Please visit www.norc.org for more information.

The dataset contains 6 weight variables. When generating national estimates, the NATIONAL_WEIGHT or NATIONAL_WEIGHT_POP should be used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling. Raking variables include age, gender, race, education, marital status, per capita income, occupation, region, sampled county, and state. The weight values provided with the dataset are computed using the combined weights.

The weight variables in the dataset are:

- **REGION_WEIGHT**: Weight for each region.
- **STATE_WEIGHT**: Weight for each state.
- **COUNTY_WEIGHT**: Weight for each county.
- **POPULATION_WEIGHT**: Weight for each state and county combined.
- **NATIONAL_WEIGHT**: Weight for each state, county, and region combined.
- **NATIONAL_WEIGHT_POP**: Weight for each state, county, region, and population combined.

The weight variables are designed to ensure that the dataset can be used to generate accurate national estimates. The CENTER_WEIGHT and CENTER_WEIGHT_POP variables are not included in the dataset, but they can be calculated using the formulas provided in the documentation.

The region variables in the dataset are:

- **REGION_CODE**: Code for each region.
- **REGION_NAME**: Name of each region.
- **REGION_ABBREVIATION**: Abbreviation for each region.

The state variables in the dataset are:

- **STATE_CODE**: Code for each state.
- **STATE_NAME**: Name of each state.
- **STATE_ABBREVIATION**: Abbreviation for each state.

The county variables in the dataset are:

- **COUNTY_CODE**: Code for each county.
- **COUNTY_NAME**: Name of each county.
- **COUNTY_ABBREVIATION**: Abbreviation for each county.

The population variables in the dataset are:

- **POPULATION_CODE**: Code for each population.
- **POPULATION_NAME**: Name of each population.
- **POPULATION_ABBREVIATION**: Abbreviation for each population.

The population weights are calculated using the following formulas:

- **REGION_WEIGHT**: \(\sum_{i} w_{i} \)
- **STATE_WEIGHT**: \(\sum_{j} w_{j} \)
- **COUNTY_WEIGHT**: \(\sum_{k} w_{k} \)
- **POPULATION_WEIGHT**: \(\sum_{l} w_{l} \)
- **NATIONAL_WEIGHT**: \(\sum_{m} w_{m} \)
- **NATIONAL_WEIGHT_POP**: \(\sum_{n} w_{n} \)

Where \(w_{i} \) is the weight for region \(i \), \(w_{j} \) is the weight for state \(j \), \(w_{k} \) is the weight for county \(k \), \(w_{l} \) is the weight for population \(l \), \(w_{m} \) is the weight for national region \(m \), and \(w_{n} \) is the weight for national region and population \(n \).

The formulas for the weight variables are as follows:

- **REGION_WEIGHT**: \(\frac{n_{i}}{N_{i}} \)
- **STATE_WEIGHT**: \(\frac{n_{j}}{N_{j}} \)
- **COUNTY_WEIGHT**: \(\frac{n_{k}}{N_{k}} \)
- **POPULATION_WEIGHT**: \(\frac{n_{l}}{N_{l}} \)
- **NATIONAL_WEIGHT**: \(\frac{n_{m}}{N_{m}} \)
- **NATIONAL_WEIGHT_POP**: \(\frac{n_{n}}{N_{n}} \)

Where \(n_{i} \) is the number of cases in region \(i \), \(N_{i} \) is the total number of cases in region \(i \), \(n_{j} \) is the number of cases in state \(j \), \(N_{j} \) is the total number of cases in state \(j \), \(n_{k} \) is the number of cases in county \(k \), \(N_{k} \) is the total number of cases in county \(k \), \(n_{l} \) is the number of cases in population \(l \), \(N_{l} \) is the total number of cases in population \(l \), \(n_{m} \) is the number of cases in national region \(m \), \(N_{m} \) is the total number of cases in national region \(m \), and \(n_{n} \) is the number of cases in national region and population \(n \), \(N_{n} \) is the total number of cases in national region and population \(n \).