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CACNA1A haploinsufficiency causes cognitive
impairment, autism and epileptic encephalopathy
with mild cerebellar symptoms

Lena Damaj1,2, Alexis Lupien-Meilleur3, Anne Lortie1,3, Émilie Riou4, Luis H Ospina5, Louise Gagnon1,
Catherine Vanasse1 and Elsa Rossignol*,1,3

CACNA1A loss-of-function mutations classically present as episodic ataxia type 2 (EA2), with brief episodes of ataxia and

nystagmus, or with progressive spinocerebellar ataxia (SCA6). A minority of patients carrying CACNA1A mutations develops

epilepsy. Non-motor symptoms associated with these mutations are often overlooked. In this study, we report 16 affected

individuals from four unrelated families presenting with a spectrum of cognitive impairment including intellectual deficiency,

executive dysfunction, ADHD and/or autism, as well as childhood-onset epileptic encephalopathy with refractory absence

epilepsy, febrile seizures, downbeat nystagmus and episodic ataxia. Sequencing revealed one CACNA1A gene deletion, two

deleterious CACNA1A point mutations including one known stop-gain and one new frameshift variant and a new splice-site variant.

This report illustrates the phenotypic heterogeneity of CACNA1A loss-of-function mutations and stresses the cognitive and epileptic

manifestations caused by the loss of CaV2.1 channels function, presumably affecting cerebellar, cortical and limbic networks.

European Journal of Human Genetics (2015) 23, 1505–1512; doi:10.1038/ejhg.2015.21; published online 4 March 2015

INTRODUCTION

The CACNA1A gene on chromosome 19p13 encodes the alpha1
subunit of the CaV2.1 P/Q-type voltage-gated calcium channel. Muta-
tions in this gene cause three allelic autosomal dominant conditions:
episodic ataxia type 2 (EA2, OMIM: 108500), spinocerebellar ataxia
type 6 (SCA6, OMIM: 183086) and familial hemiplegic migraine type
1 (FHM1, OMIM:141500).1–3 These conditions occasionally overlap
since patients with FHM1 may have cerebellar symptoms, and 33% of
patients with SCA6 display episodic features characteristic of EA2.4–6

EA2 usually presents during childhood or early adulthood7 with
intermittent episodes of ataxia and nystagmus lasting minutes to days.8

These episodes are classically triggered by exertion, stress, heat, fever,
alcohol, caffeine or drugs such as phenytoin.9 They tend to respond to
acetazolamide or 4-aminopyridine (4-AP). A downbeat nystagmus
often persists between episodes.10 Most patients eventually develop
progressive ataxia with cerebellar atrophy.7 A minority of patients
present generalized absence epilepsy11 and/or learning difficulties,5 but
the extent of neurocognitive impairment associated with these
mutations has not been fully described to date.
We describe four French Canadian non-consanguineous families

with 16 affected individuals carrying CACNA1A loss-of-function
mutations and presenting with epileptic encephalopathy or cognitive
impairment including intellectual disability (ID), ADHD or autism, as
well as downbeat nystagmus and intermittent ataxia, which did not
dominate the clinical picture.

METHODS
All patients were investigated on a clinical basis at the CHU Ste-Justine.
Informed consent was obtained for genetic testing in accordance with the

institution’s ethics committee board requirements. Comparative genomic
hybridization (CGH) assays were conducted at the CHUSJ using a 135k-
feature whole-genome microarray (SignatureChip OS2.0 manufactured for
Signature Genomic Laboratories (Spokane, WA, USA) by Roche NimbleGen,
Madison, WI, USA; based on UCSC 2006 hg18 assembly), or at the CHUS
using a 180k-feature whole-genome microarray (Cytosure ISCAv2, 4x180k,
Oxford Gene Technology, Becgbroke, UK), according to the manufacturers’
protocols. Genomic coordinates indicate the minimal size of the CNVs.
CACNA1A sequencing of the entire coding region (47 exons) and flanking
exon–intron splice-site junctions was performed at Athena Diagnostics or at
Medical Neurogenetics Laboratories. Variants identified in the course of this
project were submitted to the ClinVar database (http://www.ncbi.nlm.nih.gov/
clinvar/) (#SCV000196749–SCV000196752).

RESULTS

Clinical descriptions and investigations
The clinical presentation and investigations of patients recruited in this
study are summarized in Table 1. Family trees are illustrated in
Figure 1. Mutations are depicted in Figure 2. Detailed description for
each case is provided in the following sections.

Family 1
Patient 4.1 was born at term after an unremarkable pregnancy and had
normal early psychomotor development before seizure onset. He
developed refractory epilepsy with generalized tonic-clonic seizures
and absences starting at 11 months of age. His electroencephalograms
(EEGs) were characterized by intermittent generalized theta activity
with spikes or with intermittent bi-posterior spike-wave activity. The
seizures were successively treated with a combination of valproic acid,
topiramate and levetiracetam. He also presented with monthly
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episodes of malaise, altered contact, hypotonia and nystagmus lasting
2–3min, which did not respond to anticonvulsive drugs. The child’s
development was globally delayed, with significant language impair-
ment at 18 months of age. At 6 years of age, he displayed a moderate-
severe ID (global IQ: 47) with altered socialization skills. Upon
examination, he presents a downbeat nystagmus and an unsteady
broad-based gait, without frank dysmetria.
The child’s father (3.2) presented with febrile seizures and learning

disabilities with ADHD during childhood but completed his high
school degree and is now employed. Upon questioning, he described
intermittent episodes of ataxia, vertigo, vertical oscillopsia and
dysarthria lasting 15–60minutes, occurring every week, and triggered
by stress, infections, fatigue and sweet foods, since the age of 26 years.
These episodes had been attributed to hormonal imbalances although
he had never consulted a neurologist for these symptoms. Interest-
ingly, his twin brother (patient 3.3) presented similar episodic
symptoms and suffered from impaired socialization skills, had learning
disabilities, required special schooling and is currently unemployed.
The twins’ father (2.3) presents episodic ataxia and persistent
nystagmus. Their brother (patient 3.4) presented febrile seizures
during childhood. He displays infrequent (two to three times a year)
episodes of ataxia lasting less than an hour and triggered by fatigue or
exertion. This man has two children, a girl (patient 4.2) and a boy
(patient 4.3), who both presented with global developmental delay
(DD), autism and ADHD. Both children had single episodes of
behavioral arrest with facial automatisms and had normal EEGs. On
examination, both children display a downbeat nystagmus (see
Supplementary Video S1) and gaze-evoked nystagmus without ataxia
or dysmetria.
CGH and metabolic investigations were normal in all three children

(including lactate, pyruvate, amino acid screen, organic acid screen,
urinary purines and pyrimidines and urine creatine). Patient 4.3
underwent full ophtalmological workup, with normal electroretino-
gram. His brain magnetic resonance imaging (MRI) revealed slight
size asymmetry of the hippocampi without structural anomalies, and
normal cerebellar and brainstem structures. Brain MRIs of the two
other children were normal. Targeted sequencing of the CACNA1A
gene in all three children revealed a variant in exon 23; c.3832C4T
(p.(Arg1278Ter; NM_001127221.1; NG_011569.1; rs121909323)) leading
to a premature stop codon and previously associated with EA2.12,13

Additional sequencing of 35 known epileptic encephalopathy genes in
patient 4.1 as described by Michaud et al,14 was performed and was
negative.

Family 2
Patient 4.1 was born at term after an unremarkable pregnancy. He
presented with global DD evolving toward mild ID, ADHD and
learning difficulties. At 18 months of age, he developed refractory
absences with daily episodes of brief behavioral arrests and facial
automatisms. His EEGs reveal generalized spike-wave activity. His
absences were refractory to valproic acid and ethosuximide but
partially responsive to a combination of valproic acid and levetirace-
tam. In addition, this boy presents recurrent episodes of nystagmus
without ataxia, lasting 5–15 s, occurring two to three times a day, often
precipitated by fatigue or febrile illnesses. At 9 years of age, he remains
with moderate global delay, delayed fine motor skills and he requires
special education. His neurological examination reveals a familial
macrocrania (98th percentile), downbeat nystagmus, hypometric
saccades, slight dysarthria and unsteady gait without frank ataxia.
Upon questioning, the child’s mother (patient 3.1) described

episodes of ataxia, vertigo and nausea, without headache, lastingT
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1–2 h and occurring multiple times a week since the age of 12,
for which she had never consulted. Her episodes resolved with
acetazolamide. Her examination reveals downbeat nystagmus, without
dysmetria or ataxia. Her maternal grandmother (patient 1.1) had
presented similar episodes of ataxia with nystagmus for which she
never sought medical attention. She had lost a son (patient 2.1) at
18 months of age of severe refractory epilepsy.
The child’s maternal uncle (patient 3.2) presents episodes of

intermittent ataxia, nystagmus and oscillopsia, lasting 10–15min,
occurring multiple times per week, precipitated by stress, emotion
and exertion, since the age of 11. These events respond partially to

acetazolamide. He also presented episodes of stress-induced cataplexy,
without myokymia or myotonia. He had mild ID and required special
schooling. He is currently unemployed. He developed a progressive
ataxia with dysarthria in his forties. His neurological examination
reveals dysmetria, gait ataxia and diffuse hyporeflexia.
This man has a 13-year-old daughter (patient 4.2), born at term

from an uneventful pregnancy. At 6 months of age, she developed
episodes of vertigo and ataxia with vomiting. She learned to walk at
16 months of age and was ataxic from the onset. She remained with
paroxysmal episodes of ataxia, nytagmus and malaise lasting 1 h,
recurring daily, precipitated by exertion or fatigue, sometimes

Figure 1 Family trees. The genealogical tree for each family is illustrated, with color-coding for associated symptoms (cf inset). Asterisks denote patients for
which CACNA1A mutations were confirmed.

Figure 2 New and previously reported mutations in CaV2.1. Previously reported mutations in CACNA1A, causing either episodic ataxia type II (EA2; blue
circles) or familial hemiplegic migraine type I (FHM1; white circles) affect most domains of the alpha1 subunit of the CaV2.1 calcium channel, as illustrated
here (adapted from Mantuano et al, 2010). Red circles illustrate loss-of-function mutations reported in this publication.
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accompanied by headaches. These episodes are partially responsive to
acetazolamide. Between episodes, she had progressive gait ataxia and
downbeat nystagmus with vertical oscillopsia. She presented recurrent
generalized febrile seizures from 15 months to 9 years of age. In
addition, she had cognitive deficits with learning disabilities, ADHD
and behavioral difficulties and required special schooling. Her global
IQ was evaluated at 71 on WISC-IV testing. Her neurological
examination is remarkable for downbeat nystagmus, truncal ataxia,
ataxic gait and diffuse hyporeflexia.
The metabolic workup and CGH assay for both children as well

as brain MRIs were unremarkable. CACNA1A sequencing revealed
a new frameshift variant in exon 19, c.2867_2869del (p.(Arg957fs;
NM_001174080.1; NG_011569.1)).

Family 3
Patient 3.1, now 16 years old, was born prematurely at 34 weeks of
gestation from an unremarkable delivery. He presented with DD and
unsteady gait since he learned to walk at 2 years of age. Around 4 years
of age, he developed daily episodes of oscillopsia and ataxia leading to
falls, lasting 15–30min, triggered by exertion or stress. His episodes
responded completely to acetazolamide. He remained with intercur-
rent nystagmus and unsteady gait. He had one brief generalized tonic-
clonic febrile seizure before age 4. He had mild ID (global IQ: 72),
ADHD, dyslexia and required special schooling. His neurological
examination revealed downbeat nystagmus, horizontal gaze-evoked
nystagmus, saccadic visual pursuit, hypermetric saccades, limb hypo-
tonia, unsteady gait during rapid direction changes and no dysmetria.
The boy’s mother (patient 2.1) aged 50 years presented during

childhood with learning difficulties requiring special schooling, ADHD
and dropped out of school after grade 9. She is currently unemployed.
Since 6 years of age, she presented daily episodes of unsteady gait,
nystagmus, malaise lasting 2–3 h, precipitated by stress, fatigue or
exertion. These had been wrongly attributed to anxiety for which she
received benzodiazepines, but responded completely to acetazolamide.
She developed a progressive gait ataxia, mild dysarthria and persistent
nystagmus, which became symptomatic at the age of 42 years. Her
neurological examination revealed downbeat nystagmus and horizon-
tal gaze-evoked nystagmus, hypermetric saccades, mild dysarthria, a
gait ataxia and hand clumsiness without dysmetria.
The boy’s investigation included a normal karyotype, fragile X

screen and metabolic workup. His brain MRI revealed a non-specific
millimetric T2 signal hyperintensity in the left globus pallidus.
CACNA1A sequencing in both individuals revealed a new splice-site
variant, c.868+5G4A (NG_011569.1; NM_000068.3), predicted to be
pathogenic by abolishing a known splice site for exon 4. Deletion of
this conserved exon leads to a clear loss-of-function in mice models of
the disease.15,16

Family 4
Patient 3.1 was born at 36 weeks after an uneventful pregnancy. At
8 months of age, he presented with recurrent afebrile episodes of
altered consciousness with eyeball revulsion lasting 10–20 s. He also
presented three brief generalized tonic-clonic seizures. His EEG and
brain MRI were unremarkable. He was treated with carbamazepine,
which was replaced by lamotrigine when seizures recurred. At
12 months of age, the patient developed recurring episodes of ataxia
and nystagmus, lasting 12–24 h, during which he laid on the ground
and refused to stand. Acetazolamide treatment reduced the duration of
these episodes, although they persist at a frequency of two to three
times per month at 2.5 years of age. The episodes are often
accompanied by headache and vomiting, and sometimes require

hospitalization for analgesia and rehydration. The boy displayed a
global DD, walked independently at 24 months and is clumsy on fine
motor skills. He spoke his first intelligible words at 26 months. At 2.5
years of age, his vocabulary was restricted to six words and he could
not juxtapose words. He was socially awkward, does not point, drags
the adults toward objects of interest, has stereotypic and restricted
interests, was impulsive and inattentive and his ADOS confirmed ASD.
His examination at 2.5 years of age revealed emotional lability, poor
eye contact, bilateral epicanthal folds, mild limb hypotonia, truncal
ataxia, unsteady gait with wide base and no dysmetria.
His sister (patient 3.2) was born at term after an uneventful

pregnancy. She presented with global DD: she walked at 15 months,
had poor fine motor skills, spoke her first words at 15 months but
sentences only at 4 years of age. She had mild-moderate ID (global IQ:
58 on WISC-IV testing), ADHD and anxiety, and she required special
schooling. She developed episodic ataxia at 15 months of age, with
episodes lasting 1 h, every 2 weeks, triggered by fever, infections or
vestibular stimulation (swing). These events improved with acetazo-
lamide. She also reported tension headaches once a month. Her
examination at 11.5 years of age revealed downbeat nystagmus, mild
dysarthria, discrete dysmetria, clumsiness on rapidly alternating move-
ments and inability to perform repetitive motor sequences (persevera-
tion and impulsivity), but no ataxia. Her brain MRI and EEG were
unremarkable. A complete metabolic workup at 15 months of age was
negative.
The mother (patient 2.1), now aged 33, had a normal early

development but presented significant learning disabilities with
ADHD, required special schooling from the first grade onwards and
dropped out of school after 10 years. She is currently unemployed. Her
cognitive abilities were not formally tested but she was reported to
have mild ID. She developed episodic ataxia at 21 years of age, with
episodes lasting 2–3 h, recurring once a month, triggered by stress and
exercise. She also developed progressive interictal gait instability since
the age of 32 years and falls frequently. She reported migraines on a
monthly basis. Her brain MRI was unremarkable. Her physical
examination revealed executive slowing, a downbeat nystagmus, mild
dysarthria, bilateral clumsiness on rapidly alternating movements, no
frank dysmetria, no frank ataxia but gait instability on rapid direction
changes and unstable tandem walking.
CGH in both children revealed a maternally inherited 0.085Mb

deletion on chromosome 19: Chr19.hg18:g.13,380,344_13,465,506del
(hg18/NCBI36; NG_011569.1; Del19p13.13), within the CACNA1A
gene and spanning most of the gene.

DISCUSSION

We reported 16 affected individuals from four non-consanguineous
families carrying CACNA1A loss-of-function variants. Although all of
our patients displayed mild intermittent cerebellar symptoms, their
most striking features were the cognitive or behavioral impairments
and seizure susceptibility that accompanied their disorder. This report
therefore stresses the significant non-cerebellar symptoms associated
with CACNA1A haploinsufficiency.
The initial presentation in our patients were diverse and included

epileptic encephalopathy with generalized epilepsy, DD with febrile
seizures, DD with autism spectrum disorder (ASD) or learning
disabilities with episodic ataxia. The acute cerebellar symptoms
displayed by our patients were either an isolated downbeat nystagmus
(n= 2/16, 13%) or episodes of intermittent ataxia, oscillopsia and
nystagmus typical of EA2. These episodes vary in intensity from a few
seconds to hours, are typically provoked by stress, exertion, fatigue or
illness and vary in frequency between individuals, from weekly
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episodes to rare annual episodes. Most patients (n= 12/16, 75%)
developed progressive ataxia during adolescence or adulthood and the
majority present interictal downbeat nystagmus (n= 14/16, 88%). This
is consistent with the current literature describing progressive ataxia in
80% of patients with EA27 and persistent nystagmus in 90% of
patients.10 Nonetheless, in six individuals, the ataxia did not dominate
the initial presentation and was only revealed by close questioning of
relatives for whom the cerebellar symptoms had been misdiagnosed as
anxiety or hormonal imbalance.
A significant proportion of our patients presented with DD

(n= 6/16, 38%), ID (n= 6/16, 38%) or learning difficulties (n= 4/16,
25%), often with ADHD and impulsivity (n= 11/16, 69%). These
deficits were apparent from early childhood and had significant impact
on the patient’s educational path and social integration. In addition,
three children carry a diagnosis of ASD and another has altered social
skills with stereotypic behaviors suggestive of ASD (n= 4/16, 25%).
Cognitive and behavioral impairments have been reported in a
minority of patients with CACNA1A mutations, including in two
children with sporadic epileptic encephalopathies,17,18 in six children
with EA2 and ID,19–22 including two siblings with a 19p13.13
deletion.23 Rare cases of FHM1 with ID24 and progressive cognitive
decline24–26 have been reported. Therefore, our data together with
previous reports suggest that children with global DD, ID or ASD with
mild cerebellar symptoms, with or without a family history suggestive
of EA2, should be investigated for loss-of-function mutations in the
CACNA1A gene.
In addition, the patients described here presented a high rate of

epilepsy or febrile seizures. Indeed, three children from three unrelated
families presented with epileptic encephalopathy with either general-
ized absence seizures or focal seizures with or without generalized
tonic-clonic seizures (n= 3/16, 19%). In addition, six patients (n= 6/15,
40%) had febrile seizures during childhood. CACNA1A loss-of-
function mutations have been associated with rare cases of generalized
absence epilepsy22,27–32 or epileptic encephalopathy.17,18 Furthermore,
up to 7% of patients with EA2 were described to develop absence
epilepsy, as reviewed by Rajakulendran et al.11 The current report
illustrates the higher rate of febrile seizures or epilepsy in patients with
loss-of-function mutations in CACNA1A, which might represent only
a fraction of EA2 cases. Perhaps most importantly, our report indicates
that mutations in CACNA1A should be excluded in children with
developmental disorders and refractory generalized epilepsy even in
the absence of frank cerebellar symptoms. A downbeat nystagmus was
observed in most of our patients and might alert clinicians to this
genetic condition in children with refractory epilepsy.33–39

Mechanistically, CaV2.1 channels are voltage-gated calcium channels
expressed at the pre-synaptic and somatodendritic level of a variety of
cerebral and spinal neuronal populations.15,40,41 CaV2.1 channels have
been shown to mediate synaptic release from a variety of neuronal cell
types, both excitatory and inhibitory, in the cortex, hippocampus,
thalamus and cerebellum.15,42–49 The loss of CaV2.1 channels is
compensated by upregulation of other voltage-gated calcium channels
at most central synapses,15,44,47–49 although with different efficiency,50

resulting in synaptic dysfunction of particular cell types leading to
pathological manifestations. In cerebellar networks, CaV2.1 channels
regulate the whole-cell calcium current density and the intrinsic
excitability of Purkinje cells and granule cells,44,51–53 and exert major
control over glutamate release at the parallel fiber onto Purkinje-cell
synapses.50,54–56 Furthermore, targeted deletions of Cacna1a in cere-
bellar granule cells57 or in Purkinje cells58 result in altered cerebellar
output by respectively decreasing the excitatory drive on Purkinje cells

or their ability to release neurotransmitters, causing ataxia and
dyskinesia in mice.
Within the thalamus, constitutive dysfunction of CaV2.1 chan-

nels in the Cacna1atg/tg mutant mice result in a gain of function of
Cav3.1 T-type calcium channels in the reticular nucleus and in a
persistent tonic thalamic GABAA current in thalamocortical pro-
jection neurons, which together enhance thalamocortical excitation
and contribute to the spike-wave absence seizures phenotype.59–63

In the neocortex and hippocampus, CaV2.1 channels have been
demonstrated to mediate GABA release and synaptic efficiency
from cortical GABAergic parvalbumin-positive fast-spiking inter-
neurons (FS-INs)15,42,43,47 as well as from cortical pyramidal
cells.15 We recently demonstrated that a selective deletion of
Cacna1a from cortical and hippocampal GABAergic interneurons,
while sparing the thalamus and cerebellum, selectively impairs
GABA release from FS-INs, despite an upregulation of N-type
channels, and that this is sufficient to cause generalized epilepsy in
conditional mutant mice.15 Of note, the selective deletion of
Cacna1a in cortical pyramidal cells did not cause seizures but its
combination with forebrain GABAergic interneuron Cacna1a
deletion reduced seizure severity. These studies revealed the
importance of CaV2.1 channels in regulating synaptic release from
cortical FS-INs and the potential involvement of these cell types in
Cacna1a-associated epilepsy.
The mechanisms underlying cognitive dysfunction in Cacna1a

mutants are uncertain. Progressive cognitive deficits have been
reported in the heterozygous leaner mutant mice Cacna1atg(la)/+ 64,65

and in the heterozygous Nogoya mutant mice.66 The cerebellum
projects directly and indirectly to many cortical and limbic structures
involved in learning and cognition,67–69 and deregulation of these
projections might impair cortical and limbic processes, including
motor memory consolidation.70 In addition, cortical inhibitory defects
have been postulated to result in a variety of neurobehavioral
phenotypes in humans and rodents, including cognitive dysfunction,
social deficits and autism,71–76 and could contribute to cognitive
impairment following Cacna1a mutations. Indeed, cortical and limbic
GABAergic interneurons regulate the synchrony of neuronal firing in
populations of neurons and participate in the generation of high-
frequency gamma oscillations involved in cognitive processes and
attention.77–86

In summary, the current report illustrates the spectrum of
neurobehavioral symptoms associated with CACNA1A loss-of-
function mutations in humans. Such behavioral phenotypes might
be overlooked in patients when the epilepsy or ataxia are predominant,
but a careful consideration of potential cognitive and behavioral
consequences in these patients might allow for an earlier instauration
of cognitive-behavioral interventions and improve long-term outcome.
Furthermore, we propose that targeted sequencing of the CACNA1A
gene should be considered in children presenting with downbeat
nystagmus together with epileptic encephalopathy, cognitive impair-
ment or ASD.
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