Best practice is to use new N95s. Decontamination does not solve the PPE shortage crisis, and is an emergency practice to be considered during the COVID-19 pandemic. Efficacy and safety of N95 decontamination has not been fully characterized.

COVID-19 N95 DECON & REUSE

CORONAVIRUS INACTIVATION

Peer-reviewed data not available for SARS-CoV-2

- ≥ 1.0 J/cm² of UV-C inactivates* viruses similar to SARS-CoV-2 on N95 FFRs¹,²,³
- ≥1.0 J/cm² of UV-C yields 2-log reduction of viable *B. subtilis* spores on N95 FFRs⁴
- UV-C light may not reach inner N95 layers for all N95 models⁵
- Elastic straps require additional chemical disinfection¹
- Shadows can block UV-C rays & can leave parts of N95 contaminated

* ≥ 3-log inactivation

KEY CONSIDERATIONS

- Ensure accurate UV-C dose on all surfaces of N95
- Measure dose at N95 surface with UV-C specific sensor
- Return N95s to original users and ensure handling minimizes cross-contamination
- Perform user seal check before each reuse
- Be aware that data from tests on specific N95 models may not apply to other models

IMPLEMENTATION

- Reference documents from University of Nebraska Medical Center⁸ for implementation
- Validate each UV-C source and protocol with a UV-C sensor to ensure adequate dose for decontamination at the N95 surface

CONCLUSION

If implemented properly using sensors to ensure ≥ 1.0 J/cm² UV-C dose to the N95, this method likely inactivates SARS-CoV-2; however, this has not yet been confirmed directly with SARS-CoV-2. This method may protect against some bacterial co-infection risks but not all.

N95 INTEGRITY

- N95 keeps fit and filter performance after 10-20 cycles of 1.0–1.2 J/cm² UV-C²,⁸
- Each don/doff can reduce N95 fit; some models fit unacceptably after 5 don/doff cycles⁶
- Some damage to N95 seen at high UV-C doses (≥120 J/cm²)⁶
- Strap and facepiece damage seen on some N95 models after UV-C⁷,⁸

RISKS

- UV light is harmful to eyes and skin; proper training, engineering controls, and PPE are required before use
- If UV-C source is underpowered, decontamination times may be infeasible
- UV-C may not decontaminate N95 straps or eliminate risk of bacterial co-infection
- Cosmetics and sunscreen on N95 may reduce decontamination efficacy
- Non-uniform irradiance can affect dose, and subsequently, decontamination efficacy

SUPPORTING RESEARCH

* = not peer-reviewed

The Content provided by N95DECON is for INFORMATIONAL PURPOSES ONLY and DOES NOT CONSTITUTE THE PROVIDING OF MEDICAL ADVICE and is NOT INTENDED TO BE A SUBSTITUTE FOR INDEPENDENT PROFESSIONAL MEDICAL JUDGMENT, ADVICE, DIAGNOSIS, OR TREATMENT. Use or reliance on any Content provided by N95DECON is SOLELY AT YOUR OWN RISK. A link to the full N95DECON disclaimer can be found at https://www.n95decon.org/disclaimer.

v2.1 (June 21, 2020)

www.n95decon.org

UV-C

Use appropriate UV-C source
Validate 1.0 J/cm² dose with sensor
Expose both sides of N95 mask
Best practice is to use new N95s. Decontamination does not solve the PPE shortage crisis, and is an emergency practice to be considered during the COVID-19 pandemic. Efficacy and safety of N95 decontamination has not been fully characterized.

UNSUITABLE METHODS

Only UV-C light with a peak wavelength of 254 nm has demonstrated substantial germicidal effects on N95 FFRs\(^1\)**. UV-A (320-400 nm) is not germicidal. UV-B (280-320 nm) has lower germicidal efficiency and has not been validated for N95 FFR decontamination.\(^2\)** Only use UV-C light sources with a peak wavelength of 254 nm.

\(\text{x} \quad \text{Sunlight} \quad \text{Sunlight reaching the Earth’s surface does not contain UV-C light;}^3 \text{ there is no evidence in the peer-reviewed literature to support sunlight-assisted decontamination of N95 FFRs.} \)

\(\text{x} \quad \text{Consumer UV Products} \quad \text{Many consumer UV products do not emit UV-C with sufficient irradiance, and have peak emission in the UV-A range} (\text{e.g., nail polish curing lamps,}^4 \text{ tanning bed lamps,}^5 \text{ etc.}) \text{, which is ineffective for decontamination. Other consumer products may additionally have uniformity or shadowing concerns.} \)

\(\text{x} \quad \text{< 200 nm UV Sources} \quad \text{UV sources emitting < 240 nm light can produce ozone, which is hazardous to human health}^6 \text{** Sufficient ventilation is necessary to reduce ozone concentration.}^7 \)

\(\text{x} \quad \text{Measuring dose from lamp power} \quad \text{UV-C irradiance should not be calculated from rated lamp power, as bulbs do not have 100% efficiency in converting electrical energy to optical power.}^8 \text{ Use a UV-C specific sensor to measure irradiance at the N95 surface.} \)

\(\text{x} \quad \text{Doses for air or surface decon} \quad \text{Viral inactivation protocols designed for surfaces or air are insufficient/not effective for N95 decontamination.}^9 \text{ Use a substantially higher UV-C dose of 1.0 J/cm}^2 \text{ at the N95 surface.}^{10**} \)

\(? \quad \text{Biosafety Cabinets} \quad \text{Many UV-C sources used in research laboratories (e.g., biosafety cabinets) have unacceptable non-uniformity and low power,}^{10**} \text{ thorough characterization of the UV-C dose at the N95 surface is required for sufficient decontamination.} \)

SUPPORTING RESEARCH

*** = not peer-reviewed

The Content provided by N95DECON is for INFORMATIONAL PURPOSES ONLY and DOES NOT CONSTITUTE THE PROVIDING OF MEDICAL ADVICE and IS NOT INTENDED TO BE A SUBSTITUTE FOR INDEPENDENT PROFESSIONAL MEDICAL JUDGMENT, ADVICE, DIAGNOSIS, OR TREATMENT. Use or reliance on any Content provided by N95DECON is SOLELY AT YOUR OWN RISK. A link to the full N95DECON disclaimer can be found at https://www.n95decon.org/disclaimer.