogens found in hospital environment (e.g. MRSA, *C botulinum and C difficile spores*) and test decontamination efficacy against these

Methods NOT to Use

Damages N95 filtration

n95decon.org/caution

Soap

Alcohol

Bleach Immersion

Gamma Radiation

Does not inactivate virus

Overnight StorageInsufficient TimeUV-A/B (e.g. Nail Salon)Insufficient UV-CSunlightInsufficient UV-C

Dangerous to health

Bringing potentially biohazardous masks home is highly dangerous and has significant contamination risk. Decontamination should occur only in secured environments. Bleach residue may also be hazardous.

N95 Decontamination Principles

- N95 filtration efficiency
- N95 fit
 - \circ Highly method-dependent
- Bioburden inactivation/reduction
 - $\circ~$ At least 3-log reduction of SARS-CoV-2 ~
 - Preferably use sterilization methods with 6-log reduction of bacterial spores
- Minimize hazardous residues
 - $\circ~$ Inhalation/contact hazard

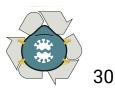
Decontamination methods to be discussed today:

- Vaporized hydrogen peroxide
- UV-C germicidal irradiation
- Humid heat

Q&A on N95 Decontamination Basics Our Panelists

Dr. Hana El-Samad, PhD

Dr. Allison Squires, Ph.D


Dr. Felicity Billings, M.D.

Dr. Orhun K. Muratoglu, PhD

Tyler Chen, PhD Student

Hydrogen Peroxide Vapor: Evidence

Dr. Jill R. Crittenden, PhD Research Scientist, Massachusetts Institute of Technology

31

H_2O_2 Decontamination Methods

Method	Name	Description	Example Providers
H ₂ O ₂ Vapor/Vapor Phase H ₂ O ₂	HPV/VPHP	Wet H ₂ O ₂ vapor, >500 ppm	Bioquell (Claris)** Battelle CCDS™** Sterilucent*
Vaporized H ₂ O ₂	VHP™	Dry H ₂ O ₂ vapor application to N95, >750 ppm	Steris (V-PRO* and ARD)
Aerosolized H ₂ 0 ₂	aHP	H ₂ O ₂ (+ additive) microdroplets application to N95, 80-150 ppm	Curis®
Vaporized H ₂ O ₂ followed by ozone	VHP	H ₂ O ₂ vapor application to N95, subsequently reacted with ozone	Stryker (STERIZONE®; VP4*)
lonized H ₂ O ₂	iHP®	H ₂ O ₂ (+ additive) ionized by plasma prior to application to N95	Tomi™ (SteraMist®)
H ₂ O ₂ Gas Plasma	HPGP	H ₂ O ₂ vapor application to N95, subsequently converted to plasma by electric field	ASP (STERRAD™; for 100NX only use Express Cycle!!)*
Liquid H ₂ O ₂		N95 are submerged in 6% H ₂ O ₂ liquid for 30 min, time required for sufficient aeration is not known	

Approved by FDA Emergency Use Authorization for *single-user reuse or **general reuse

Advantages of H_2O_2 Methods

- H₂O₂ is a strong sterilant, reacting with many biological substances to produce reactive oxygen species that destroy membrane lipids, proteins, and DNA/RNA
- Reactive with biological substances in the absence of heat (good for decontaminating plastics and other heat-sensitive materials)
- Can penetrate dark spaces (unlike light)
- Final breakdown products are non-harmful (H_20 and O_2)

Disadvantages of H₂O₂ Methods

- H₂O₂ is a respiratory hazard requiring controlled air-flow for application and sufficient aeration of mask
- Requires equipment that is usually expensive, and trained personnel
- Equipment-specific protocols must be applied

Effective Pathogen and Viral Inactivation

See n95decon.org for references

N95 model	Dose	Time (min)	Biological specimen	Effectiveness (log reduction)
3M 1860	HPV (Bioquell) 2 g/min then 0.5 g/min	vapor 20; dwell 150	G stearothermophilus spores	≥6
3M 1860, 1870, 1804 and AO 1054	VHP TM (Steris) 5 g/min then 2.2 g/min	vapor 3; dwell 30	SARS-CoV-2	≥6
3M 1860, 1870+, 8511, 9211, HW N11125	Curis	aerosol 12; dwell 50	Herpes Simplex Virus 1 Coxsackievirus B3 Phage phi6	≥6
Biological indicators placed under 3M 1860 and Halyard 46767	SteraMist (TOMI)	ionized vapor 15; dwell 20	G stearothermophilus spores	≥6

Pass Fit and Filtration (with appropriate protocol)

See n95decon.org for references

N95 model	Dose	Time (min)	Cycles	Filtration	Fit
6 models	HPGP (STERRAD 100S, 100NX)	55	1	>99.2%	Pass
6 models	HPGP (STERRAD 100S, 100NX) Standard cycle	55	3-5	<95%	Fail
6 models	HPV (Bioquell)	gas 15; dwell 120	3	>97%	
3M 1860	HPV (Bioquell)	gas 20; dwell 150	10 - 50	>99%	
3M 1860	HPV (Bioquell)	gas 25; dwell 20	1(10)	Not tested	Pass
3M 1860S	VHP™(Steris) 410 ppm	3 h	1	>98.8%	
3M 1860, Halyard Fluidshield	Halosil	gas 15; dwell 120	1-5	>99.3 (3M), >95.5 (HF)	
Gerson 2130, 3M 8210	SteraMist (TOMI™)	ionized vapor 15; dwell 20	2	>97%	Pass
3M 1860, Halyard 46767	SteraMist (TOMI™)	ionized vapor 15; dwell 20	5	>97%	

Method Summary: H₂O₂

Implementation Criteria

Safety-trained personnel

Machine-specific protocols (check FDA site)

For whole room set-up, check hospital protocols (see

N95Decon.org) and checklist:

https://www.nist.gov/services-resources/soft ware/tool-evaluation-vaporized-hydrogen-per oxide-disinfection-n95-masks-small)

Bioburden Reduction

Biological or chemical indicator should be included for each cycle

N95 Performance

Model of N95 - H_2O_2 is not compatible with cellulose

Check cycle # allowed for specific method

Other Concerns

Use machine-specific methods approved for N95 decontamination

Check time required for aeration

Check whether method is compatible with Tyvek pouch

See <u>n95decon.org/hpv</u> for more information

Hydrogen Peroxide Vapor: Implementation

Dr. Orhun Muratoglu, PhD Professor, Harvard Medical School Alan Gary Scholar, Director Harris Ortho Lab, Massachusetts General Hospital, MGB Covid Innovation Center

Hydrogen Peroxide Vapor (VHP) Implementation

- Duke
 - Bioquell Clarus
- U Iowa
 - SteraMist
- Brigham
 - SteraMist
- MGH
 - \circ Steris ARD1000

VHP - Steris ARD1000 Generator

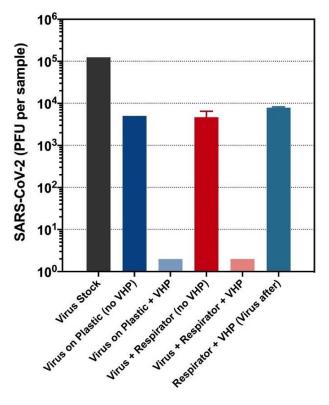
- Ramp up to 400-500 ppm in 15 min
- Hold at 400-500 ppm for 3 hours
- Degas until <1 ppm

VHP - Steris ARD1000 Generator

- Chemical indicators
 - \circ All passed
- Biological indicators
 - All passed after 7 day incubation

VHP - Filtration Efficiency

	Number of Cycles Tested	FE Efficiency
3M Tested Steris VPro	10	Pass
Battelle	20	Pass
MGB Steris AR1000	1	Pass


VHP - Fit Test and Residuals

• All Steris decontaminated masks have passed the fit test

• No significant residual H_2O_2 was found on masks post decontamination

SARS CoV-2 Bioburden Reduction

- Spiked masks with virus
- Decontaminated with Steris
 VHP AR1000 at 410± 83 ppm for
 3hrs and off-gas for 4.5hrs.
- Virus plaque assay
- 4 log viral reduction (no residual virus detected)

VHP Implementation: Conclusions

- 400-500 ppm VHP for 3 hours
- Mask performance not compromised
 - Filtration efficiency unchanged
 - \circ Fit-test no change
- Bacterial spore reduction
 - o 6-log
- SARS-CoV-2 reduction
 - o 4-log

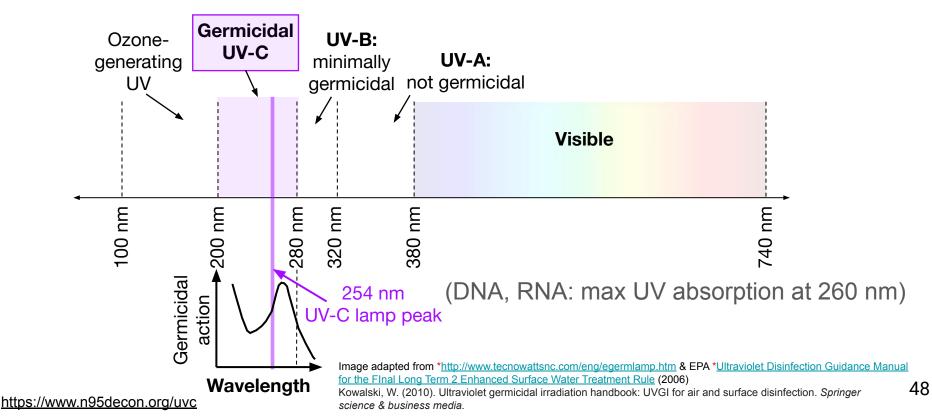
Battelle H₂O₂ Vapor

- 80K masks a day
- Cleared by FDA under an EUA

Label with fine-point Sharpie

UV-C: Evidence

Dr. Samantha M. Grist, PhD Postdoctoral Fellow, Bioengineering, University of California, Berkeley


Representing the N95DECON UV-C Team: Alisha Geldert, Anjali Gopal, Alison Su, Dr. Halleh Balch, Ph.D., Prof. Amy E. Herr, Ph.D.

For more information, please see: <u>www.n95decon.org/uvc</u>

UV-C Decon Depends on Wavelength

UV-C irradiation inactivates pathogens by damaging their genomic material.

UV-C: Impact on Viral Inactivation

UV-C irradiation dose of \geq 1.0 J/cm² at 254 nm peak wavelength inactivates viruses similar to SARS-CoV-2 (\geq 3-log) on the majority of tested N95 facepieces.

- N95 FFR straps require a secondary decontamination method (<u>Mills et al., 2018</u>).
- UV-C transmission through N95 material is dependent on N95 model (Fisher and Shaffer, 2011).
 - \circ ~3-400x lower UV-C at inner filter than at surface \rightarrow 1.0 J/cm² UV-C may not be sufficient for all models.
- Not all pathogens may be inactivated with 1.0 J/cm² UV-C.

Study	Organism	Material	UV-C dose	Efficacy
Lore et al., 2012	H5N1	N95 FFR (3M 1860, 3M 1870)	1.8 J/cm ²	> 4-log reduction
Heimbuch & Harnish, 2019	Influenza (H1N1, H5N1, H7N9) & coronavirus (MERS-CoV, SARS-CoV)	N95 FFR (3M 1870)	1.0 J/cm ²	No detectable virus (≥ 3.95-log reduction) for all organisms
<u>Mills et al., 2018</u>	H1N1	N95 FFR (15 models)	1.0 J/cm ²	≥ 3-log reduction for 12/15 facepieces and 7/15 straps
* <u>Heimbuch &</u> <u>Harnish, 2019</u>	H1N1	N95 FFR (15 models)	1.0 J/cm ²	≥ 3-log reduction for 11/15 FFR and 4/15 straps

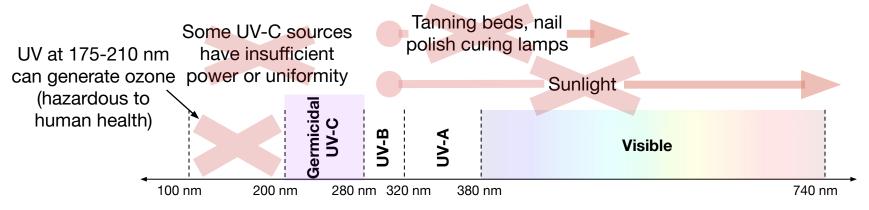
Woo, M. H., et al. (2012). *Appl. Environ. Microbiol.*, *78*(16), 5781-5787. Lore, M. B., et al. (2012). *Annals of occupational hygiene*, *56*(1), 92-101. *Heimbuch, B. K., & Harnish, D. (2019). Research to Mitigate a Shortage of Respiratory Protection Devices During Public Health Emergencies. Fisher, E. M., & Shaffer, R. E. (2011). Journal of applied microbiology,

110(1), 287-295.

Mills, D., et al. (2018). American journal of infection control, 46(7), e49-e55.

49 https://www.n95decon.org/uvc

UV-C: Impact on Filtration & Fit


- N95 keeps fit and filter performance after 10-20 cycles of 1.0-1.2 J/cm² UV-C (*Heimbuch & Harnish, 2019), and is damaged at much higher UV-C doses (≥ 120 J/cm²) (Lindsley, 2015).
- Fit degradation due to repeated donning/doffing alone likely the limiting factor for reuse; fit factor below OSHA standard of 100 after 5-15 don/doff cycles (Bergman, 2012).

Author	N95 model	UVGI dose (J/cm²)	Particle Penetration	Breathing Resistance (mmH ₂ O; max = 25)	Respirator Material Damage (out of 13 layers)	Strap Damage
* <u>Heimbuch</u> <u>& Harnish.</u> 2019	N95 FFRs (15 models)	1.0-1.2	0.18-3.29% (10 cycles) 0.12- 2.74% (20 cycles)	4.53-14.93	No obvious effect from UV-C. Fit degradation from donning/doffing.	No significant difference from UV-C alone. Fit degradation from donning/doffing.
Lindsley et	3M 1860	120-950	1-2.5%	10-13	General decrease of strength 120 J/cm ² dose = 2 layers significantly impacted	Statistically significant decrease in breaking strength for dosage ≥590 J/cm ² (≥10% decrease of mean strength)
<u>al., 2015</u>	3M 9210	120-950	1-2.5%	10-13		
	GE1730	120-950	3-5%	10		
KC46727	120-950	3-5%	15-20	950 J/cm ² = 10 layers significantly impacted		

*Heimbuch, B. K., & Harnish, D. (2019). Research to Mitigate a Shortage of Respiratory Protection Devices During Public Health Emergencies. Lindsley, W. G., et al. (2015). *Journal of occupational and environmental hygiene*, *12*(8), 509-517.

Bergman, M. S., et al. (2012). American journal of infection control, 40(4), 375-380.

UV-C: Inappropriate Sources & Precautions

<u>Crucial step</u>: For any UV source, validate ≥1.0 J/cm² UV-C dose reaches <u>all surfaces of all N95s</u> using a calibrated, UV-C-specific sensor.

- Not all pathogens inactivated at this dose (WILL NOT protect against all bacterial and fungal co-infection risks).
- There is evidence that higher humidity (>60% RH) yields less effective UV-C decontamination (Woo et al., 2012).
- Implementation requires robust industrial hygiene workflow returning each N95 to its original user.

https://www.cdc.gov/nceh/features/uv-radiation-safety/index.html

Lytle, C. D., & Sagripanti, J. L. (2005). *Journal of virology*, 79(22), 14244-14252. Sagripanti, J. L., & Lytle, C. D. (2007). *Photochemistry and photobiology*, 83(5), 1278-1282. Woo, et al. (2012). *Applied and Environmental Microbiology*, 78(16), 5781-5787. Carratalà, A., et al. (2013). International journal of food microbiology, 164(2-3), 128-134. O'Sullivan, N. A., & Tait, C. P. (2014). Australasian Journal of Dermatology, 55(2), 99-106. Kowalski, W. (2010). Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Springer science & business media. 51 https://www.n95decon.org/uvc

Method Summary: UV-C

Implementation Criteria:

≥1 J/cm² UV-C on all N95 surfaces Dose validation with UV-C specific sensor

Bioburden Reduction

If all surfaces exposed to ≥1J/cm², likely to sufficiently inactivate SARS-CoV-2

Bioburden reduction depends on N95 model

Straps require secondary decontamination

May NOT inactivate all other pathogens → return each N95 to original user

N95 Performance

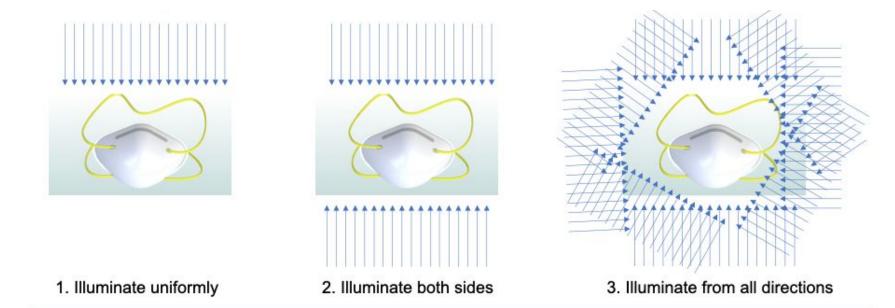
Filtration and fit preserved for 10-20 cycles at 1J/cm² on several N95 models

UV-C causes material degradation at higher doses of ~100 J/cm²

Other Concerns

UV-C can cause eye and skin damage Home UV is NOT effective Sunlight is NOT effective UV-C lamps can produce ozone

See **n95decon.org/uvc** for a more complete report of the evidence for and cautions of this method ⁵²


UV-C: Implementation

Dr. Thomas Baer, PhD Stanford University

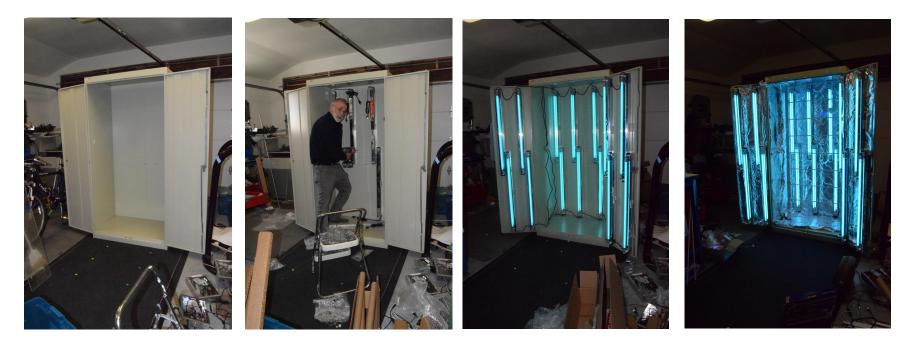
Design criteria for UV-C decontamination chambers

UV-C Precautions

- 1. Use only non-ozone producing lamps.
- 2. Do not expose bare skin or unprotected eyes directly to UV-C light.
- 3. Minimize breathing chamber air if ozone smell detected when loading/unloading.

UV-C light sources: UVGI vs. LED

Light Source	Pros	Cons
UVGI (Germicidal Lamps)	 Industry standard formats High power at 255 nm Long life High efficiency 	 Power cycling accelerates degradation Wide area emitter Limited emitter geometries Multiple visible and UV outputs Certain lamps create ozone
LED (Light Emitting Diodes)	 Flexible optical formats Emission wavelength 270 nm High brightness Power cycling 	 No industry standard formats Lower average power than lamps Variable lifetimes Power cycling impact not well known


High-throughput UV-C Chamber Design

CAD model and completed UV-C chamber construction

- 16 UV-C , 8 W, 90 cm long germicidal lamps
- Mounted to the back and doors of foil lined metal storage cabinet (72"H x 36" W x 24" D)
- Lamps are spaced 23 cm apart in two banks
- Uniform and isotropic emission was measured consistent with optical models
- 1 J/cm² fluence levels reached in under 180 seconds
- Capacity 30 to 50 masks per batch, 5 minutes/batch, 5,000 to 10,000 N95 masks per day

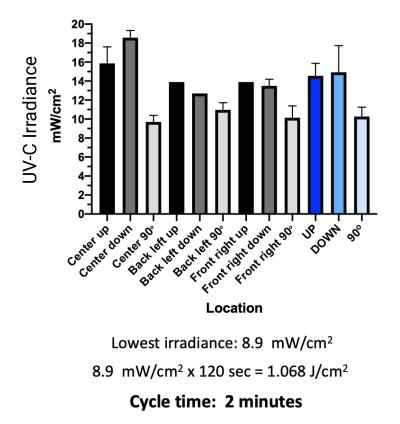
UV-C Decon Cabinet Construction

4/13/2020 4:10 PM

4/14/2020 9:38 AM

UV-C: Implementation

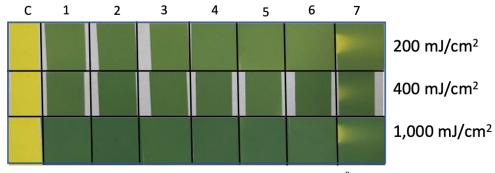
Dr. Martin Purschke, PhD Wellman Center for Photomedicine Massachusetts General Hospital


MGH UV-C N95 Decontamination Unit Design

- •Enclosed box: 36" (L) x 24" (W) x 20" (H)
- Inside covered with bonded AI foil to reflect UV-C
- •12 standard low-pressure Hg germicidal lamps (254 nm, 30 W). 6 in top and 6 in bottom bank
- •Near-uniform spatial irradiance distribution inside the enclosure
- •User safety: no UV-C leakage, door interlock, automated timer shut off
- •Fast (2 min) and user friendly

Performance of MGH UV-C N95 Decontamination Unit

5 log reduction after 48 h


6 log reduction after 7 days

Shadowing of UV-C on the Masks

Shadowing on the mask

UV INTENSITY LABELS reach saturation at about 0.5 J/cm²

0.1 J/cm² 0.5 J/cm² 1 J/cm²

- Sufficient exposure with 1 J/cm² UV-C for the entire mask surface
- Some shadowing under straps (location 7)
- Tray generates some shadowing at low UV-C dose 0.1 J/cm²

UV-C Implementation in a Hospital Setting

Preparing compatible N95 respirators for decontamination:

- 1. Write name and/or other identifier using permanent marker (e.g., Sharpie) on the outer surface of the mask
- 2. Inspect respirators after each use prior to submission for decontamination

(Discard the N95 respirator mask, if soiled, damaged or 5 x decontaminated)

3. Place ONE used N95 respirators in a paper bag or other container


UV-C Implementation in a Hospital Setting

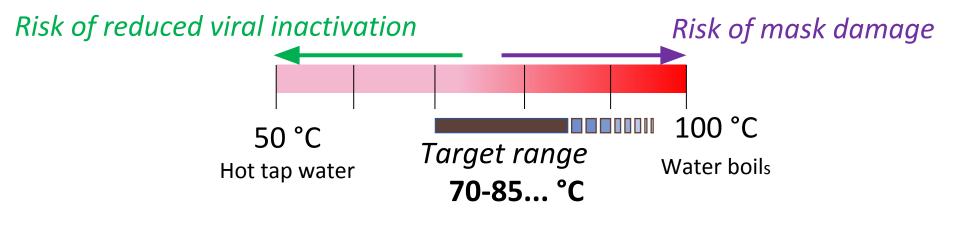
Use of UVC Decontamination Unit:

- 1. Wear **eye** and **skin** protection (goggles, gloves)
- 2. Open unit and place masks on tray. **Avoid** shadowing (straps, labels on mask)
- 3. Remove gloves, close unit and start decontamination cycle for 2 min
- 4. After unit turns off automatically, re-glove and and pull out tray
- 5. Remove mask, mark it as decontaminated and place it in new "user labeled" paper bag or other container for pick up

Importance of Proper Use of UV-C Implementation

These UVC lamps are designed for room disinfection There are re-purposed for single sided irradiation of N95 masks Improper use causes shadowing and can lead to insufficient decontamination

Heat: Evidence



Dr. John Doyle, PhD Henry B. Silsbee Professor of Physics Harvard University

Heat - Introduction to method

Heat + Time + Humidity = Viral Inactivation

Possible Target Relative Humidity 50-85%

Heat - Impact on viral inactivation

- Evidence for heat inactivation of <u>SARS-CoV-2</u> on N95 FFRs
 - *70°C, dry, 60 min >3.3 log reduction in lab conditions¹
 - *121°C, autoclave, 15 min sterilization²
- Inactivation may depend on viral environment (e.g. mucus, saliva)
 - <u>DO NOT USE</u> 60°C for 30 min as target for N95 FFR decontamination
 - 70°C, dry, 60 min may not be sufficient in clinical setting
- Humidity may improve SARS-CoV-2 inactivation, based on <u>other viruses</u>^{4,5,6}

*70-85 °C will not inactivate all possible bacteria and spores

(1) Fischer, R. J. et al. doi: 10.1101/2020.04.11.20062018 (pp)*
(2) Kumar, A. et al. doi: 10.1101/2020.04.05.20049346*
(3) Heimbuch, B. K. et al. <u>doi:10.1016/j.ajic.2010.07.004</u>.

(4) McDevitt, J. et al. doi: 10.1128/AEM.02674-09
(5) Lore, M. B. et al., doi: 10.1093/annhyg/mer054 https://www.n95decon.org/heat
(6) Wiggington, K. R. et al. doi: https://doi.org/10.1101/2020.04.28.20084038*

Heat - Impact on filtration & fit

(4) Liao et al., doi: 10.1101/2020.04.01.20050443* (5) Kumar et al., doi: 10.1101/2020.04.05.20049346*

- 85 °C & 80% RH 1860, 8210+,1870 all pass quantitative fit&filtration, 5 cycles
- 121 °C autoclave 1870 passes quantitative fit tests, 5 cycles. 1860 fails (molded)

	<u>Fit</u>	Filtration
 60 °C & 80% RH (three 30-minute cycles) 3M [1860, 1870, 8000, 8210], Moldex 2200, KC PFR95-270 passed fit and filtrations tests (1) 	\checkmark	\checkmark
 100 °C dry heat (one 60-minute cycle) 3M [1860, 1870, 8000, 8210], Moldex 2200 passed filtration tests (2) KC PFR95-270 failed filtration tests at 100 °C but passed 90 °C (2) 		×
 85 °C & 80% RH (FIVE 30-minute cycles) 3M 1860, 3M 1870, 3M 8210+ passed fit and filtration tests (3) 	\checkmark	\checkmark
 75 °C & 100% RH or 100 °C & <30% RH (20 30-minute cycles) No impact to filtration efficiency of meltblown fabric used as filtration material in N95s (4) 		\checkmark
 Autoclave treatment (121 °C, steam, 15 minutes) 3M 1870, 3M1804S, Aearo 1054s (layered models) passed quantitative fit tests, ten cycles (5) 3M 1860 (molded) failed fit tests after its second 15-minute cycle (5) 	×	68
 (1) Bergman et al., doi: 10.1177/155892501000500405 (2) Viscusi et al., doi: 10.1093/annhyg/mep070 (3) Anderegg et al., doi: 10.1101/2020.04.09.20059758* (4) Liao et al., doi: 10.1101/2020.04.01.20050443* Durability under heat-humidity treatment may depend on N95 in on autoclave treatment and oven-based heat treatment with high RH, which are the most likely parameters for sufficient SAR	th both hig	h temperature and

Method Summary: Heat

Bioburden Reduction

Promising conditions for SARS-CoV-2 inactivation on N95 FFR are likely to be 70-85°C, humidity >50%, for >60 minutes, <u>but data is</u> <u>limited</u>

May NOT inactivate all other pathogens

Implementation Criteria

Temperature Range **70-85°C** Possible Humidity Range **50-80% RH** Target Duration Range **>1hr** Other temperatures/humidities being studied

N95 Performance

Many common masks retain fit and filtration after 5 cycles at 85°C and 80% humidity, 30 minutes

Other

Approach: N95 put inside container; container into oven; can add water for moisture; target 5 cycles max

Calibrate and monitor heat and humidity, no direct exposure to heating element

Not yet validated in an FDA-approved process

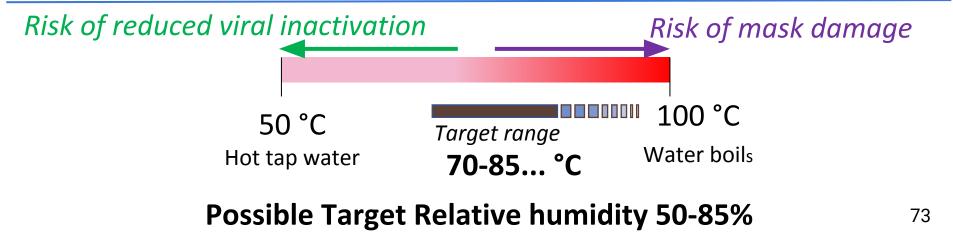
n95decon.org/heat updated regularly, active research, new results coming

Heat: Cautions for Implementation

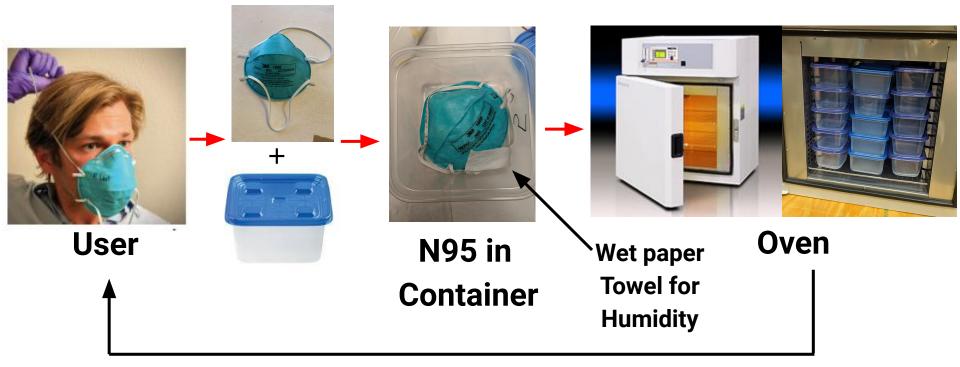
Cole Meisenhelder, PhD Student Harvard University

Heat - Autoclave Cautions

- Effectiveness is extremely model dependent:
 - <u>Pleated N95 models (3M 1870)</u> pass quantitative fit test for 5 treatments
 - <u>Molded N95 models (3M 1860)</u> fail fit tests
- Few studies include filtration efficiency, ongoing research

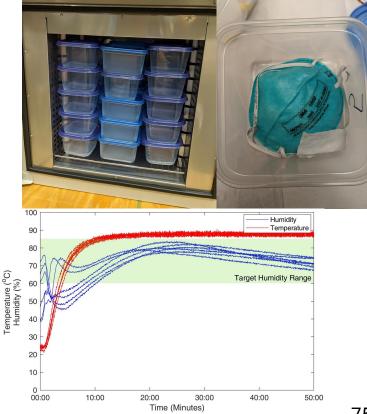


Heat - Microwave Generated Steam (MGS) Cautions


- <u>No data</u> for MGS inactivation of coronaviruses
- 2 minutes shown to inactivate other viruses (1,2)
- Limited testing for multiple cycles
 - Tested models withstand at least 1 cycle
 - Some models passed fit and filtration for **3 cycles**
 - Filtration may degrade after **5 cycles** (3)
- Metal components may present sparking hazard

Heat - Humid/Dry Heat Cautions

- Careful temperature and humidity control is critical
- Not Sterilization Prevent cross contamination and use indexed return to user methods
- N95 metal nose pieces may require secondary decontamination at lower temperatures



Heat - schematic of implementation

Heat - Prototype Implementation

- Targeting 85°C & 60-80% RH
- Forced air convection oven, no direct line of sight to heating elements
- Ziploc containers prevent cross contamination, allow humidity control
- Paper towel calibrated volume of water produces good humidity control
- 5 minutes of drying sufficient
- 3.7 cubic foot oven could process >1000 N95s per day

Heat - Verification and Validation of Setup

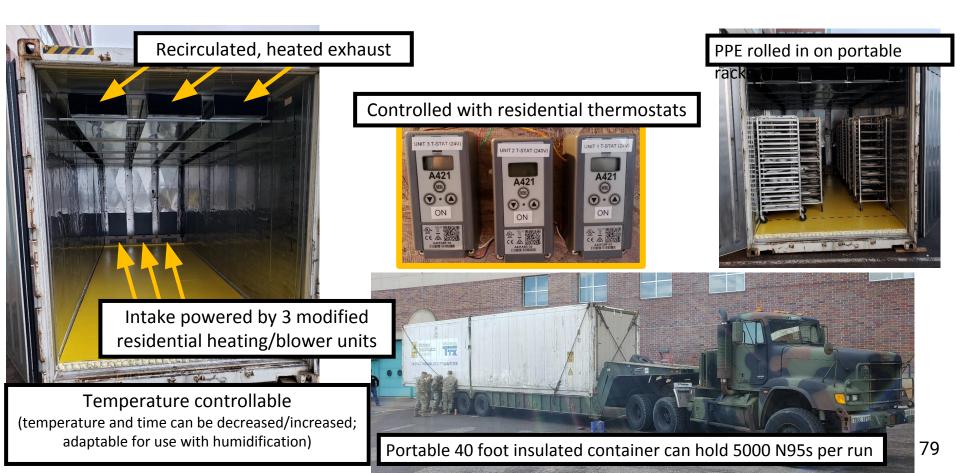
- Must verify critical parameters:
 - Target temperature
 - Target humidity
 - Time at target temperature and humidity
- Use electronic sensors capable of operating in 70-85°C up to 100% RH
- Do not rely on oven thermostat
- Validate for multiple locations
- Determine warm up time

Heat: Implementation

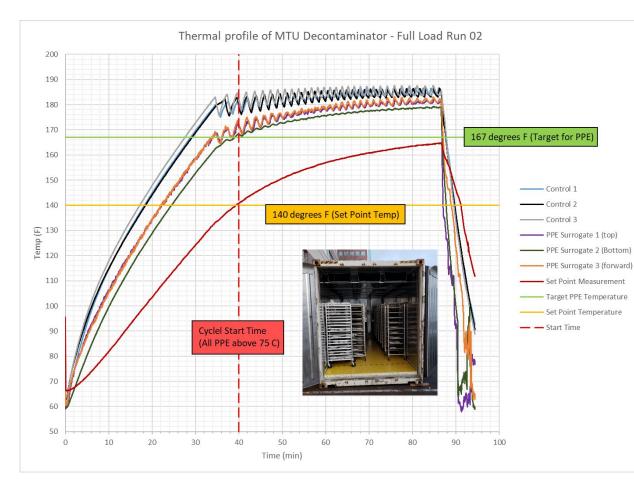
Andrew Barnard, Associate Professor, Mechanical Engineering Director of the Great Lakes Research Center Michigan Technological University

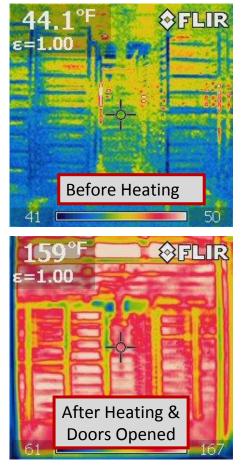
77

Michigan Technological University and Therma-Tron-X, Inc. set out to build a PPE decontamination unit for use during the COVID-19 pandemic.

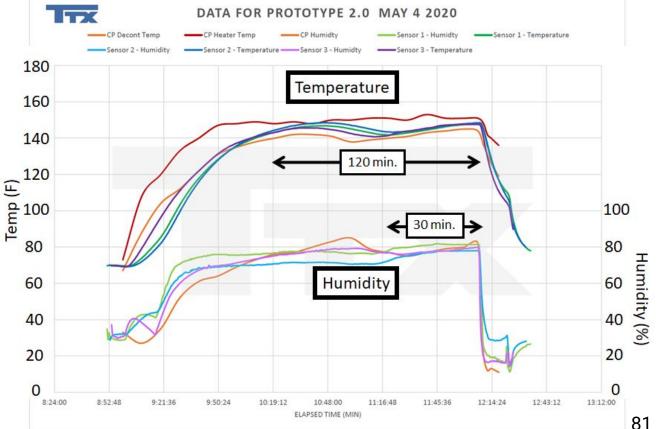

Primary Design Considerations

- Mobile
- Readily available
- Cost effective
- Easy to use
- Safe
- Easily scalable




Mobile Thermal Utility Decontaminator₇₈

First generation prototype


First version: programmable heat



Second version: programmable heat + humidity

Protocol is vital to avoid cross contamination

In process with FDA Emergency Use Authorization

Heat - Implementation Conclusions

Humid/Dry Heat

Need careful control of heat and humidity

Achievable with ovens

Easily scalable

Not Sterilization

Autoclave

Molded N95s failed

Research ongoing for pleated models

Microwave Steam

No inactivation data with coronaviruses yet

Filtration after 3 cycles needs further study

Concluding Remarks

BACKGROUND

- What is an N95?
- Do's and Don'ts
- Principles for N95
 Decontamination

<u>METHODS</u>

- UV-C
- Humid/Dry Heat
- Hydrogen Peroxide
 Vapor

CONSIDERATIONS

- Filtration Efficiency
- Fit Test
- Bioburden Reduction

Q&A

Please fill out post-webinar survey! We want your feedback!

https://tinyurl.com/y83grrxc

Hydrogen Peroxide

Dr. Jill R. Crittenden, PhD

Dr. Orhun K. Muratoglu, PhD

Our Panelists

Dr. Samantha Grist, PhD

Dr. Thomas Baer, PhD

Dr. Martin Purschke, PhD

Heat

Dr. Andrew Barnard, PhD

Dr. John Doyle, PhD

Cole Meisenhelder, PhD Student

Contact Us

https://covidinnovation.partners.org Email: covid_innovation@partners.org

Other Resources & Initiatives

- CDC Guidance on extended use and limited reuse of N95 FFR
 <u>https://www.cdc.gov/niosh/topics/hcwcontrols/recommendedguidanceextuse.html</u>
- CDC Guidance on N95 FFR Decontamination
 <u>https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.htm</u>
- Greater Boston Pandemic Fabrication Team: <u>https://www.panfab.org/</u>
- Recorded ACOEM Webinars on COVID-19 <u>https://acoem.org/Learning/Webinars</u>

SARS-CoV-2 Inactivation on N95 at Room Temperature

CORONAVIRUS INACTIVATION

- SARS-CoV-2 on the surface of an N95 FFR slowly becomes inactive over time
- Storage at room temperature (22°C, 40-65% humidity) for 7 days is expected to significantly reduce risk of exposure to SARS-CoV-2 via a re-used N95 FFR^{1,2,3**}
- Storage at temperatures below 22°C could significantly increase the appropriate waiting time²
- There is an urgent need for more experimentation to provide clearer guidance
- The time to reduce infection risk is expected to be extremely sensitive to initial viral load, N95 FFR material,^{1,2} storage temperature², and humidity⁴

Takeaways:

- Insufficient data, only use if there is no other choice for decontamination
- Room temperature storage in a clean, breathable container for 7 days may adequately inactivate SARS-CoV-2 on an N95
- Overnight storage is NOT sufficient
- Does NOT protect against bacteria or mold
- Return N95 to original user