
1

SESUG Paper 236-2018

Web Scraping in SAS: A Macro-Based Approach
Jonathan W. Duggins, North Carolina State University;

Jim Blum, University of North Carolina Wilmington

ABSTRACT
Web scraping has become a staple of data collection due to its ease of implementation and its ability to
provide access to wide variety of data, much of it freely available. This paper presents a case study that
retrieves data from a website and stores it in a SAS data set. PROC HTTP is discussed and the
presented technique for scraping a single page is then automated using the SAS Macro Facility. The
result is a macro that can be customized to access data from a series of pages and store the results in a
single data set for further use. The macro is designed with a built-in delay to help prevent server overload
when requesting large amounts of information from a single site. The macro is designed for both
academic and industry use.

INTRODUCTION
Web scraping can be defined as an automated process for taking data presented on a web server and
storing in a format suited to further analysis. This process varies in complexity based on the formatting
used to display the data and, depending on the amount of HTML encoding included on the page and the
structure used to display the data, extracting the data can be tedious. However, taking advantage of the
fact that HTML files are text files, the SAS DATA step provides significant functionality for parsing the file.
Once the file is parsed, you must often reshape the results and SAS offers multiple tools to facilitate this
process, including data step arrays, functions, and procedures such as the TRANSPOSE Procedure and
the SQL Procedure. The following sections outline one way to leverage SAS for web scraping, with
possible alternatives and potential pitfalls discussed as appropriate. Familiarity with non-SAS concepts
such as HTML encoding and HTML tags, as well as SAS tools including the SAS DATA step, PROC
SQL, and the SAS Macro Facility are beneficial.

DETERMING THE DATA SOURCE
Before beginning any web scraping process, including those outlined below, ensure the target site allows
scraping. Navigate to the intended website and access the robots.txt file, which is used to provide web
crawlers, both human and robot alike, with important access information. For a simple primer on how to
understand the contents of a robots.txt file, refer to https://www.promptcloud.com/blog/how-to-read-and-
respect-robots-file, which addresses some of the basic concepts. In addition to telling whether scraping
the site is allowed, it also indicates any restrictions such as time of day, frequency, or forced delays.

Once you identify a suitable website, it is important to realize that the data may be stored in various
formats for web-based dissemination. One of the simplest is for a website to link directly to a file. As an
example, consider the file ERA.txt which is located on the author’s personal page and contains comma-
delimited data for every pitcher in Major League Baseball from 2017. Of course, one approach to
converting the data is to download the file locally and use a DATA step to access the information.
However, an alternative is to direct SAS to the web location itself using the FILENAME statement with the
URL option, followed by a DATA step to parse the file, as shown below.
 FILENAME era URL "https://www4.stat.ncsu.edu/~duggins/SESUG2018/ERA.txt";
 DATA era;
 INFILE era DSD FIRSTOBS = 2;
 INPUT MaskedLeague : $1. ERA;
 RUN;

As mentioned previously, HTML files are simply text files as well, so you can use this method for scraping
data from more traditional web sources that contain any HTML encoding. However, in those cases the
HTTP Procedure is a more robust alternative, and has been updated in SAS 9.4 to improve its efficiency.
The remaining examples demonstrate the use of PROC HTTP and focus on pages with HTML encoding.

https://www.promptcloud.com/blog/how-to-read-and-respect-robots-file
https://www.promptcloud.com/blog/how-to-read-and-respect-robots-file

2

PARSING A SINGLE PAGE
In many cases, the data of interest is located on a single page. In such cases the primary challenge is not
accessing the file, but instead lies in parsing the HTML tags to obtain the data of interest. The case study
presented here focuses on a popular web comic, xkcd, located at www.xkcd.com. In particular, the
archive (www.xkcd.com/archive) lists every comic published by its author, Randall Munroe. The archive
page does not appear to give any other information about the comics; however, viewing the page source
shows that in addition to the name of each comic strip, the comic number and publication date are stored
in the metadata. Saving this information to a SAS data set is thus a two-step process: access the page,
then parse out the necessary information.

ACCESSING THE ARCHIVE’S SOURCE CODE
PROC HTTP is useful for connecting to the webpage and reading the HTML source code into a SAS data
set, as is demonstrated in the example below:
 FILENAME source TEMP;
 PROC HTTP
 URL = "https://xkcd.com/archive/"
 OUT = source
 METHOD = "GET";
 RUN;

The FILENAME statement is used to create a temporary (logical-only) location for SAS to store the
website’s contents. When invoking the HTTP Procedure, the URL= option indicates the target website
and the OUT= option indicates the file where the information retrieved from the website is to be stored.
The METHOD= option indicates what type of request method PROC HTTP should send to the website
identified in the URL= option. While there are several HTTP request methods available in PROC HTTP,
GET is the most basic, simply retrieving the source code from the web page designated in the URL=
option. For other available methods and their effects, see the SAS Help Documentation.

PARSING THE ARCHIVE’S SOURCE CODE
Once the source code is stored in the temporary file, a DATA step is used to parse the results. In the
current case study, the source file is over 8000 lines long, but only approximately 25% of them contain
information about comics. The HTML code for one comic is shown below.
 Disaster Movie

A single anchor tag provides multiple pieces of information, including: a link to the comic via its number in
the HREF= attribute, the publication date is in the TITLE= attribute, and the comic title is found between
the opening and closing anchor tags. Fortunately, the same format is used for each comic. However,
since new comics are added three times per week, the page is dynamic and thus line numbers are not a
reliable way to access the desired information. Instead, logical conditions must be set to access the exact
lines of interest. Due to the flexibility of the DATA step there are a variety of ways to implement the
parsing, with one possible approach shown below:
 DATA work.xkcdArchive(DROP = line);
 FORMAT num 4. date DATE9.;
 LENGTH title $ 50;
 INFILE source LENGTH = recLen LRECL = 32767;
 INPUT line $VARYING32767. recLen;
 IF FIND(line, '<a href=') GT 0 AND FIND(line, 'title=') GT 0 THEN DO;
 num = INPUT(scan(strip(line),2,'/'),4.);
 date = INPUT(scan(strip(line),4,'"'),YYMMDD10.);
 title = SCAN(strip(line),2,'<>');
 OUTPUT;
 END;
 RUN;

http://www.xkcd.com/
http://www.xkcd.com/archive
https://xkcd.com/2029/

3

Step 1: Accessing the File
The INFILE statement refers to the earlier temporary file, source, and sets the logical record length to
32,767. (SAS 9.4 ships with this as the default value for varying length files, but the value was 256 in
earlier versions. This option is included to help with backwards compatibility of the program.) Since the
lines in an HTML file may vary wildly in length, the LENGTH= option allows you to store the length of the
current line in the temporary variable recLen. Pairing this temporary variable with the $VARYING informat
in the INPUT statement allows the length of each line being read in to be tracked in the DATA step. This
approach has two advantages:

1. using varying-widths is more efficient than a fixed-width approach for varying length records, and

2. if the line exceeds 32,767 characters a single trailing at (@) can be used in conjunction with the
recLen value to step through the record until all text is read.

Step 2: Selecting the Appropriate Lines
After the INFILE and INPUT statements access the source code for the archive page, an IF-THEN
statement determines which lines of HTML code contain the desired information. As mentioned above,
each line of interest used an <a> tag with the HREF= and TITLE= attributes. The IF-THEN statement
conditions on this by using the FIND function to select only these rows for further parsing. Three variables
are then created: comic number (num), date of publication (date), and comic title (title). Each assignment
statement makes use of the SCAN function to identify which piece of the source code should be stored in
a given variable. SCAN and SUBSTR are powerful functions for data extraction since HTML coding
commonly uses delimiters such as angle brackets and forward slashes.

Finally, the OUTPUT statement is used to ensure that only these parsed records are output to the
resulting data set. The initial LENGTH and FORMAT statements, as well as the DROP= data set option,
ensure the resulting data set represents the source data appropriately, while the INPUT functions and
informats used in the definitions of Num and Date ensure that the resulting data set can be correctly
sorted if needed. Figure 1 shows the partial results.

Figure 1 Partial results from DATA step parsing the archive web page.

Potential Pitfalls
As mentioned above, this is only one approach to scraping this particular web page. Other functions such
as INDEX instead of FIND may be preferable or different logical conditions for selecting the appropriate
rows could be used. In particular, the logical conditions often contribute to the fragility of a web scraping
program; if the targeted website does not use consistent HTML coding then the scraping program must
account for that. In this case study, the assumption is that the website will never use HREF= instead of
href= or Title= instead of title= in its <a> tags.

Functions such as UPCASE are common in situations such as this for matching character strings just as
COMPRESS may be beneficial in case additional spaces were included between the <a and href=
portions of the HTML source code. Before writing a DATA step to parse the HTML source code, the
coding structure used in the website must be known. For larger sites, implementing data integrity or other
validation checks is often necessary to help ensure the data set produced is accurate.

4

PARSING MULTIPLE PAGES
Of course, often data is broken across multiple web pages instead of being stored at a single URL. This is
common for large data sets such as those scraped for analyzing CDC records, improving a real estate
pricing algorithm, or running a fantasy baseball league. In order to scrape data in this scenario, it must
first be determined how the website indicates the various pages. Many pages use parameters such as
?page=1 appended to the end of the URL. For the case study in use here, each comic is accessed by
using the comic’s number, e.g. www.xkcd.com/2029 is the direct link to comic number 2029. This
pagination provides a natural way for incorporating macro variables into the process of scraping data that
spans a range of pages.

The process for scraping multiple pages is similar to the process for a single page: access the file, then
select the appropriate lines. Construction of a macro allows for application of the process to all pages to
be scraped. However, with data broken across multiple pages, the logical conditions necessary to select
the necessary lines can become much more complicated. As before, there are multiple ways to parse this
HTML source code, and the following sections step through one approach that utilizes a SAS macro to
access each comic’s page and PROC SQL for parsing and combining the appropriate lines from the
HTML source code.

CONSTRUCTING THE MACRO
The macro detailed below has three main components: obtaining the source code for a specific page
number, storing the source code as a SAS data set, and parsing the source code to obtain the data of
interest.

Step 1: Macro Variables
To begin the process of creating a macro that handles pagination, you can use PROC SQL to create a list
of pages you plan to access via the macro. The xkcdArchive data set created above, by design, contains
the comic numbers which the website uses in the URL to identify pages. The SQL Procedure shown
below places the comic numbers into a single global macro variable, indexList, and puts the number of
comics into the global macro variable indexCount.
 PROC SQL NOPRINT;
 SELECT DISTINCT num, count(DISTINCT num)
 INTO :indexList separated BY ' ', :indexCount
 FROM work.xkcdArchive
 ;
 QUIT;

The indexCount variable is necessary because the number of comics is not equal to the largest value in
the indexList variable. (For example, there is no comic 404 – presumably due to the conflict with the 404
error page that would be generated.) Next, the macro statement shown below identifies four keyword
parameters to set macro variables useful for scraping multiple pages from a single site.
 %MACRO scrape(start=1, stop=&indexCount, out=, append=, sleep=5);

The Start and Stop variables are useful for testing purposes as well as for cases where future scraping
processes do not need to revisit pages scraped previously. The Out variable is used to identify the data
set in which the final records should appear. Append is used to determine whether the pages scraped by
the macro should be appended to the specified data set or if the data set should be overwritten. The final
variable, sleep, controls the amount of delay between subsequent requests to the website (Recall the
website’s robots.txt file may indicate the required delay amount.) The implementation of the delay is
discussed below.

The %IF-%THEN/%ELSE statements allow for possible casing and input variations on ‘Yes’ and ‘No’ for
identifying whether appending or replacing should occur. In other cases, an error message indicates the
expected user-provided values. (Note that the Work library is hardcoded throughout this case study. In
practice, you may find it useful to include an additional keyword parameter indicating the library.)

http://www.xkcd.com/2029

5

Additionally, based on the value of Append conditional logic determines whether the Out data set should
be deleted.
 %IF %SYSFUNC(COMPRESS(%UPCASE(%SUBSTR(&Append,1,1)))) = N %THEN %DO;
 PROC DATASETS LIBRARY = Work NOLIST;
 DELETE All;
 RUN;
 QUIT;
 %END;
 %ELSE %PUT QC_ERROR: Append status must be Yes or No. &=append;

Within the macro a %DO loop is used to carry out the iterations, as shown in the following (partial) code.
 %DO i = &Start %TO &Stop;
 %LET index = %SCAN(&indexList, &i);

The %LET statement sets the value of the macro variable Index, which is used to identify the current
page to be read in the following PROC HTTP step.

Step 2: Accessing and Storing a Page’s Source Code
Next, use code similar to that from the previous section to access the page’s source code.
 FILENAME source TEMP;
 PROC HTTP
 URL = "https://xkcd.com/&index/"
 OUT = source
 METHOD = "GET";
 RUN;

The PROC HTTP step above functions identically to the one used to scrape the archive page earlier;
however, the URL is updated to include the Index macro variable to make the page reference dynamic.
 DATA work.xkcdRawTemp;
 INFILE source LENGTH = len LRECL = 32767;
 INPUT line $VARYING32767. len;
 LineNum = _n_;
 RUN;

Unlike the DATA step used in the previous section to parse the archive page, this DATA step simply
stores the source code, no parsing or cleaning is carried out. Also, note the addition of the LineNum
variable. As discussed previously, some pages contain information across multiple lines of HTML source
code that need to be combined into a single record, and this variable will be used to address that issue.

Step 3: Parsing the Source Code
As with any data manipulation process, successful web scraping requires a solid understanding of the
raw data, or page source in this case. Often, the data of interest lies between the opening and closing
body tags and may even be contained in a single <div> or <table> section of the source code. To provide
further insight into the source code involved in this case study, a snippet from a typical page’s source
code is shown below. As the permanent link indicates, this source code is from comic number 500.
 <div id="ctitle">Election</div>
 <img src="//imgs.xkcd.com/comics/election.png" title="Someday I'll be
 rich enough to hire Nate Silver to help make all my life decisions.
 'Should I sleep with her?' 'Well, I'm showing a 35%
 chance it will end badly.'" alt="Election" />
 </div>
 Permanent link to this comic: https://xkcd.com/500/

 Image URL (for hotlinking/embedding):
 https://imgs.xkcd.com/comics/election.png

6

 <div id="transcript" style="display: none">[[Character sits at his
 computer desk, staring at his computer.]]
 It's over.
 After twenty months it's finally over.
 I don't have to be an election junkie anymore.
 [[Closeup of character's face and screen.]]
 I don't have to care about opinion polls, exit polls, margins of
 error, attack ads, game-changers, tracking polls, swing states, swing
 votes, the Bradley effect, or <name> the <occupation>.
 I'm free.
 [[Character staring at his computer screen, full shot.]]
 [[Character types on his computer.]] <<Tap Tap>>
 [[On screen]]Google "2012 polling statistics"
 {{Title text: "Someday I'll be rich enough to hire Nate Silver to
 help make all my life decisions. 'Should I sleep with her?'
 'Well, I'm showing a 35% chance it will end badly.'
 "}}</div>

For this case study, several elements are of interest.

1. The comic’s title – included in the first <div> tag in the snippet
2. The hover text –included in the tag
3. The alternative hover text – also included in the tag
4. The link for the comic – included on its own line
5. The link for embedding – included on its own line
6. The transcript – spans from <div> that includes the word transcript until the end of the snippet.

The transcript was of particular interest since it provided a textual interpretation of the comic that could be
used for screen readers or in other scenarios to facilitate accessibility of the pages. In particular, note that
several items in the transcript, such as apostrophes, quotes, and angle brackets, are in character entity
form. For example, > appears as > when the text is displayed in a web browser.

Furthermore, since the transcripts may use a different number of lines for each comic, a static approach
based on line numbers is not sufficient. This snippet of code indicates the need to read multiple lines from
the source code but combine them into a single record. There are certainly multiple ways to leverage SAS
in this case, but an SQL-based approach is detailed here using the queries and in-line views below. The
five individual in-line views are covered first.

View A
 (SELECT HTMLDECODE(SCAN(line,2,'<>')) AS title
 FROM work.xkcdRawTemp
 WHERE line CONTAINS 'div id="ctitle"') AS a,

In the first in-line view, the title is obtained from appropriate <div> tag. The HTMLDECODE function is
used to ensure any character entity references are properly rendered. The SCAN function parses the
<div> tag to obtain only the title, with one row returned by this in-line view for each page.

View B
 (SELECT DISTINCT HTMLDECODE(SCAN(line,4,'"')) AS Hover,
 HTMLDECODE(SCAN(line,6,'"')) AS AltHover
 FROM work.xkcdRawTemp
 WHERE line contains '<img src='
 AND
 line contains 'title') AS b,

The second in-line view obtains the hover text and alternate hover text from the tag. The
DISTINCT keyword is used to ensure only one set of hover text is returned per page, thus guaranteeing
the in-line view only returns a single row. The compound logical condition is used to filter out other

7

images, besides the comic itself which is titled, from the selection. This only works because other images,
such as the xkcd.com log, are presented without titles.

Views C and D
 (SELECT HTMLDECODE(STRIP(SCAN(line,6,' <'))) AS PermLink
 FROM work.xkcdRawTemp
 WHERE line CONTAINS 'Permanent link to this comic:') AS c,

 (select HTMLDECODE(STRIP(SCAN (line,5,' '))) AS EmbedLink
 FROM work.xkcdRawTemp
 WHERE line CONTAINS 'Image URL (for hotlinking/embedding)') AS d

The next two in-line-views simply request the rows containing the URL for the link to the comic’s webpage
(View C) and the link to the comic’s image file (View D). Both return a single row.

View E
 (SELECT LineNum, HTMLDECODE(line) AS test /*View E*/
 FROM work.xkcdrawTemp
 WHERE (LineNum GE
 (SELECT MIN(LineNum) /*Inner Query 1*/
 FROM work.xkcdRawTemp
 WHERE line CONTAINS '<div id="transcript"')
 AND
 LineNum LE
 (SELECT MIN(LineNum) /*Inner Query 2*/
 FROM work.xkcdRawTemp
 WHERE line CONTAINS '</div>'
 AND
 LineNum GE
 (SELECT MIN(LineNum) /*Inner Query 3*/
 FROM work.xkcdRawTemp
 WHERE line CONTAINS '<div id="transcript"')))) AS e

In order to capture the entire transcript, the final in-line view includes subqueries. Unlike Views A through
D where conditional logic can identify the exact line in the HTML source code to store, View E must select
lines of source code based on relative position. Specifically, the transcript begins with the <div> tag for
which the ID attribute includes the word ‘transcript’ and it continues until the closing </div> tag. Since
those line numbers are not fixed, conditional logic is required to identify the appropriate values of
LineNum. The subqueries above do so by:

1. Inner Query 1: Find smallest line number of all lines containing a transcript-related <div> tag.

2. Inner Query 2: Find smallest line number for all lines containing a </div> tag as long as that value
is larger than the line number given by Inner Query 1 (which is repeated as Inner Query 3)

3. View E: Select all lines of source code between values #1 and #2.

View E does not return a single row. Instead it returns a dynamic number of rows based on the length of
the transcript provided on the webpage – some of which span hundreds of lines of HTML source code.

Combining the In-Line Views
The five in-line views detailed above select various types of information with Views A through D selecting
single rows using conditional logic alone while View E selects multiple rows from an arbitrary position on
the webpage since the position changes as the page number changes. This produces a situation where a
full Cartestian product of the five tables, with one row per table for the first four tables and multiple rows
for the fifth table, is necessary to combine all the information. SQL can again be used for this
manipulation via the following pseudocode.

8

 PROC SQL NOPRINT;
 CREATE TABLE work.xkcdParsedTemp AS
 SELECT &index AS comicNum, a.*, b.*, c.*, d.*, e.*
 FROM <INSERT VIEWS A – E HERE>
 ;
 QUIT;

The result of the HTTP, DATA, and SQL steps for comic number 1 is shown in Figure 2 below.

Figure 2 Results of scraping first comic from the archive.
As mentioned above, the LineNum variable tracks separate lines of the transcript for a single comic.
Notice the Test variable holds the transcript but has additional text such as HTML tags, brackets, braces,
and indicators such as “Alt:” which are not part of the actual transcript. Removing the extraneous text is
the next step in the scraping process for this case study.

Step 4: Data Cleaning
As Figure 2 shows, the parsed data requires further data manipulations to obtain the transcript. You can
choose to do this within each iteration of the %DO loop or once the data from all pages has been
combined. The following DATA step makes use of FIND, COMPRESS, STRIP, and SUBSTR to handle
initial unwanted text such as the <div> tag and opening brackets and braces. Conditional logic is used to
avoid unnecessarily applying the SUBSTR functions. The final statement makes use of the TRANWRD
function to remove certain elements from the text.
 DATA work.xkcdClean;
 SET work.xkcdParsedTemp;
 IF FIND(test,'[[') GT 0 THEN DO;
 startsq = FIND(test,'[[') + 2;
 test = STRIP(COMPRESS(SUBSTR(test,startsq),'[]'));
 END;
 IF FIND(test,'{{') GT 0 OR FIND(upcase(test), 'ALT TEXT') GT 0 THEN DO;
 startcu = FIND(test,':') + 1;
 test = STRIP(COMPRESS(SUBSTR(test,startcu),'{}'));
 END;
 IF FIND(test,'<div') GT 0 THEN test = STRIP(SCAN(TEST,2,'>'));
 test = STRIP(TRANWRD(TRANWRD(TRANWRD(test,']]',''),'}}',''),'</div>',''));
 RUN;

Some programmers may wish to use regular expressions to simply select the text between sets of
brackets, braces, or angle brackets. However, since the transcript text is manually entered, cases exist
where double braces were used to open a section but only a single brace was used in closing. Brackets,
braces, and angle brackets are also occasionally used within the text of the transcript. Hence, a
combination of positional approaches are used based on SAS functions.

Step 5: Appending and Sleeping
A simple APPEND or DATASETS Procedure provides an efficient way to combine data scraped from
multiple pages.
 PROC APPEND BASE = work.all DATA = work.xkcdParsedTemp;
 RUN;

9

Recall the keyword parameter, Sleep, in the definition of the Scrape macro. Before scraping subsequent
pages, a delay needs to be incorporated using this macro variable. SAS provides a SLEEP routine,
available via the DATA step, that you can use to accomplish this task.
 DATA _NULL_;
 CALL SLEEP(&Sleep,1);
 RUN;

The SLEEP routine stops SAS from executing the program for a specified amount of time. It accepts two
arguments: the first is the duration and the second is the units. When specifying the units, a value of 1
indicates seconds, while a value of 0.01 indicates hundredths of seconds. In the code presented above,
the value of the macro variable Sleep determines the number of seconds to delay the execution of the
program.

Step 6: Concluding the Macro

For the case study presented here, the HTTP step to access the HTML source code, the DATA step to
store the source code, the SQL step to parse the source code, the DATA step to clean the parsed source
code, the APPEND step to combine the results from multiple pages within a website, and the null DATA
step to implement the delay form the entirety of the %DO loop. Once the null DATA step is executed, the
%END statement concludes the %DO loop which scrapes across pages.

The final step is to use the TRANSPOSE Procedure to ensure that each comic is associated with a single
observation in the SAS data set. Use of the ID statement guarantees the transcript’s lines are kept in
order during the transposition.
 PROC TRANSPOSE DATA = work.All
 OUT = work.&out (DROP = _name_)
 PREFIX = Line;
 BY comicnum title hover altHover permLink EmbedLink;
 ID linenum;
 VAR test;
 RUN;
 %MEND; /*End of Scrape macro*/

The statement below calls the full macro. Recall the default macro variables Start and Stop were given
default values of 1 and &indexCount, respectively. As such, this call scrapes all comics in the xkcd
archive, creates a new data set named xkcdParsed (or overwrites it) and uses a delay of 0.1 seconds
between each iteration of the %DO loop.
 %scrape(out = xkcdParsed, append = n, sleep = 0.1)

Partial Results
Figure 3 shows the partial results from execution of the macro. Comparing to Figure 2, you can see the
extraneous text has been removed from the transcript content and each comic appears as a single
observation.

Figure 3 Partial Results for first 5 scraped pages

10

POTENTIAL PITFALLS
Any web scraping process, regardless of implementation, is likely to be quite fragile. Some approaches,
such as considering casing and spacing, avoiding assumptions about line numbers on which the content
exists, and selecting only distinct rows are used the macro above in an attempt to produce robust code
for this case study. However, additional issues need to be considered. For example, HTML tags were
assumed to be lowercase in all scenarios, which is not always the case for other websites. Additional
applications of UPCASE or other appropriate character functions can produce even more robust code.
However, any change to the source code by the website can result in additional programming time
necessary to maintain a web scraping program.

Efficiency problems may arise as well due to the continuous increase in the number of pages to scrape
from this site. As a result, PROC TRANSPOSE must operate on an increasingly large data set.
Furthermore, as Figure 3 demonstrates, the number of lines of transcript is not constant. Alternatives to
PROC APPEND that don’t depend as heavily on a stable set of variables could alleviate the issue by
allowing the PROC TRANSPOSE to appear inside, rather than outside, the loop. Currently, with nearly
2100 pages to scrape the macro takes approximately 12 minutes to execute. This includes using options
such as NONOTES and NOSOURCE to reduce runtime.

CONCLUSION
Web scraping continues to gain popularity as a method for data collection. As demonstrated here, SAS is
a powerful tool that provides a variety of options for obtaining data in this manner. While the case study
here focused on a single approach using SQL to parse the HTML source code and join appropriate lines,
followed by a DATA step for cleaning purposes, other approaches are also available. See Hemedinger,
2017 for an alternative approach using the SET statement’s POINT= option in the DATA step rather than
SQL for selecting information. In both cases, conditional logic and access to regular expressions allow
SAS to emulate the CSS selectors available in other web scraping programs such as Python.

By leveraging the SAS macro facility, it is possible to scrape data stored both on single and multiple
pages. Both SQL and the DATA step, either individually or in conjunction, allow for the conditional
selection of records. This is of particular importance for websites that span multiple pages but do not use
consistent HTML code to display the data across those pages. The variety of ways in which data is stored
on the web often require development of individualized programs for each site to be scraped. However,
as tools like PROC HTTP continue to receive updates and as additional resources become available, the
flexibility of SAS continues to be a substantial resource in web scraping.

REFERENCES
Hemedinger, Chris. “How to scrape data from a web page using SAS” The SAS Dummy. December 4,
2017. Available at https://blogs.sas.com/content/sasdummy/2017/12/04/scrape-web-page-data/.

Koshy, Jacob. “How to Read and Respect Robots.txt” Prompt Cloud. March 3, 2017. Available at
https://www.promptcloud.com/blog/how-to-read-and-respect-robots-file.

ACKNOWLEDGMENTS
I would like to thank my friends and colleagues, Travis Gray and Jeremy Strickland, for the discussions
regarding web scraping applications outside of academia.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jonathan W. Duggins
NC State University
jwduggin@ncsu.edu
https://www4.stat.ncsu.edu/~duggins/

	Abstract
	Introduction
	Determing the Data Source
	Parsing a Single Page
	Accessing the Archive’S Source Code
	Parsing the Archive’s Source Code
	Step 1: Accessing the File
	Step 2: Selecting the Appropriate Lines
	Potential Pitfalls

	Parsing Multiple Pages
	Constructing The Macro
	Step 1: Macro Variables
	Step 2: Accessing and Storing a Page’s Source Code
	Step 3: Parsing the Source Code
	View A
	View B
	Views C and D
	View E
	Combining the In-Line Views

	Step 4: Data Cleaning
	Step 5: Appending and Sleeping
	Step 6: Concluding the Macro
	Partial Results

	Potential Pitfalls

	Conclusion
	References
	Acknowledgments
	Contact Information

