Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome

Xiao Jiang1,2 | Praveen K. Raju1,2 | Nazzareno D’Avanzo3 | Mathieu Lachance1 | Julie Pepin2 | François Dubeau4 | Wendy G. Mitchell5 | Luis E. Bello-Espinosa6 | Tyler M. Pierson7 | Berge A. Minassian8 | Jean-Claude Lacaille2 | Elsa Rossignol1,2

1Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada
2Department of Neurosciences, University of Montréal, Montréal, Canada
3Department of Pharmacology and Physiology, University of Montréal, Montréal, Canada
4Department of Neurosciences, The Montreal Neurological Institute, McGill University, Montréal, Canada
5Neurology Division, Children's Hospital Los Angeles & Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
6Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
7Departments of Pediatrics and Neurology, The Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
8The Hospital for Sick Children Research Institute, Toronto, Canada

Abstract

Objective: Developmental epileptic encephalopathies (DEEs) are genetically heterogeneous severe childhood-onset epilepsies with developmental delay or cognitive deficits. In this study, we explored the pathogenic mechanisms of DEE-associated de novo mutations in the CACNA1A gene.

Methods: We studied the functional impact of four de novo DEE-associated CACNA1A mutations, including the previously described p.A713T variant and three novel variants (p.V1396M, p.G230V, and p.I1357S). Mutant cDNAs were expressed in HEK293 cells, and whole-cell voltage-clamp recordings were conducted to test the impacts on CaV2.1 channel function. Channel localization and structure were assessed with immunofluorescence microscopy and three-dimensional (3D) modeling.

Results: We find that the G230V and I1357S mutations result in loss-of-function effects with reduced whole-cell current densities and decreased channel expression at the cell membrane. By contrast, the A713T and V1396M variants resulted in gain-of-function effects with increased whole-cell currents and facilitated current activation (hyperpolarized shift). The A713T variant also resulted in slower current decay. 3D modeling predicts conformational changes favoring channel opening for A713T and V1396M.
Developmental epileptic encephalopathies (DEEs) are a diverse group of severe early onset epilepsies with refractory seizures, developmental delay (DD), and/or intellectual disability (ID) resulting in long-term morbidity and increased mortality.1-3 The underlying causes of DEEs are heterogeneous and include brain malformations; pre- and perinatal brain lesions (infections, strokes), neurometabolic disorders, chromosomal rearrangements, and various monogenic disorders.

The advent of next-generation sequencing (NGS) methods, including whole exome and genome sequencing, has significantly increased our ability to identify a genetic cause for patients with unexplained nonlesional DEEs, resulting in the identification of a molecular mechanism in approximately 35%-40% of patients.4-9 DEEs are genetically heterogeneous, with at least 110 genes associated with DEE or with isolated intellectual deficiency.5 In addition, most DEE-associated mutations are sporadic de novo variants rather than inherited dominant or recessive variants as seen in other neurodevelopmental disorders.5,6 Thus a novel de novo variant in a known DEE gene identified in a child with a consistent phenotype is considered likely pathogenic when it is rare and never reported in controls; when it affects highly conserved residues with predicted pathological impact on protein structure, conformation, or function (as predicted by bioinformatics tools); and when it involves a gene that is intolerant to haploinsufficiency.5 The functional validation to study the direct impact of a given variant on protein localization and function provides more definitive evidence of the variant's pathogenicity and confirms the genetic diagnosis. It also informs on the pathophysiological mechanisms and guides therapies.

We recently reported that inherited dominant loss-of-function (LOF) mutations (ie, deletions or nonsense mutations) in the CACNA1A gene, encoding the α1A-subunit of CaV2.1 calcium channels, cause DEE with generalized epilepsy, a spectrum of neurocognitive deficits (attention deficit, learning disability, autism spectrum disorder and/or frank intellectual disability [ID]), and a mild form of episodic ataxia.10 Subsequently, we identified de novo variants in the CACNA1A gene, including the previously reported A713T variant7,11 and the novel V1396M variant, in patients with severe DEE in the spectrum of Lennox-Gastaut syndrome carrying de novo missense variants in the CACNA1A gene.

Key Points
• We describe the clinical phenotype of four patients with severe developmental epileptic encephalopathies (DEEs) in the spectrum of Lennox-Gastaut syndrome carrying de novo missense variants in the CACNA1A gene.
• We provide functional evidence demonstrating that these DEE-associated CACNA1A de novo mutations indeed alter CaV2.1 channel function through either a gain-of-function or a loss-of-function effect.
• A better understanding of the functional impact of specific CACNA1A missense mutations might ultimately help guide therapies for patients with CACNA1A-associated DEEs.

To study the functional impact and potential pathogenicity of DEE-associated de novo CACNA1A variants, we expressed mutant or wild-type (WT) mouse Cacna1a cDNA in human embryonic kidney (HEK) 293 cells and characterized barium currents using whole-cell patch-clamp techniques.

Significance: Our findings suggest that both gain-of-function and loss-of-function CACNA1A mutations are associated with similarly severe DEEs and that functional validation is required to clarify the underlying molecular mechanisms and to guide therapies.

KEYWORDS
CACNA1A, CaV2.1, de novo mutations, epilepsy, epileptic encephalopathies, immunofluorescence, Lennox-Gastaut syndrome, patch-clamp, structural modeling.
recordings. In addition, we investigated channel localization using immunocytochemical labeling in transfected HEK293 cells and in transfected mice CaCna1ac/c neurons, after deleting the endogenous allele. Finally, we predicted the impacts of the various mutations on CaV2.1 channel structure using 3D modeling. Our findings suggest that both GOF and LOF mutations can induce severe DEEs in the spectrum of LGS.

2 | METHODS

2.1 | Patient recruitment and genetic investigation

The four patients with DEE described in this study were followed at pediatric epilepsy clinics across North America. Detailed clinical history, including seizure phenotypes and neurological examination were performed by pediatric neurologists/epileptologists. Demographic, medical data, and results of laboratory and imaging studies were obtained from the medical charts. Genomic DNA was extracted from peripheral blood, and targeted gene panel sequencing, whole exome, or genome sequencing were performed in the probands, and results of laboratory and imaging studies were obtained from the medical charts. Inheritance patterns were investigated by targeted sequencing in parents, and the mutations were considered to be de novo when not inherited, after confirming paternity status through haplotyping.

2.2 | Cloning and cDNA constructs

Full-length cDNAs encoding mouse α1A (GenBank accession numberAY714490), rat β3 (GenBank accession number M88751), mouse β4 (GenBank accession number BC026479.1), and rat α2δ-1 (GenBank accession number M86621) calcium channel subunits were each cloned in the pcDNA3.1 (+)/Neo plasmid expression vector under the control of the cytomegalovirus (CMV) promoter. CaVα1A, CaVβ, and CaVα2δ plasmids (Addgene # 26578; # 26574, and # 26575, respectively) were gifts from Diane Lipscombe. CaVβ4 plasmid (pcMV-SPORT6, clone # 4501980) was obtained from Open Biosystems (Dharmacon Inc.). The equivalent amino acid substitutions of the following human CACNA1A mutations (DEE: G230V, A713T, I1357S, and V1396M; FHM1: V714A), were introduced in the mouse CaCna1ac/c DNA (DEE: G232V, A715T, I1308S, and V1347M; FHM1: V716A) by standard overlap extension PCR using specific forward and reverse primers with the overhang restriction enzyme sites HindIII, BamHI, and MauBI. All cDNA clones used in this study were sequenced in full to confirm their integrity.

2.3 | Expression in HEK293 cells and neurons

Detailed protocols are provided in Supplementary Methods. Briefly, HEK293 cells were cultured onto 12 mm glass coverslips precoated with poly-L-lysine (0.1 mg/mL each, Sigma) in 35 mm dishes and were transfected using lipofectamine 2000 (Invitrogen, CA). Plasmids expressing CaV2.1 calcium channel subunits (α1A + β3 + α2δ/61), 1.6 μg/subunit, or an enhanced green fluorescent protein (EGFP) as a marker of successful transfection, were coexpressed at a molar ratio of 1:1:1:0.125 for α1A, CaVβ, α2δ, and EGFP, using published protocols. For selected experiments, the β4 subunit rather than the β3 subunit was coexpressed, at a molar ratio of 1:2:2:0.125 (α1A + β4 + α2δ/61 + EGFP).

Primary cortical neuronal cultures were prepared from CaCna1ac/c mouse postnatal cortex (P2-P4) using the Worthington Papain Dissociation System (Worthington Biochem) and protocols modified from prior publications. Transfections were conducted with calcium phosphate to coexpress plasmids encoding WT or mutant CaCna1a cDNA (1.5 μg), pCI-Cre plasmid (0.06 μg) (Promega), to delete the endogenous allele, and pIRES-EGFP (0.12 μg) (Clontech, Catalog # 6029-1) to mark transfected neurons.

Two days after transfection, HEK293 cells and neurons were processed for immunofluorescence using standard protocols. The following primary antibodies were used: rabbit polyclonal anti-CaVα1A (Alomone Labs, 1:100), mouse polyclonal anti-ZO-1 (Invitrogen, 1:100), and rat polyclonal anti-GFP (Nacalai USA Inc. 1:1000). After three washes in 1XPBS, incubation with the following secondary antibodies (1:1000) was performed at room temperature for 1 hour: Alexa Fluor-488 goat anti-rat IgG, Alexa Fluor-594 goat anti-rabbit IgG, and Alexa Fluor-647 goat anti-mouse IgG (Invitrogen). Fluorescence integrated density to assess CaV2.1 channel localization was conducted using an automated detection plug-in in ImageJ (National Institutes of Health). We quantified the fluorescence integrated density within the whole cell (I_T) or the cytoplasm (I_C), after delineating the outer and inner membrane perimeter using ZO1 staining. We defined the membranous fluorescence as I_M = (I_T − I_C), as described previously (see Supplementary Methods).

2.4 | Electrophysiology

Whole-cell recordings were performed on EGFP+ HEK293 cells with an Axopatch 700B amplifier at room temperature (19-23°C; see Supplementary Methods). Voltage-clamp recordings were low pass filtered at 2 kHz, digitized at 10 kHz using Digidata 1440A converter (Molecular Devices) and analyzed using pClamp 10 software (Molecular Devices, USA). Recordings were left to
equilibrate for 3-5 minutes after getting whole-cell access. Series resistance was typically compensated by 50%-70%. The residual capacitance currents and linear leak currents were subtracted using a –P/4 protocol. Voltage-dependent barium currents were evoked using steps (140 msec duration) from −80 mV holding potential (Vh) to −60 to +60 mV test voltages, in 10 mV increments at 10 second intervals. Current density was obtained by dividing current amplitude by cell capacitance. For comparing mutant and WT currents, peak current density was measured during voltage steps to 0 mV. Time constant (τ) of activation was quantified on currents evoked at 10 mV fitted with the exponential equation: $Y = A_1 \exp(-t/\tau) + C$. The voltage-dependence of activation was assessed from conductance (G)-voltage relationship obtained by the equation $G = I/(V_m - V_{rev})$, where V_{rev} is the extrapolated reversal potential. Activation curves were fitted by the Boltzmann equation: $G/G_{max} = 1/[1 + \exp(V-V_{0.5})/k]$, where $V_{0.5}$ is the potential at which the conductance is half-maximally activated, and k is the slope factor. We fitted each cell individually and obtained $V_{0.5}$ and k measures for every cell by fitting G/G_{max} curve in each cell individually, and then we calculated the mean $V_{0.5}$ and k for each group.

The following criteria were used to select cells with proper voltage clamp; series resistance was less than 15 MΩ and stable throughout the recordings; holding currents were approximately −50 pA and always less than −100 pA; currents were stable throughout the voltage-clamp recordings; and cells with peak currents less than 100 pA were excluded. In addition, to minimize variability, transfections of mutant and WT channels were done at the same time and electrophysiologic recordings were interleaved on each day of experiments. We took the following precautions to minimize rundown effects on our results. First, in each experiment, we applied the protocol for current activation at 3-5 minutes after gaining whole-cell access. Second, we used the same experimental whole-cell protocols for all WT and mutant channel experiments.

2.5 | 3D structural modeling

The atomic structure of the CaV1.1 α-subunit determined by cryoelectron microscopy (PDB: 5GJV) was used as a template for the generation of a homology model of mouse CaV2.1. Sequence alignments were performed using the Clustal Omega webserver. Homology models were built in stages using a combination of ICM version 3.5 and the I-TASSER webserver. Homology modeling of the transmembrane helices was performed first, to ensure fidelity to the sequence alignments, followed by a second round of model building to reintroduce the loops. Loop sampling and local minimization was performed using ICM version 3.5.

2.6 | Statistics

Statistical analyses and graphs were made using SigmaPlot12.5 (Systat software) for electrophysiological data, and GraphPad Prism (v4.0; GraphPad Software) for other data. Comparisons between groups were made using one-way analysis of variance or Student's t test for normally distributed data; or Mann-Whitney U (MWU) for not normally distributed data. Data were presented as mean ± standard error of the mean (SEM), and $P < .05$ was considered statistically significant.

3 | RESULTS

3.1 | Clinical description and genetic findings

We identified four children with sporadic DEE carrying de novo CACNA1A missense variants (Figure 1A). The patients presented with mixed seizure disorders, global DD, moderate-severe ID, and signs of cerebellar dysfunction (ataxia, tremors) (Table 1). All variants identified were heterozygous de novo variants (not inherited from the parents), never reported in the ExAC (Exome Aggregation Consortium) or GAD (Genome Aggregation Database) databases. The variants were located in highly conserved sequences (Figure 1B) and were predicted damaging by bioinformatics scores (SIFT, PolyphenV2) (Table 1), thus suggesting that they are likely pathogenic according to the American College of Medical Genetics and Genomics guidelines. The c.2137G>A (p.A713T) variant is a known mutation, previously reported in another child with DEE. The three other variants were novel mutations: c.4186G>A (p.V1396M), c.689G>T (p.G230V), and c.4070T>G (p.I1357S), two of which we recently reported in a study using whole genome sequencing in patients with DEE. In addition, Patient 4, with the de novo mutation p.V1396M, also had a rare CACNA1A missense variant (c.6940G>A: p.G2314S) inherited from her asymptomatic mother (Figure 1A, Table 1). However, this variant was not considered pathogenic based on bioinformatics prediction tools and will not be discussed further here.

Published CACNA1A mutations associated with DEE, DEE with episodic ataxia (EA2), or FHM1, span most domains of the CaV2.1 channels, with a concentration of pathologic variants in the voltage-sensor segments (S4) of each domain and the intracytoplasmic loop between domains II and III of the channel, as illustrated in Figure 1C (red: de novo mutations in DEE; blue: inherited LOF mutations in DEE/epilepsy with EA2; yellow: inherited GOF mutations in FHM1). Three of the CACNA1A variants described in the current study (in Figure 1C, red lettering, red circles) are localized on the cytoplasmic side of the S4-S6 segments of the channel's transmembrane domains (S4 voltage-sensor of Domain III (p.I1357S);
FIGURE 1 CACNA1A mutations. A, Pedigrees for the four affected individuals identified in this study. Note that all disorders were sporadic. B, Multiple sequence alignments of CaV2.1 alpha1 subunit protein sequences showing conservation across different species for each mutated residue. The equivalent amino acid positions in mouse CACNA1A are shown below. C, Schematic representation of the human CaV2.1 channel topology showing domains I-IV with transmembrane segments S1-S6. Each circle represents a mutation, color-coded as follows: EE (red; *de novo*), EA2 and EE/epilepsy (blue; inherited LOF), and FHM1 (yellow; inherited GOF). The four *de novo* mutations G230V, A713T, I1357S, and V1396M described in this study are written in red fonts.
S5 of Domain I (p.G230V), or S6 of Domain II (p.A713T), which form the pore of the CaV2.1 channel. By contrast, the V1396M variant is positioned in the transmembrane S5 segment of Domain III, towards the extracellular milieu.

3.2 Opposite functional impacts of DEE-associated CACNA1A variants on CaV2.1 channels

The effects of the CACNA1A variants on CaV2.1 channel function were assessed using transient expression of mouse cDNA expressing the homologous variants in HEK293 cells (Human/mouse: G230V/G232V, I1357S/I1308S, A713T/A715T, and V1396M/V1347M) followed by whole-cell recordings of voltage-gated Ba\(^{2+}\) currents. We find that the G232V and I1308S variants are LOF mutations. Indeed, the current-voltage (I-V) relation of currents from G232V or I1308S mutant (MT) channels (Figure 2A1-B1), showed a reduction in peak current density compared to WT (by 76% and 36%, respectively) (Figure 2A2-B2). Furthermore, when coexpressed with WT in a 1:1 ratio, peak current density was reduced compared to WT (by 51% for G232V and WT; 48% for I1308S and WT; Figure 2A2-B2). Similar results were obtained when we incubated the cells at 28°C or when we coexpressed the β4 instead of the β3 subunit, two established methods to increase CaV2.1 channel expression at the cell membrane32,33 (Figure S1).

We characterized whether the coexpression of G232V or I1308S MT and WT channels affected the kinetics and voltage dependence of currents evoked at +10 mV. No difference was observed in the time constant of activation in currents of both MTs (Figure 2A2-B2). However, currents of I1308S, but not of G232V, showed a slower rate of inactivation (33%...
increase in time constant). Furthermore, we observed a decreased slope of the activation curve for both the G232V MT and I1308S MT (Figure 2A3,B3). Thus G232V or I1308S mutant currents are less activated by voltage. However, these subtle changes are unlikely to account for the large reduction in peak current density, which might reflect reduced channel expression at the cell surface.

In contrast, cells expressing A715T MT channels displayed a GOF effect. The I-V relation of A715T MT currents showed larger peak current density (89% increase; Figure 3A1-A2) relative to WT, as observed for the known FHM1-associated GOF mutation (mouse V716A; human V714A)\(^3\) (91% increase; Figure 3B1-B2). However, relative to the V716A variant, the A715T variant induced changes in current kinetics with slower current inactivation (252% increase; Figure 3A2) and a leftward shift of the activation curve, with a steeper slope and a more hyperpolarized midpoint of activation (changed by −10 mV; Figure 3A3). V716A MT currents showed only a steeper slope of the activation curve compared to WT (Figure 3B3). These results suggest that the A715T mutation results in a GOF of Ca\(_{\text{v}}\)\(_{2.1}\) channels with a combination of larger currents and negative shift in voltage dependence of activation with an impact greater than that of the FHM1- V716A variant, which does not significantly affect current kinetics.

With the same paradigm, the V1347M MT channels displayed similar peak currents, I-V relation, kinetics, and voltage dependence as WT currents (Figure 3C1-C3). However, using different subunit ratios and accessory subunits to enhance membrane expression (1:2:2 ratio of α1a: β4: α2δ),\(^3\) the V1347M variant induced a GOF of Ca\(_{\text{v}}\)\(_{2.1}\) channels. I-V relation of V1347M MT currents showed larger peak current density (49% increase; Figure 3D1-D2) relative to WT. Kinetics of V1347M MT currents were unchanged (Figure 3D2) but voltage dependence of activation was altered. The slope of the activation curve was steeper and the midpoint of activation was more hyperpolarized (shifted by −5 mV; Figure 3D3). These findings suggest that the
FIGURE 3 Functional effects of the A715T, V716A, and V1347M mutations of CaV2.1 channel. A1, (left) Representative whole-cell voltage-clamp recordings of barium currents in HEK293 cells expressing WT (top) and A715T (bottom) CaV2.1 channels, obtained by voltage steps, as shown below (right). Plots of current density-voltage relations for WT and A715T mutant currents for all cells. A2, A715T mutation increased current density and affected current kinetics. Summary graphs for all cells of peak current density (at 0 mV) for WT and A715T currents (left), time constant of activation (middle), and inactivation (right) for WT (blue) and A715T (green) currents. A3, The A715T mutation induces a leftward shift in the voltage dependence of activation. (left) Plots of activation curves for WT (blue) and A715T (green) currents. Solid lines are Boltzmann equation fit. Summary graphs for all cells of mid-activation point ($V_{0.5 \text{ activation}}$) (middle) and slope factor of activation curves (k activation) (right). B1-B3, Similar representation for WT (blue) and V716A mutant currents (pale blue). C and D, Similar representation for WT (blue) and V1347M mutant currents (yellow), by cotransfecting subunits with the following ratio: α1a + β3 + α2δ (1:1:1) (C1-C3) and α1a + β4 + α2δ (1:2:2) (D1-D3). Numbers in bar graphs represent number of cells. *P < .05, **P < .01, ***P < .001, compared to WT (MWU test for nonnormal data or Student's t test for normally distributed data).
V1347M mutation causes a GOF effect with larger currents and a more pronounced voltage dependence of activation.

Taken together, our results indicate that the G232V and I1308S mutations exert an LOF effect, whereas the A715T and V1347M mutations induce a GOF effect on CaV2.1 channels. In addition, the A715T and V1347M mutations appear to facilitate current activation.

3.3 | Cell surface expression of CaV2.1 mutant channels

To assess whether the mutations reported here also affect the channel localization at the cell membrane, we performed immunocytochemical staining after 48 hours of transfection for CaV2.1 and a cellular membrane marker (ZO-1) in HEK293 cells transfected with the WT or MT Cacna1a cDNAs and associated β3 and α2δ-1 subunits (as above). Although the A715T MT channels are properly expressed at the cell membrane, similar to WT channels, the G232V and I1308S MT channels accumulate in intracytoplasmic inclusions, with minimal membranous expression (Figure 4A). The V1347M MT channels display an intermediate phenotype with a 50% reduction of membranous expression compared to WT (Figure 4A).

Given that channel subunit trafficking to the cell membrane may differ in neurons due to the availability of native binding partners and associated subunits, we next sought to

FIGURE 4 Impact of various mutations on CaV2.1 channels expression. A, Representative examples of CaV2.1 channel localization revealed by immunostaining for the α1 subunit of CaV2.1 (red) and the cell membrane protein ZO-1 (green) in HEK293 cells. Note the significant intracytoplasmic accumulation for LOF mutant channels (G232V, I1308S) and intermediate phenotype for the GOF V1347M mutant channels. The graph shows quantification of fluorescence intensity indicating significantly reduced membrane expression relative to cytoplasmic expression for CaV2.1 G232V (pale orange) and I1308S (pale pink) mutant channels compared to WT (blue), and intermediate phenotype for V1347M (yellow) mutant channels (n ≥ 40 cells per genotype). B, Representative examples of CaV2.1 channel localization revealed by immunostaining for the α1 subunit of CaV2.1 (red) and GFP (green), were quantification illustrated in the graph below (n ≥ 40 neurons per genotype). *P < .05, ***P < .001, ns: nonsignificant by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test. Error bars represent means ± standard error of the mean (SEM)
assess whether the deficits in channel trafficking observed in HEK293 cells also occurred in neurons. We thus expressed the WT or MT cDNA in primary neurons derived from mice carrying a conditional Cacna1a allele and deleted the endogenous allele by coexpressing the Cre recombinase. We observed similar deficits in channel intracellular trafficking for the G232V and I1308S MT channels, with clustering of the MT protein in intracytoplasmic inclusions (Figure 4B). By contrast, both the A715T and V1347M MTs were properly expressed at the cell membrane, with levels comparable to those of the WT channels (Figure 4B).

3.4 Impact of de novo CACNA1A mutations on CaV2.1 structure

To predict the functional impact of the mutations reported here on CaV2.1 channel structure, we generated a homology model based on the atomic resolution structure of CaV1.1 channels (Figure 5A,B). Modeling of the A715T MT channels suggests that the presence of a threonine in this position distorts the helix, thus inducing steric clashes with the F365 residue (Figure 5C, left), which do not occur in the WT channels. This highly constrained conformation is energetically unfavorable. Relieving this strain could induce a conformational change that favors channel opening thereby leading to a GOF phenotype. Similarly, modeling of the V1347M mutation suggests that the novel methionine residue induces a steric clash with neighboring residues (V506, V1344, and V1399) that does not occur in WT channels (Figure 5C, right). We postulate that these steric clashes prevent the motion of the voltage-sensor domain downward toward its resting state, rendering the channels more sensitive to depolarization and increasing channel open time.

FIGURE 5 3D structure of the CaV2.1 channels using in silico modeling. A, Side view; B, Axial view. Color dots illustrate the position of individual mutations represented here in the mouse CaV2.1 channel. C, Both GOF mutations (A715T and V1347M) are predicted to induce steric clashes with nearby residues on adjacent loops, thus altering channel gating.
By contrast, no obvious conformational changes were observed for the two LOF variants G232V and I1308S (data not shown). Thus, although GOF mutations exert their effect at least partly through structural changes that prevent proper gating of CaV2.1 channels, the two LOF mutations likely exert their effect by preventing proper channel trafficking to the cell membrane. Alternatively, these mutations may exert their effects in other conformational states not represented in the atomic structure.

4 | DISCUSSION

Here, we report four patients with \textit{de novo} missense mutations in the \textit{CACNA1A} gene presenting with a developmental phenotype characterized by DEE with severe refractory seizures starting in the first 6 months of life, global developmental delay evolving toward moderate to severe ID, and variable motor symptoms (ataxia, tremors, spasticity, alternating hemiplegia). Whereas LOF mutations in \textit{CACNA1A} have been associated traditionally with EA2,14 GOF mutations have been associated with FH1.15 We recently found that inherited \textit{CACNA1A} LOF mutations cause EE with cognitive impairment, autism, and a mild EA2 phenotype,10 and that \textit{de novo} missense \textit{CACNA1A} variants can be found in 1\% of children with a more severe EE in the spectrum of Lennox-Gastaut syndrome,5 as described also by others.11 However, the mechanisms by which some \textit{de novo} missense variants cause such a profound phenotype were unclear. We now show that both LOF (G230V, I1357S) and GOF (A713T, V1396M) missense mutations cause severe DEE, with additional impacts of GOF mutations on current activation and inactivation properties not seen with previously reported FH1-associated GOF mutations.

Furthermore, the LOF mutations described here resulted in reduced channel trafficking to the cell membrane, with clustering in intracytoplasmic inclusions, whereas the expression of the MT and WT cDNA reduced the peak current density by half compared to that of WT channels. Together, these data suggest the possibility of a dominant-negative effect by which the MT subunit prevents the proper shuttling of the WT channel to the cell membrane, as described for other EA2-associated \textit{CACNA1A} mutations causing protein misfolding and pathologic interactions between MT and WT subunits with sequestration in the endoplasmic reticulum.36,37 Although this possibility should be explored further, a dominant-negative effect would be consistent with the more severe phenotype observed in patients with \textit{de novo} LOF mutations (G230V and I1357S) compared to patients with hereditary heterozygous haploinsufficiency (ie, gene deletion, frame-shift, or stop-gain mutations).10

Of interest, different \textit{CACNA1A} GOF and LOF mutations have also been recently associated with developmental ataxia, global developmental delay, and progressive cerebellar atrophy in children,12 suggesting that \textit{CACNA1A} mutations with opposite functional impact can have similar severe developmental presentations. Furthermore, both GOF or LOF mutations in other neuronal channels have been associated with DEE of variable severity (\textit{SCN1A},38 \textit{KCNQ2},39 \textit{KCNQ5},40 \textit{KCNA2}41 and \textit{KCNB1}42).

The mechanisms by which GOF or LOF mutations can both result in similar epilepsy phenotypes may lie in the differential impact of such mutations in different component of neuronal circuits. For \textit{CACNA1A}, we previously demonstrated that, in \textit{Nkx2.1Cre; Cacna1a}flox/flox mice, LOF of \textit{Cacna1a} in cortical and hippocampal GABAergic interneurons selectively impairs synaptic release from parvalbumin-positive fast-spiking basket cells, whereas somatostatin-positive INs are unaffected, and that this is sufficient to cause epilepsy.43 By contrast, the deletion of \textit{Cacna1a} in all cortical pyramidal cells (\textit{Emx1Cre; Cacna1a}flox/flox mice) did not result in epilepsy in early adulthood, although it did reduce cortical excitability and alleviated the seizure phenotype in double-mutant mice (\textit{Nkx2.1Cre; Emx1Cre; Cacna1a}flox/flox mice).43 In addition, circuit remodeling with a gain of thalamic excitability results in later-onset epilepsy when \textit{Cacna1a} is deleted selectively in layer VI pyramidal cells.44 Thus in the case of \textit{Cacna1a} LOF mutation, a primary impairment of GABA release from cortical and limbic interneurons is predicted to drive seizure onset.

The mechanisms by which some \textit{CACNA1A} GOF mutations result in epilepsy remain to be explored but likely reflect the functional impact of the particular variants on channel function. Indeed, although most patients with FH1 carrying GOF \textit{CACNA1A} mutations do not develop seizures (ie, R192Q45), a minority of patients develop complex phenotypes with hemiplegic migraine, ataxia, and transient post-traumatic brain edema with seizures, presumably due to the greater impact of specific variants on peak current density (ie, S218L).46,47 Furthermore, although heterozygous knock-in mice for the R192Q and S218L mutations do not develop seizures, homozygous mutants for the S218L variant develop epilepsy, likely reflecting gene dosage effects.48 Thus GOF variants that induce greater impacts than the FH1-associated variants on calcium currents have a higher likelihood of inducing epilepsy. We find that, in contrast to the FH1-associated V714A mutation, both EE-associated GOF mutations identified here (A713T, V1396M) also perturb current kinetics (shift of activation toward more hyperpolarized potentials) resulting in an even greater impact on net charge transfer with prolonged currents, suggesting that the magnitude of the functional impact on CaV2.1 currents determines the clinical phenotype.

Nonetheless, the network mechanisms by which some GOF variants cause epilepsy while others do not remain to be explored. Although the FH1-associated GOF mutations result in facilitated glutamatergic transmission at
pyramidal cell synapses with unaltered inhibitory transmission from GABAergic interneurons (see Cacna1a^{R192Q} and Cacna1a^{K218H} mice\(^{59}\)), it is possible that DEE-associated variants that induce much greater GOF due to combined gain of conductance and channel open time might indirectly affect other components of the neuronal networks, perhaps through calcium excitotoxicity and cell death. This will need to be explored further using appropriate animal models.

Finally, given that both LOF and GOF CACNA1A mutations present with similarly severe DEE phenotypes, functional validation is essential to correctly attribute pathogenicity and to clarify the molecular mechanisms by which novel variants affect Cacna2.1 channels. Future clinical characterization of larger patient cohorts together with functional validation of individual mutations may help distinguish clinical endophenotypes associated with LOF or GOF mutations. In turn, this may help guide future therapies, since patients with GOF mutations might be predicted to respond to CaV2.1 antagonists designed to enhance trafficking of the channels to the cell membrane.\(^{50}\) Ultimately, clarifying the mechanisms by which specific mutations affect the function and localization of Cacna2.1 channels will improve therapeutic interventions for patients with CACNA1A-associated DEEs.

ACKNOWLEDGMENTS

We thank the families involved in this project for their dedication and collaboration. This work was supported by grants from the Savoy Foundation, Epilepsy Canada Foundation, RMGA, and CIHR, to E.R; as well as by CIHR and FRQS, GRSNC (Group grant) to J.-C.L. E. R. receives a clinician-scientist salary award from FRQS and a Young Investigator Award from the CIHR. J.-C.L. is the recipient of the Canada Research Chair in Cellular and Molecular Neurophysiology. X. J. received a postdoctoral training award from the Savoy Foundation. T.M.P. was funded by the Cedars-Sinai institutional funding and the Cedars-Sinai Diana and Steve Marienhoff Fashion Industries Guild Endowed Fellowship in Pediatric Neuromuscular Diseases.

CONFLICT OF INTEREST

The authors have no conflict of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and declare that this report is consistent with those guidelines.

ORCID

Jean-Claude Lacaille https://orcid.org/0000-0003-4056-0574

Elsa Rossignol https://orcid.org/0000-0002-9304-9385

REFERENCES

of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2 +]. J Neurosci. 2014;34:7047–58.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.