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Problem Statement
The term Artificial Intelligence (AI) has become pervasive in conversations about the future 
of healthcare. AI has the potential to transform medicine through novel models of scientific 
discovery and healthcare delivery leading to improved individual and public health outcomes. 
Yet misunderstanding and miscommunication abound. Therefore, the concepts related to AI 
need to be defined and explained in order to elevate our general level of understanding of 
and discourse around the topic.

Purpose of the Document

•	 To introduce, define and clarify foundational topics, terms and concepts in AI with 
an emphasis on applications in healthcare, spanning the continuum from biomedical 
discovery, clinical development and patient care. 

•	 To coalesce the Alliance for AI in Healthcare (AAIH), the community it serves, and 
collaborators around a common language. 

•	 To provide a platform for follow-on activities, including whitepapers, in which AAIH and 
collaborators will engage.

•	 To serve as a reference, or lexicon, for future discussions and publications.

Target Audience
This whitepaper is intended for the broader healthcare community, including the scientific 
press, researchers, developers, and other technically inclined healthcare practitioners and 
administrators.
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INTRODUCTION

Artificial Intelligence (AI) has been studied by computer scientists for more than 70 years. 
The term ‘Artificial Intelligence’ itself was coined by John McCarthy in 1956 at the first work-
shop on the subject at Dartmouth College.1 But the theory and topics that became known as 
AI have a much longer history.2 Even so, it remains one of the most complex and misunder-
stood topics in computer science because of the vast number of techniques employed and 
the often-nebulous goals being pursued.

AI and healthcare have been bound together for over half a century. The DENDRAL project, 
an early Expert System based on AI techniques from Stanford in the 1960s, aimed at hy-
pothesis formation and discovery in science. The primary focus was to determine organic 
compound structures by analyzing their mass spectra.3 A lot of new theoretical and program 
language work was undertaken to make this possible. It was followed by MYCIN in the 1970s 
with the goal of identifying infection-causing bacteria and to recommend antibiotics, with 
dosage adjusted for the patient’s weight. The concepts behind MYCIN were then general-
ized to all internal medicine in the 1980s with the CADUSEUS system, described at the time 
as the “most knowledge-intensive expert system in existence.”4 Also in the 1980s, several 
techniques were developed for use in drug discovery. Since then, the number of techniques 
and uses in healthcare has grown steadily against a wider backdrop of AI “summers and 
winters” (The summer/winter metaphor has been the comparison of choice for describing 
the cyclical rise and fall of interest in AI and expectancy/hype around its deliverables). Today 
we are experiencing unprecedented AI summer that many believe is an integral part of the 
Fourth Industrial Revolution.

While a comprehensive history of AI in healthcare is beyond the scope of this paper, these 
historical examples demonstrate that AI has already had an impact on healthcare. Almost all 
major healthcare organizations and life science companies are currently employing or inves-
tigating use of applications based on various AI technologies. The current success (and hype) 
of AI is driven largely by the increase in computing power, availability of cheap storage and 
fast networking, advancement of algorithms, and increased awareness due to highly visible 
and successful consumer use cases. However, navigating the growing interest in and buzz 
around such a large and nebulous subject demonstrates the need for a well-defined set of 
foundational concepts and terms. 

Currently, the areas where AI has made the most advances are those possessing a large 
amount of structured data, where the problem to solve is well understood or straightfor-
ward to define (image recognition, language translation, etc.). The opposite is true for most 

1 Moor, J., The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. AI Magazine, 27 (4), pp. 87-91 (2006)

2 Nilsson, N. J., The Quest for Artificial Intelligence, Cambridge: Cambridge University Press (2010)

3 Lindsay, R. K., et al., DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 61, pp. 
209-261 (1993)

4 Feigenbaum E. A. and McCorduck, P., The Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge to the World, Addison-
Wesley (1983)



6

cases in healthcare. Data are generally hard to obtain because they are expensive, restrict-
ed, and often incomplete or fractured amongst different stakeholders. Commonly these 
data are complex, inherently high-dimensional, semi-structured or unstructured, and the 
questions to answer are not simple to frame. Nonetheless, decisions based on models in 
healthcare can dramatically impact the wellness and lives of patients. For these reasons, 
implementation, validation, and deployment of AI in healthcare requires detailed attention 
to safety and efficacy compared to much lower risk applications used in consumer products 
and services. Therefore, it will take time and effort to get it right. This primer should serve 
that goal by orienting the newcomer in the current understanding and development efforts 
for applications of AI in Healthcare.

DEFINITIONS

Intelligence
Intelligence comes from the Latin word intelligere, meaning ‘understand.’  Merriam-Web-
ster defines intelligence as both “the ability to learn or understand or to deal with new 
or trying situations” and “the ability to apply knowledge to manipulate one’s environment 
or to think abstractly as measured by objective criteria (such as tests).”5 These definitions, 
while useful, are by no means agreed upon by researchers. In fact, Shane Legg and Mar-
cus Hunter (both AI researchers) assembled over 70 definitions of intelligence from various 
fields.6 More recently Max Tegmark, in his book Life 3.0, put forth a simple definition. He 
defines intelligence as having the “ability to accomplish complex goals.”7  Due to its breadth 
and simplicity, it serves as a good base definition.

Intelligent Agent
While there exist several variants for the definition of an Intelligent Agent8, they all share the 
same foundation. An Intelligent Agent (also known as a Rational Agent9) is an autonomous 
entity that directs its activities toward accomplishing complex goals by making observa-
tions of its environment through sensors, processing the inputs, and acting on the envi-
ronment through actuators (or effectors). Examples of Intelligent Agents are humans, dogs, 
thermostats, modern airplanes, etc. The focus of this work is on Artificial Intelligent Agents, 
referred to herein simply as Intelligent Agents. Notably, the concept of the Intelligent Agent 

5 Merriam-Webster, Definition of Intelligence. https://www.merriam-webster.com/dictionary/intelligence.

6 Legg , S. and Hunter, M., A Collection of Definitions of Intelligence. (Oct 2006) http://www.vetta.org/documents/A-Collection-of-
Definitions-of-Intelligence.pdf

7 Tegmark, M., Life 3.0, Knopf (2017) 

8 Franklin, S. & Graesser, A., Is It an agent, or just a program?: A taxonomy for autonomous agents, Intelligent Agents III Agent Theories, 
Architectures, and Languages. ATAL (1996)

9 Russell, S. & Norvig, P, Artificial Intelligence: A Modern Approach, 3rd Ed., Prentice Hall Press
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allows us to stay above the implementation details when discussing applications, but still 
account for the key elements necessary for learning, decision making, and acting. Intelli-
gent Agents may lack certain elements (such as Software-Only Agents considered separately 
from underlying hardware) and be different in their degree of autonomy. Fully autonomous 
Intelligent Agent is synonymous to the concept of “General AI.” This paper is focused on the 
technologies underlying development of software-only agents. The software-only agents 
lead the current explosion in the field of business applications. There are, however, many 
examples of cyber-physical systems, instruments controlled by computer-based algorithms, 
within Healthcare, including medical devices of various sorts. A future work will focus more 
specifically on the state of cyber-physical systems development and application in Health-
care when a significant degree of decision autonomy is envisioned.

More generally, the term Intelligent System helps to account for multiple agents working as 
a system or being loosely integrated by linking several hardware and software components.

Artificial Intelligence (AI)
Merriam-Webster defines Artificial Intelligence as “the capability of a machine to imitate 
intelligent human behavior.”10 This definition is problematic for a number of reasons, most 
of all being the comparison with “human behavior.” This makes it too narrow in its view of 
intelligence. Intelligence is not exclusively human and many currently developed Intelligent 
Agents perform beyond the ability of human experts, albeit on narrow tasks only.11 In his 
book, Max Tegmark refers to AI in the abstract as anything that is “non-biological [and has 
the] ability to accomplish complex goals.” While concise, this definition is also problematic 
because there has been a great deal of recent work, both theoretical and practical, on bio-
logically-based Intelligent Agents (for example, DNA-based Agent12). The definition of AI that 
comes from computer science is the study of artificial intelligent agents and systems, exhib-
iting the ability to accomplish complex goals. This definition is the most relevant to the cur-
rent context. It is useful to further define two sub-classifications: General AI and Narrow AI.

General and Narrow AI

General AI, often referred to as Artificial General Intelligence (AGI), is the exhibition of a 
full range of cognitive abilities or general intelligence actions by an intelligent agent or 
system. An Intelligent System demonstrating AGI can learn, understand, or deal with novel 
input on an effectively infinite set of unrelated tasks. The term AGI has a history going back 
to 1997 but was popularized in the early 2000s when it was used to mean human-level 
artificial intelligence.13 The issue with AGI being defined as human-level is the ambiguity. 
Humans differ in their intelligence levels and the use of humans as a measuring stick forces 
one to then define sub-human AGI and superhuman AGI. Many believe that an Intelligent 

10 Merriam-Webster, Definition of Artificial Intelligence. https://www.merriam-webster.com/dictionary/artificial%20intelligence

11 Goertzel, B., Who coined the term “AGI”? (Aug 2011) http://goertzel.org/who-coined-the-term-agi/

12 Qian, L. et al., Neural network computation with DNA strand displacement cascades. Nature, 475, pp. 368-372 (2011)

13 Goertzel, B., Ibid.
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System demonstrating AGI, even a weak AGI, by its nature and ability to ingest knowledge, 
will inevitably become superhuman.14 In the context of this work, AI will not include the 
concept of AGI. A deeper discussion of AGI is out of scope for this work.

Narrow AI, sometimes called Weak AI, is the exhibition of the ability to learn, understand, 
or deal with novel input in a limited or pre-defined scope, most often a single task or a set 
of highly related tasks, by an intelligent agent or system. The term Narrow AI is preferred 
to Weak AI, as it better communicates its nature, give that Intelligent Systems can exhib-
it very high performance on single tasks. A particular area in healthcare where Intelligent 
Software Systems show high performance is in the field of radiology. Recently, Google AI 
along with a number of medical research hospitals published a study in which an Intelligent 
Software System was able to outperform six radiologists in diagnosing lung cancer from 
low-dose computed tomography (CT) screening images when no prior CT images were avail-
able. The Application had an 11% reduction in false positives (images predicted to contain 
a tumor, but were wrong) and a 5% reduction in false negatives (images predicted to not 
contain a tumor, but were wrong).15 For all current and future uses of the term AI, Narrow 
AI is inferred, unless otherwise specified.

Fields of study within AI
The field of AI study encompasses a number of different sub-fields. Within each sub-field, 
particular algorithms and methods have been developed to address key elements of Intelli-
gent Agents: Sensing, Pattern Recognition, Knowledge Representation, Reasoning, Optimi-
zation, and Control. Much of AI research is focused on developing these methods to impart 
Intelligent Agents with improved performance, safety, and autonomy. One may categorize 
AI algorithms in various ways: historically, by behavior, by application area, etc. Here, two 
sub-fields are examined: one based on deductive reasoning, Symbolic AI, and one based on 
inductive reasoning, Machine Learning.

Symbolic AI

Symbolic AI is a collection of all methods in AI that are based on high-level “symbolic” (hu-
man-readable) representations of problems, logic and search. Symbolic reasoning was one 
of the earliest focuses of AI research, and it led to the emergence of the sub-field of Expert 
Systems. Expert Systems, introduced by Edward Feigenbaum at Stanford, are systems de-
signed to solve problems by searching through large databases of knowledge using heuristic 
rules designed by experts. The DENDRAL system mentioned in the introduction was the first 
expert system commercialized by Feigenbaum. 

Symbolic representations play important roles in abstracting knowledge, formal reasoning, 
providing human-machine interfaces, and for explainability and interpretability of Intelli-
gent Agents’ decisions by human operators.

14 Tegmark, M., Life 3.0, Knopf (2017)

15 Ardila, D., et al., End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. 
Nature Medicine, 25, pp. 954–961 (2019)
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MACHINE LEARNING (ML)

Machine learning is the study of algorithms and statistical models that computer systems 
use to perform specific tasks without using explicit instructions, relying on patterns and 
inference found in the training data and in the environment. All machine learning systems 
consist of training sets of data, learning algorithms, and a resulting model representation. 
The algorithm extracts patterns from the training dataset and produces a model that en-
codes those patterns in such a way that the model can be used to evaluate a new set of data, 
referred to as the test dataset. Typically, the model is simply a mathematical function.

In order to produce a machine learning model, a representation of the data must be select-
ed. Each parameter in the representation should relate to the underlying phenomenon being 
modeled in a meaningful way when possible. For example, for a model of cancer risk, a set of 
meaningful parameters might include age, smoker/non-smoker, weight, number of alcoholic 
drinks per week, home address, etc. Parameters that are not related to cancer risk would 
be things like color of car or favorite music style. The inclusion of parameters unrelated to 
the phenomenon can be problematic because machine learning algorithms look for correla-
tions. It is statistically likely that an unrelated parameter will contain a spurious correlation 
given that training sets are finite in size. This can lead to biases and false conclusions. In 
many cases the optimal representation is difficult to determine, therefore a significant effort 
should go into developing the representation before applying a machine learning algorithm.

Role of Data
ML infers its models from the Data, hence the Data is the fuel on which the ML engines run. 
As such, the quality, volume, and composition of the data are critical. Higher quality data 
leads to a better model, in most cases. The same goes for the volume. But quality and vol-
ume are often competing factors. Lowering the quality standard can often lead to a higher 
requirement for the amount of data. The right choice in this trade-off is problem dependent 
and will determine which ML algorithm will produce the superior model or insight.

As with the quality/quantity trade-off there is often a quantity/composition trade-off. An 
oversimplified example of this would be: if a model were trained on patient data represent-
ing 80% European, 10% African, and 10% Asian descent, yet the underlying population that 
the model would be applied to represented 50% European, 25% African, and 25% Asian de-
scent. In such a case, the amount of data from patients of European descent in the training 
set may be reduced prior to building a model in an attempt to remove genealogical bias. 
What is more troublesome are biases that we don’t know exist. This is one of the most dif-
ficult tasks when building a ML model.

Solving the Relevant Problem
Defining the problem to be solved for is a crucial first step towards building a ML model. This 
comes before assessing the types and quality of data available to train a model. How a mod-
el will be used is something that needs to be examined before building a model. This relates 
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to the Bias Section, below, but also relates to the question of how the model will be used to 
support decision-making. Will the model be treated as a binary decision tool? If so, what is 
the tolerance for false positives and false negatives? In the case of skin cancer diagnosis, a 
high false positive rate will result in unneeded trips to the hospital and a high false negative 
rate will lead to poor health outcomes. Does the model need to be a regression model? 
Scientists often want a quantitative output instead of a categorical output, but high-quality 
regression models have higher data requirements than binary or categorical models.

Model building frequency is another consideration. How often does new data arrive? How 
often will the model need to be retrained: monthly, weekly or continuously? Different 
modeling approaches and ML algorithms are more amenable to continuous (also known 
as on-line) or frequent retraining. On the opposite end of the frequency of model updates 
are medical devices with requirements to conduct risk analysis and, depending on the out-
comes, some form of validation up to a full new regulatory submission.

Finally, how much is known about the underlying process that is being modeled? This is 
important in helping to determine how to represent the underlying training set to the Ma-
chine Learning algorithm. Machine Learning is concerned with making predictions based on 
a training set, therefore all correlations of variables in the training set with the labels will 
be picked up by the ML algorithm. The algorithm will not be able to distinguish between 
causation and correlation, so to improve the generalizability and trustworthiness of the re-
sultant model, non-relevant correlations need to be removed in the feature sets before 
model building. This is a particular issue in Healthcare because the underlying causal struc-
ture of most biological processes often are not well understood.

Bias
Bias comes from a ML model containing erroneous assumptions. The erroneous assump-
tions come for the relationship between the training data and the test data, from an inap-
propriate choice of features to represent the data, or from the machine learning process 
itself. These aspects when properly orchestrated can also help to compensate for issues in 
the other. Bias can often be context specific. Certain biases can exist when applied to one 
test set, but not another. Bias is unavoidable given finite training sets, therefore metadata 
about how a ML model was trained, what data it was trained on, what method was used, 
etc. needs to accompany the model to inform the application to help avoid bias. 

When the bias comes from the ML process itself it can arise from using the wrong ML meth-
od given the data, the representation and the application. It can also arise from overfitting 
to the training data. Overfitting is the tendency for a ML model to memorize the details of 
the training set rather than learn generalizable patterns. Put another way, it is a tendency 
for the ML algorithm to select an overly complex model given the problem. A technique 
called regularization is often employed to prevent overfitting. The proper choice of featur-
ization can also help to prevent overfitting. A more technical discussion of overfitting and 
how it relates to bias is in the Appendix. 
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Inappropriate featurization of the data can also lead to bias. If the featurization is too com-
plex in comparison to the training set size the higher the likelihood one or more of the fea-
tures will be erroneously correlated with the phenomenon being modeled. If the represen-
tation of the training data used contains features that are not related to the phenomenon 
being modeled they may also lead to bias. There may be a correlation between the feature 
and the phenomenon being modeled which will lead to the ML algorithm inappropriately 
incorporating this feature into the model. The issue of choosing the right representation and 
how to avoid bias based on features are addressed below in the Representation Section and 
the Fairness Section, respectively.

Another source of biases in ML models comes from the relationship of the training data 
to the test data. One of the base tenants of ML is that the training set is a good represen-
tation of the test set (discussed in more detail in the Appendix). More technically stated, 
the background distribution of properties of the training data most be the same as that of 
the test data otherwise the model will develop a systematic bias. The issue here is that the 
training set is finite and will therefore never be a complete representation of the test set and 
data scientists do not often have the ability to dictate what data is available for modeling. 
This does not however mean that there is no way forward. Identification of the bias in the 
training set is the first step. This can often then be compensated for by the proper choice of 
representation and machine learning method.

Finally, the most fundamental (and benign) source of bias comes from the fact that when 
building a ML model a choice is made as to the parameter to optimize. This can lead to 
intrinsic bias in the model. For example, if there are two groups of patients, one tolerating 
pain and one which does not, it is impossible, in general case, to use a single regimen of any 
pain medication with significant side effects for the entire population without bias. One can 
optimize the algorithm for the group or for the entire population, but not for both.

Any avoidable (or intrinsic) bias should be disclosed and, ideally, become a part of the model 
characterization and qualification. 

Types of Machine Learning

Supervised Learning

Supervised learning is a type of ML that is trained on a set of labeled data. Supervised 
learning algorithms generate predictive models, based on patterns detected in the training 
data features that correlate with the training data labels. The generated model, which is a 
mathematical function of the features, can then be used to predict the labels for unlabeled 
data. An example of labeled data is a set of molecules and measurements in a biochemical 
assay; the measurement being the label for each molecule.

Supervised machine learning algorithms generate the final model by searching for a func-
tion over the training set features that minimizes a loss function (sometimes called a cost 
function). Following from the above example, features for a molecule may be such things as 
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molecular weight, number of nitrogen atoms, number of oxygen atoms, etc. A simple loss 
function for a classification model might be the number of molecules predicted incorrectly 
active or incorrectly inactive in a biochemical assay. In this case the algorithm would con-
struct a function of the features that both positively and negatively correlate with activity, 
such that the number of molecules in the training set that are incorrectly predicted are 
minimized. Once that function is determined it becomes the output model that can be used 
to predict activity for unlabeled molecules. For more detail, please see Appendix I: Deeper 
Technical Details.

The three broad types of supervised machine learning model functions are classification, rank-
ing, and regression. Classification is used to learn and predict a categorical label, e.g. tumor 
detection. Ranking is used to learn and predict a relative ordering label, e.g. diagnosis ranking. 
Regression is used to learn and predict a continuous label, e.g. assay readout prediction.

Unsupervised Learning

Unsupervised learning is a type of ML used to find (sometimes hidden) patterns or group-
ings in data without labels. The primary challenge with these algorithms is choosing the 
proper representation for the problem and input data. Because this is also a challenge for 
other types of machine learning it is discussed in a preceding section. Popular examples of 
unsupervised learning are clustering and autoencoders, often used in conjunction.

Clustering is useful where one wants to understand the fundamental types or classes within 
a group, so they can each be further characterized or understood. For example, in patient 
care, practitioners seeking patterns in Adverse Drug Reactions (ADRs) might cluster patients 
and look for those who do and do not experience ADRs within a class of drugs, such as 
antibiotics.16  The emerging idiom of precision medicine – giving the right drug to the right 
patient at the right time – relies on an understanding of the underlying patient subtypes. 
Conversely, clustering is useful in situations where a maximally diverse representative sam-
ple needs to be drawn from a much larger space of examples. For instance, when perform-
ing a screen in a drug discovery project, for budget, throughput, or time reasons, a smaller 
representative set of compounds must be pulled from an internal library or purchased from 
an external vendor. Clustering can also be used to find more active compounds by seeding 
the clustering with previously known active compounds. A wide variety of different cluster-
ing algorithms are available, all with different strengths and weaknesses.

Autoencoders are a deep learning technique used to take high dimensional representations 
and distill them down to a more compact, lower dimensional representation. Autoencod-
ers use two models during training, one to encode and one to decode. After training, the 
model used to encode the information is used to evaluate the test sets. Autoencoders may 
be used, for example, to analyze tumor gene expression data to look for tumor subtypes.17 

16 Pinar, Y. et al., Knowledge discovery of drug data on the example of adverse reaction prediction, BMC Bioinformatics, 15 (Suppl 6):S7 
(2014)

17 Rashid, S., et al., Dhaka: variational autoencoder for unmasking tumor heterogeneity from single cell genomic data, BMC Bioinformatics, 
btz095 (2019)
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Semi-Supervised Learning

Semi-supervised learning shares the same objective as supervised learning, to build a func-
tion that will predict a label for a test set. The difference is that the training set doesn’t have 
a complete set of features, thus they must be inferred. An example of a semi-supervised 
learning problem would be to build a model that predicts the best treatment option for a 
patient based on outcomes for different patients. Potential issues might be either the pre-
vious patients did not have all of the latest tests, or there are gaps in record keeping. The 
missing results need to be inferred from those patients in the training set for whom the test 
results exist. The missing data can be inferred before building a supervised machine learning 
model or it can be inferred as part of the model building process.

Generative Learning

Generative learning aims to create new examples drawn from the same distribution as the 
training set, and in some cases with a particular label. An example of generative learning 
is when novel molecular compounds need to be created with a set of desired properties. 
A generative model is first trained on a large set of molecules with known properties. The 
resulting model can then produce new molecules based on the input of the desired proper-
ties. This type of model can be useful in de-novo compound design in drug discovery.

Reinforcement Learning

Reinforcement learning is concerned with determining a set of actions that an actor must 
take in an environment to maximize a reward function. Most modern reinforcement learn-
ing techniques involve deep neural networks with some form of memory so that decisions 
are not made statically without context, but are based on the current state and information 
of previous states and decisions. An example of reinforcement learning is the development 
of models for optimal control based on a history of continuous glucose monitoring and insu-
lin delivery for patients with Type 1 Diabetes.18

Evolutionary

Evolutionary algorithms are a set of machine learning methods inspired by evolutionary 
biology. Evolutionary algorithms start with a set of randomly generated examples. A loss 
function, often referred to as a fitness function, is evaluated on all of the examples. The 
examples that have the highest level of fitness are selected for ‘reproduction.’ A breeding 
function is used to perform crossovers and mutations to generate a new population of ex-
amples. The fitness function is evaluated on these examples and the process repeats until 
no more progress is being made in improving the fitness of the group. Evolutionary algo-
rithms can be both generative when the example is the primary object, or discriminative 
when the example is a function used to estimate a training set of examples. Evolutionary 
algorithms have become more popular recently as a way to optimize the hyperparameters 
for other machine learning algorithms.

18 Yu, C. et al., Reinforcement Learning in Healthcare: A Survey. (2019) https://arxiv.org/abs/1908.08796v1
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Active Learning

Active learning is a variant of supervised ML. Instead of having the model predict a measur-
able quantity it predicts which of the examples in a test set would be most informative to a 
subsequent supervised ML model. Active learning is often used to bootstrap a small training 
set into a larger training set for a supervised machine learning technique to learn from.

Transfer Learning

Transfer learning is a variant of supervised ML where information from a different, yet re-
lated, set of labeled training data are used to improve a model for a more specific set of 
labeled training data. An example of transfer learning would be the training of a model on 
a set of general labeled images, then using that model as the starting point for training a 
model to specifically perform facial recognition. When the original model is trained on a set 
of generically labeled images, the model learns the features that distinguish images (shade, 
texture, color, etc.). In the second round, model building requires less time on the basics of 
image recognition, but instead focuses on the specifics of facial structure that also include 
shade, texture, color, etc. In this way, the resources used to train a model (computational 
and training data) are conserved while making a model with better performance than one 
that was built de novo.

Multi-task Learning

Multi-task learning is often thought of as a type of transfer learning but is distinct. Here, 
multiple labels for the training set are used in building a supervised ML model, where the 
resulting model predicts all of the labels simultaneously. Not all training examples need to 
have all labels for training. This approach is only applied to datasets with labels that are in 
some way closely related. The advantage behind this approach is that if the labels are relat-
ed then each label benefits from all of the training data, not just the subset of the training 
data that has that label. An example of multi-task learning is when trying to build a model 
of compound activity against a protein target with a small amount of training data. Instead 
of building a single-task supervised model to predict activity against the target, a multi-task 
model could be trained on all related proteins known to have homologous binding regions, 
thus improving the model predictions for the target with a limited amount of data.

Combinations/Hybrids

In many cases, multiple ML techniques are used together in an Intelligent Agent. One 
type of combination model is a consensus model, consisting of multiple sub-models. The 
sub-models generally use differing training set representations and different machine learn-
ing algorithms, such that they generate models with orthogonal strengths and weaknesses. 
Consensus models are often used in classification problems to reduce the number of false 
positives, but this is often at the expense of an increase in false negatives. There is almost 
always a trade-off. Another situation where one might combine techniques is in applying 
unsupervised learning techniques to determine which parameters should constitute the 
representation in a supervised model.
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More complex Intelligent Systems can also be constructed using a variety of ML algorithms. 
For example, to predict off-target toxicity during drug discovery, models for off-target ac-
tivity can be built and compounds of interest can be evaluated. For example, a knowledge 
graph may be built using natural language processing techniques applied to biomedical pub-
lications. The graph can be used to determine if the off-targets identified in the previous 
step are known to be associated with toxicity phenotypes. Combining ML models in this 
way can, however, lead to a multiplication of errors. Therefore, the various models must 
be analyzed to ensure that their errors are as independent as possible and must include an 
assessment of error propagation.

Hyperparameters
All machine learning algorithms have hyperparameters: variables that are not input data 
but govern how the algorithm builds the model. Examples of hyperparameters include the 
number of steps and the learning rate (for algorithms using a gradient search method to 
minimize the loss function over the training set), the number and the maximum depth of 
the trees (in a random forest model), or the size and number of layers (within a deep neu-
ral network). Hyperparameters are set either via previous human experience or by search. 
Searching for ideal parameters can be guided or done by brute force. Brute force search, of-
ten called grid search, generates a set of models based on a diverse set of hyperparameters 
spanning the range of parameter values. The hyperparameters associated with the model 
having the lowest final loss on the validation set are selected. More sophisticated search 
methods can involve other ML and statistical algorithms, such as Bayesian search or genetic 
algorithms, to find the optimal hyperparameters. This is often referred to as meta-learning.

Representation (Featurization)
With every ML problem, one must determine how to represent the data in the training set, 
e.g. the representation, also known as the feature set. The representation is the description 
of the objects in the training set, such as a photo or a set of measurements. Some algo-
rithms require more sophisticated representations than others, but algorithms that require 
less sophisticated representations generally require larger training sets to train an equiv-
alent model. Choosing the representation is vital to the ML algorithm’s ability to detect a 
meaningful pattern in the training set.

The naive thing to do would be to include everything and the kitchen sink in the featurization 
of the training set. A training set is always finite, and thus the probability is non-zero that 
one of the features in the training set is correlated with the phenomenon being modeled. 
Because ML algorithms are not able to distinguish between correlation and causation, they 
may use this feature in the model. This leads to overfitting and reduced generalizability, as 
described in the appendix. When the model is then applied to a test set that doesn’t contain 
this correlation the model will fail silently to be predictive.

A related, but often more difficult, aspect of feature selection is causality versus co-occur-
rence versus correlation. Again, because ML algorithms cannot distinguish between these 
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concepts, some understanding of the relationship between the representation and the 
training set labels must be present a priori. Or, controlled experiments could be designed to 
determine the relationship between the features in the representation and the labels.

There are two reasons why causal features are desired. First, if the features are only cor-
related there is a loss of generalizability, which will lead to a biased model, as all potential 
test sets will not contain the same correlations. Second, the long-term aim of applying ML 
to healthcare is to gain a better understanding of the causal structure underlying health and 
biology. While correlation, in some cases, and co-occurrence, in all cases, of features with 
labels will lead to predictive models, they will not lead to a better understanding of the phe-
nomena underpinning that which is being modeled.

Unfortunately, it is often not obvious which features are best to use, because the phenom-
enon being modeled is not well understood, as is more often the case in biology. In these 
cases, there are methods to help determine the right representation, but often the only 
resort is trial and error using proper testing methods, preferably prospective testing.

Interpretability and Explainability
Explainable AI (XAI), also known as Interpretable AI or Transparent AI, refers to frameworks 
used to understand and explain the decision system within Intelligent Agents. This term has 
emerged due to the increasing complexity of Intelligent Agents generally. ML specifically 
yields difficult-to-interpret models—even for the data scientists who create them. ML algo-
rithms may and often do arrive at predictions in a different way than humans. So, when a 
complex model makes a prediction, it may not be clear to humans why that prediction was 
made. Sometimes this obscurity is referred to as a “Black Box”: data goes into the model and 
an output is produced – how it is produced remains a mystery to humans. For many appli-
cations, this is acceptable. If a retail store is trying to predict the total number of purchases 
for various products, it might not matter to any stakeholder how that prediction is made, 
provided it is accurate. In the healthcare industry, however, interpretability is of the utmost 
importance in many key areas. Being able to explain a model’s predictions is essential for 
building trust and confidence in machine learning. With decisions about health, patients 
and doctors alike are appropriately reluctant to trust a decision-maker they cannot under-
stand and cannot evaluate. 

The challenge in developing Explainable ML is that it often requires a trade-off: foregoing a 
complex model with high accuracy that is difficult to explain, in favor of a less complex model 
that is easier to explain but with lower accuracy. Each situation will determine how to weight 
this seesaw, as described above. Explainability does not always imply lower accuracy, thus 
data scientists have to strike the right balance between explainability and performance in AI.

Machine learning models should be explainable in the following situations:

●	 When fairness is critical. For example, when patients are invited for cancer screenings 
(or not) based on a set of risk factors determined by the machine learning model, the 
selection criteria should be transparent. 
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●	 When consequences are far-reaching. Predictions returned by machine learning mod-
els can have far-reaching consequences in the healthcare industry (e.g., recommending 
that a patient have a risky operation, or classifying a malignant tumor).

●	 When transparency is required by law (e.g., the EU General Data Protection Regulation 
[GDPR], the Right to Explanation).19

Some of the models used to improve explainability include:

●	 REversed Time AttentIoN (RETAIN) Model20: Attempt to emulate a physician by training 
a modeling using an attention mechanism designed to give more weight to more recent 
EHR entries, as a physician might. Using RETAIN identifies the features and the visits that 
contribute most to the prediction.

●	 Local Interpretable Model-Agnostic Explanations (LIME)21: Take an existing, potentially 
very complex classification model and a prediction. From these it produces a simpler 
local model that can be interrogated.

●	 Layerwise Relevance Propagation (LRP)22: Work backwards through the model to find 
the relevance of each input.

●	 Distillation23: Train a simpler model such as a decision tree with a more complex model.

XAI is only now starting to produce results, therefore at least for a foreseeable future, XAI 
should be addressed by narrowing the tasks, using human control, and giving appropriate 
disclosure of the modeling approach. Due to high risk/benefit ratios in health-related de-
cisions, reducing the scope is a better way of controlling model specificity than trying to 
dismantle the Black Box.

Fairness
A related topic to explainability is fairness. Fairness in ML receives a lot of attention nowa-
days as machine learning algorithms are being deployed to make critical decisions that im-
pact people’s lives, such as healthcare decisions. As with many ML concepts, fairness has a 
large number of definitions, many of which conflict with one another and many of which are 
context dependent. All measures of fairness focus on bias attributed to protected attributes, 
such as sex, gender or race.

Case law is one way to define fairness in big data and ML in the abstract.24 More functional 

19 Ahmad, M. A., et al., Explainable AI in Healthcare. (2018) 
https://datamathstat.files.wordpress.com/2018/08/explainableaiinhealthcarekdd2018.pdf

20 Choi, E., et al., RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism, 30th Conference on 
Neural Information Processing Systems (2016)

21 Ribeiro, M. T., et al., “Why Should I Trust You?” Explaining the Predictions of Any Classifier, Knowledge Discovery and Data Mining 
Conference (2016)

22 Bach, S. et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation, PLoS ONE 10 (7)

23 Hinton, G., et al., Distilling the Knowledge in a Neural Network, preprint: arXiv:1503.02531v1 (Mar 2015)

24 Barocas, Solon & Selbst, Andrew D., Big Data’s Disparate Impact, 104 Calif. L. Rev. 671 (2016)



18

definitions that can be used to test and correct for unfairness in ML have been explored by 
Gajane and Pechenizkiy (2018)25 and Verma and Rubin (2018).26 Some common concepts of 
fairness in the literature include:

•	 Fairness through Unawareness: Remove protected attributes from the training set rep-
resentation and the model will achieve fairness.

•	 Group fairness: Both protected and unprotected groups having the same probability of 
being positive.

•	 Predictive Parity: Both protected and unprotected groups having the same probability of 
actually being positive when predicted to be positive.

•	 Equal Odds: Both protected and unprotected groups having the same probability of ac-
tually being positive when predicted to be positive and actually being negative when 
predicted negative.

•	 Counterfactual Fairness: Based on the causal structure of features, determines that if 
any feature used in the modeling is a downstream dependent feature on a protected 
attribute the model is not fair.

Fairness, no matter how it is defined, is of paramount importance in healthcare, both for 
protecting classes of individuals and providing safe and effective care. A full treatment of 
fairness in healthcare ML will be addressed in a future paper.

Machine Learning Techniques

Linear Regression

While often not thought of as a ML algorithm, linear regression does satisfy the require-
ments of a supervised ML technique when used for prediction. As such, it is not a very pow-
erful technique because the set of model functions is restricted to only those of the form,

𝑦𝑦 = 𝑎⃑𝑎 ∙ 𝑥⃑𝑥 + 𝑏𝑏, 

𝑦𝑦 =  𝑎𝑎𝑎      𝑥𝑥𝑥      𝑏𝑏, 

	 (1)

Linear regression is generally used to produce a regression model and does so by minimizing 
a cost function that reduces the squared error between the prediction and the label (Mean 
Squared Error) over the training set by selecting a linear function (    and     in Equation 1) of 
the input features (   ).

Logistic Regression

Like linear regression, logistic regression is a very simple supervised ML method. Unlike 
linear regression, logistic regression is used to build a model for discrete labels, not contin-

25 Gajane, Pratik & Pechenizkiy, Mykola, On Formalizing Fairness in Prediction with Machine Learning, preprint: arXiv: 1710.03184v3 
(May 2018)

26 Verma, Sahil & Rubin, Julia, Fairness Definitions Explained, ACM/IEEE International Workshop on Software Fairness (2018)
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𝑦𝑦 =  𝑎𝑎𝑎      𝑥𝑥𝑥      𝑏𝑏, 

𝑦𝑦 = 𝑎⃑𝑎 ∙ 𝑥⃑𝑥 + 𝑏𝑏, 

𝑦𝑦 =  𝑎𝑎𝑎      𝑥𝑥𝑥      𝑏𝑏, 
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uous. Logistic regression uses the Cross-Entropy loss function to select a sigmoid function 
(model) of the input features (Figure 1). Despite “regression” in the method’s name, the 
model generated by logistic regression is a classification model.

Figure 1: Sigmoidal function used in logistic regression.

Decision Trees

A decision tree is a simple model that can be generated using ML techniques or basic heu-
ristics. These can be developed to build classification, ranking, and regression models. A 
decision tree is a set of if-else statements that can be visualized as a tree (Figure 2). The 
leaf nodes for a classification decision tree are the classes. For other types of decision trees, 
the leaves are floating point numbers. Decision trees are constructed using a set of splitting 
criteria for determining which feature, or set of features, from the representation to split on 
at each vertex, and what value of the feature(s) will determine the split. The splitting crite-
ria, the maximum depth, the pruning algorithm, and the decision about vertex order make 
up the bulk of the decision tree model building algorithm. One negative aspect of single 
decision trees is that they have a tendency to overfit. For example, the loss on this training 
set in Figure 2 is zero in that the model categorizes all points correctly. This may represent 
some overfitting and a pruning function that eliminates the level 4 decision of x < -1.5 will 
result in a higher training loss, but a less complex model, and a better prediction error. This 
is a situation where a holdout set would help in determining and correcting the overfitting 
to some degree.

Figure 2a: Partition boundaries for a decision tree using univariate vertex decisions. 2b: Decision tree details. 
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Random Forest (RF)

As the “forest” it its name implies, a Random Forest model, introduced in 1995,27 is a single 
model made up of a set of decision trees. The Random part of the name comes a compo-
nent of stochasticity in all RF algorithms to help reduce the overfitting problem found in de-
cision trees. Where the randomness is introduced depends on the Random Forest algorithm 
used. The modern tree building algorithms within a RF model builder use random subsets of 
the training set with replacements for building each tree, using the holdout set as a valida-
tion set for pruning, and it restricts the algorithm to a random subset of the input features 
to select from at each decision point or vertex. The function used to determine the feature 
and split at each vertex varies. Random Forest algorithms generally use majority rule when 
combining outputs from classification trees and some form of mean calculation when com-
bining outputs from regression trees. Random Forest models are one of the most widely 
used model types today, generally and in the field of healthcare.

Support Vector Machines (SVM)

Support Vector Machines treat the input data features as a vector in a high dimensional 
feature space. For binary classification the algorithm attempts to find the hyperplane that 
minimizes the loss by maximizing the margin. This is the minimal distance between the 
hyperplane and the closest data points in the two classes (Figure 3). When data are not 
well separated by a flat hyperplane, a mathematical function called a kernel can be used to 
transform the data such that a flat hyperplane separates the data well. This has the effect 
of fitting the data with a more complex model function. As was previously discussed in the 
Model Performance section, the more complex the kernel function, the more complex the 
model and the higher likelihood of over fitting. In Figure 3 it is clear that there is some train-
ing error in the model in that there are some red points above the model line. By transform-
ing the data with a kernel or equivalently using a more complex non-flat hyperplane for a 
model, the training loss can be reduced to zero.

Figure 3: An SVM model, represented by the dashed line, was built using the same training set as in Figure 2a. The 
support vectors in each class are identified by inset black dots.

27 Ho, T. K., Random Decision Forests. Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp 14-16 
(Aug 1995)
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Artificial Neural Networks (ANN)

The computational model for neural networks is based on work presented by Warren Mc-
Culloch and Walter Pitts in 1943.28 Artificial Neural Networks are networks of artificial neu-
rons, inspired by the connectivity architecture of neuron cells in the brain. A neuron, in this 
case, is a mathematical function that takes a set of inputs from an input layer, or previous 
layer in the network. The inputs are then modified by weights associated with each input 
and summed. The sum is then input into an activation function, such as in Figure 1, with an 
output normally between -1 and 1 or 0 and 1. This output is then fed into the next layer of 
neurons or the output layer (Figure 4). The ANN model variables are the weights associated 
with each input to each neuron. For supervised learning models using ANNs the weights are 
generally adjusted using what is known as backpropagation, developed in the 1970s.29 There 
are many types of ANNs, such as modern deep neural networks and convolutional neural 
networks for supervised machine learning, and autoencoders and Boltzmann machines for 
unsupervised machine learning.

Figure 4: Example of a fully connected ANN with one hidden layer, four input features, and two output results.

Deep Neural Networks (DNN)

A Deep Neural Network is an ANN with multiple layers between the input and the out-
put. Until fifteen years ago the computational power wasn’t available to perform training of 
DNNs over reasonably large datasets. This is one of the underlying reasons why DNNs have 
surged in popularity and usefulness recently while much of the framework was develop 
more than 40 years ago.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks are currently one of the most important deep learning 
methods, and are attributed with much of the recent resurgence of neural network usage 
for data analytics. AlexNet, an image classification model, was one of the early examples of 
the power of CNNs.30

28 McCulloch, W. and Pitts, W., A logical calculus of the ideas immanent in nervous activity. The Bulletin of Math. Biophysics, 5 (4), (Dec 1943)

29 Werbos, P. J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University Press (1975)

30 Krizhevsky, A. et al., ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing 
Systems 25 (2012)
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The input of a CNN consists of data that can be efficiently represented in a Euclidean fash-
ion (e.g. arrays or grids). A good example of this is an image that can be represented as a 
3D array, where the third dimension represents the color channels. The CNN filtering layers 
consist of a set of convolution, pooling, action potential and sub-sampling layers (details of 
which go beyond the scope of this document) where spatially close sections of the inputs 
are combined together in a repeating pattern which generally takes a wide-thin 3D array and 
transforms it into a narrow-long array (Figure 5). This narrow-long array of numbers is then 
passed into fully connected DNN. The advantage of using these filtering operations instead 
of fully connected methods in the first few layers is that it reduces the dimensionality of the 
input while generating higher order features. The features that emerge from the filtering 
layers during the training phase often eliminate the need for a priori designed features.

Figure 5: An example CNN with 3 convolution layers, 2 max pool layers (alternating) and fully connected convolution 
network. The input is an image of size 227x227 with 3 color channels and the output is a probability vector of size 1000. 

The patterns that result due to the filtering are inspired by biological processes and are 
thought to be similar to how neurons in the visual cortex are organized. They only respond 
to inputs from a restricted region, known as the receptive field. Because the input is based 
on grids, it allows the CNN to capture both spatial and temporal dependencies, which is 
what makes a CNN such an effective method for image processing. The filters will, by them-
selves, learn to detect certain data features such as textures, edges, corners, points of in-
terest, etc. Although CNNs were originally developed for image-based operations such as 
recognition and classification, recently the methods have also successfully been applied to 
natural language processing and speech recognition.

Graph Convolutional Neural Networks (GCNN)

Whereas the previous section described how CNNs operate efficiently on Euclidean data 
(e.g. grids), such as images, they are unsuitable for non-Euclidean data, such as graphs. The 
complexity of non-Euclidean data poses several challenges for standard ML methods and 
requires its own class of solutions. One such solution is a specialized convolution operation 
that works on graph-based input data. 

In graph-based networks the nodes of the graph are related to their neighbors via some 
complex linkage information that captures the interdependence among data, something 
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which is not possible using standard ML methods. GCNNs efficiently model this interrelation 
between the graph nodes and are able to process the relations between the nodes using 
specialized convolution operations. GCNNs are useful for node embeddings, graph classifi-
cation, knowledge graphs and graph generation. 

GCNN approaches fall into two categories:

•	 Spectral GCNN: This approach defines the graph convolution by introducing filters from 
the perspective of graph signal processing where the graph convolution operation is 
interpreted as removing noise from the graph signals.

•	 Spatial GCNN: This approach formulates the graph convolutions as a feature that aggre-
gates information from connected neighbors (Figure 6).

In healthcare, GCNNs are used for structure activity relationship (SAR) models of chemi-
cal compounds, where the graph inputs are molecular graphs and the properties are atom 
based.

Figure 6: Spatial graph convolutional neural network representation.

Generative Adversarial Networks (GANs) 

Generative Adversarial Networks were originally proposed by Ian Goodfellow et al. in 2014.31 

Bridging deep learning and game theory, GANs are used to generate or “imagine” new ob-
jects with desired properties. Since 2016, multiple implementations of GANs architecture in 
combination with reinforcement learning have been applied to de novo molecular design,32 
medical image processing,33 and other important tasks in the health sciences.34 A brief time-
line of GANs development is presented in Figure 7. 

31 Goodfellow, I. J. et al., Generative Adversarial Networks, preprint: arXiv:1406.2661v1 (Jun 2014)

32 Kadurin, A. et al., druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with 
Desired Molecular Properties in Silico. Mol Pharm, 14 (9), pp. 3098-3104 (2017)

33 Kazeminia, S. et al., GANs for Medical Image Analysis. Preprint: arXiv:1809.06222v2 (Sep 2018)

34 Anand, N. & Huang, P., Generative Modeling for Protein Structures. 32nd Conference on Neural Information Processing Systems (2018)
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Figure 7: GANs and the history of deep learning.

GAN architecture consists of two deep neural networks—a generator and a discriminator—
that are trained together. During the training phase of the GANs, the generator and the 
discriminator play a game where the generator learns to produce examples that imitate the 
training set and the discriminator tries to identify which examples are generated and which 
are from the training set. The simplest GAN architecture is presented in Figure 8. One of the 
primary difficulties with GANs is getting them to converge to a stable set of networks and 
not having them collapse (the network always produces the exact same output, indepen-
dent of the input) or become unstable (the network produces different outputs for the exact 
same input). More complex architectures briefly mentioned in Figure 7 are used to avoid 
these issues as well as achieve various goals. In the simple architectural example in Figure 8, 
once the models are trained in the case of de-novo molecule design or protein fold predic-
tion, the generator can be used to generate new hypothetical compounds or foldings for a 
protein, respectively. For image processing combinations, the generator and discriminator 
can be used for various tasks, including synthesis, segmentation, reconstruction, detection, 
de-noising, registration, and classification.

Figure 8: GAN-RL training diagram using reinforcement learning. The error is propagated back from the loss through the 
discriminator and generator.
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While GAN and GAN-RL techniques are currently state-of-art in deep learning, they have 
many limitations and require expert knowledge of topics they are being applied to, such as 
chemistry and biology for molecular generation. Firstly, the training sets used for generative 
systems need to be balanced and properly annotated. Training sets like this are hard to find 
in any field. Secondly, achieving diversity while generating valid examples is very difficult as 
there is generally a tradeoff between the many properties needed in an example.

RELATED APPROACHES

There are many other ways to generate an Intelligent Agent that uses a deductive approach, 
either on its own or in combination with inductive Machine Learning. This section examines 
a number of noteworthy approaches that may or may not be familiar to the reader.

Heuristic
According to the International Encyclopedia of the Social & Behavioral Sciences, Heuristics 
are “approximate strategies or ‘rules of thumb’ for decision making and problem solving 
that do not guarantee a correct solution but that typically yield a reasonable solution or 
bring one closer to hand. As such, they stand in contrast to algorithms that will produce a 
correct solution given complete and correct inputs. More specifically, heuristics are usually 
thought of as shortcuts that allow decisions or solutions to be reached more rapidly and in 
conditions of incomplete or uncertain information—often because they do not process all 
the available information.”35

Heuristics can lead to cognitive biases, and there is a discord between bias and rationality.36 
In the context of AI, if an Expert System or an AI is built by humans (or another AI) using heu-
ristics, then they may be encoded with bias and error, as well. Heuristics do not always lead 
to the most optimal (or fair) outcome. That being said, heuristic algorithms can be much 
faster than traditional algorithms, and often use considerably less computational power.37 
Heuristics might be built into an AI such that it limits the solution space to be searched.

Building heuristic models requires very demanding processes, based on set of rules (de-
rived from initial data analysis) that are simpler to explain and understand than ML models. 
However, since Heuristic methods in most cases use experimentation and trial-and-error 
techniques that require “rigorous definition, careful collection of data, and thorough and 
disciplined analysis, it places immense responsibility on the researcher.”38

35 Todd, P. M., Heuristics for Decision and Choice, International Encyclopedia of the Social & Behavioral Sciences, Elsevier Ltd. (2001)

36 Heuristic, Behavioral Science Solutions Ltd, 2014-2019, https://www.behavioraleconomics.com/resources/mini-encyclopedia-of-be/
heuristic/

37 101 Computing, Heuristic Approaches to Problem Solving. (Feb 2018) https://www.101computing.net/heuristic-approaches-to-
problem-solving/

38 Frick, Willard B, The symbolic growth experience: A chronicle of heuristic inquiry and a quest for synthesis. Journal of Humanistic 
Psychology, 30(1), 64-80
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Optimization
Mathematical optimization is the search for input parameters to an objective function that 
yields maximum or minimum output values. Optimizations are widely used in ML. However, 
the optimization itself is not fundamentally a subdiscipline of ML. Optimizations are broadly 
used in non-ML applications, including many sectors of scientific computing. Optimizations 
can also be used to combine multiple predictive tasks into single, higher-order decisions 
which require balancing tradeoffs between multiple favorable properties. This task is known 
as multi-objective optimization. When applied to decision making, algorithms that address 
multiple objectives could be considered in the same category as heuristic solutions, provid-
ing a non-ML based expert system.

Scientific Modeling and Simulations 
Scientific Modeling is the practice of representing real-world systems as mathematical ab-
stractions that can be used to generate new understanding of complex systems. Modeling 
is often coupled with simulations to experiment with varied scenarios and make predictions 
on future outcomes. Simulations transition a model from a starting state through a succes-
sive series of states. While these computational methodologies yield predictions, they are 
not considered ML subdisciplines since they are deductive in nature, not inductive. 

Nonetheless, Simulations and ML have many shared attributes and are often combined in 
an Intelligent Agent. For instance, predictions generated by simulation may be evaluated 
using the same metrics as supervised learning tasks. Models and simulations may also have 
parameters that are experimentally set by reconciling predictions to real world observa-
tions. However, the underlying functions driving a simulation from one state to the next 
are derived by experts based on a scientific understanding of the real-world processes or 
established statistical distributions.

The concepts of Simulations and ML have become increasingly intertwined as practical ap-
plications become more and more complex. For instance, reinforcement learning is a form 
of simulation whereby the function governing state-to-state transitions is derived through 
ML. In reinforcement learning, training data is generated in real time on a trial-and-error 
basis using an external objective function to define success. Alternatively, supervised learn-
ing models can be used to define objective functions or target states for simulation-based 
tasks. For example, DeepMind’s alpha-fold pipeline uses a combination of simulation-based 
techniques and ML to predict the 3D atomistic structure of proteins directly from their ami-
no acid sequences. This hybrid approach uses simulated annealing (see below) to generate 
candidate structures and two discriminative neural networks to evaluate them on the basis 
of inter-residue distances and general similarity to select properties of experimentally de-
rived protein conformations.39

39 Evans, R. et al., De novo structure prediction with deep-learning based scoring, Thirteenth Critical Assessment of Techniques for Protein 
Structure Prediction (Abstracts) (Dec 2018)
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Monte Carlo Simulations and Simulated Annealing
In Monte Carlo Simulations, state-to-state transitions are determined stochastically based 
on observed statistical distributions,40 rather than determined through a scientific under-
standing of underlying processes. These simulations can be used to estimate complex prob-
abilities or explore states of a complex feature landscape. Simulated Annealing is an optimi-
zation protocol based on Monte Carlo simulations, whereby each individual state-to-state 
transition is accepted or rejected on the basis of an acceptance function. Transitions are 
accepted when the new state is considered favorable in accordance with the reward func-
tion. Less favorable state transitions are randomly accepted in accordance with a probabil-
ity that decreases over time. Occasionally accepting unfavorable state transitions helps the 
simulation escape local minima when searching a global landscape of solutions. Molecular 
Docking is a notable example of simulated annealing in computer-aided drug design, where 
molecular affinity potentials derived through statistical approaches gradually guide the 3D 
coordinates of small molecule ligand into a protein binding site.41 Molecular docking is used 
to predict the 3D coordinates of protein-ligand complexes, and ranking libraries of mole-
cules by their likelihood of binding a target protein.

FURTHER TERMS

Ontology
In the context of information sciences and, by extension, AI, an ontology is “a formal de-
scription of knowledge as a set of concepts within a domain and the relationships that hold 
between them. To enable such a description, we need to formally specify components such 
as individuals (instances of objects), classes, attributes and relations as well as restrictions, 
rules and axioms. As a result, ontologies not only introduce a shareable and reusable knowl-
edge representation but can also add new knowledge about the domain.”42 In short, an 
ontology is a framework to represent information. A viable framework must provide AI with 
the knowledge or ability to understand, reason, plan, and learn with datasets, and must 
generate reproducible results.

Data quality is of the foremost importance for building accurate ML models. Any ambiguity 
may result in skewed predictions by the algorithm. By using ontology-based data cleaning 
as a pre-processing step, the model can better understand data input and build more accu-
rate models. For example, mutations in the human gene BRCA1 can lead to breast cancer. 
This same gene has the official synonym ‘IRIS’43, which is also a name for part of the eye. 

40 Hastings, W.K., Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57 (1) pp. 97–109 (1970)

41 Goodsell, D. S., & Olson, A. J., Automated docking of substrates to proteins by simulated annealing. Proteins: Structure, Function, and 
Bioinformatics, 8 (3), pp. 195–202 (1990)

42 Ontotext, What are Ontologies? (2019) https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/

43 Harland, L., Are Ontologies relevant in a Machine Learning-centric world? (OCT 2018) https://www.scibite.com/news/are-ontologies-
relevant-in-a-machine-learning-centric-world/

https://www.scibite.com/news/are-ontologies-relevant-in-a-machine-learning-centric-world/
https://www.scibite.com/news/are-ontologies-relevant-in-a-machine-learning-centric-world/
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When working with data containing genomic information (as an input or output variable), 
ontology-based data pre-processing should thus indicate that the term ‘IRIS’ be treated as 
a gene and not a term relating to the anatomy of the eye or a flower. In this way, current 
domain-specific ontologies might be used to bolster an AI’s understanding, learning, and 
ability to make predictions within that domain. The Gene Ontology44, which has been de-
signed to capture all current knowledge about the function of genes, is an example of one 
such domain-specific ontology that could strengthen an AI in the human genomics space.

Robustness
Robustness is the concept that a machine learning algorithm and produced models are sta-
ble with respect to small changes in the training set, such as the addition of new data or 
simply a reordering of the training set examples. Many machine learning algorithms unfor-
tunately are not very robust, therefore a technique of ensembling is often employed.

Ensembling
Ensembling is a technique that combines a number of models with the introduction of ran-
dom variations, either in the training set, initial conditions, etc. The outputs of each of these 
models are then combined via averaging or some other method producing a more stable 
output, and may obtain better performance than could be achieved from any of the mem-
ber algorithms alone. That is, the group of algorithms may each be well-suited to some 
parts but not all of the problem space. Some ML algorithms, such as random forest, have 
Ensembling built into them.

Meta-Overfitting
Meta-Overfitting can often complicate the use of a “golden test set” to benchmark model 
performance. A golden test set is generally used as a measuring stick to compare ML models 
and is meant to be a good representative of the background space or the entire test space. 
As such, the information in the golden test set is meant to be independent of the model. 
However, if the hyperparameters and feature sets are optimized solely on the grounds of 
performance on the golden test set, the information in the golden test set is no longer inde-
pendent, because it has been used to inform the model. Two ways to avoid meta-overfitting 
is by randomly selecting a subset from the golden dataset to be used in each evaluation, and 
by establishing whether an improvement against the golden test set is statistically significant.

Small Data and AI
A successful AI healthcare system can be built with millions upon millions of data points, 
down to just a few hundred data points (“small data”). However, the transition from big data 
to small data is one of the key trends shaping the way healthcare companies are building AI/

44 Gene Ontology Consortium, Gene Ontology Resource, http://geneontology.org/
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ML models. This trend toward “small data” is a result of necessity rather than design, due 
to limited access to healthcare data, e.g., few recorded events, rare diseases, lack of con-
sistent channels of information, etc. Elsevier Ltd. published an article in 2018 titled “Using 
deep neural network with small datasets to predict material defects” that demonstrates that 
DNN (deep neural network) with small datasets and pre-training can be a reasonable choice 
when big datasets are unattainable for specific use cases in healthcare.45

A “meaningful small data” approach in healthcare means driving towards lean AI/ML mod-
els, incremental data infrastructure investments, and emerging ML approaches. These strat-
egies can lead to better results in use cases such as treatment variability, clinical trial eligi-
bility, drug utilizations, etc.46

Trustworthiness
To fully realize the benefits of AI in healthcare, we need transparent and trustworthy AI solu-
tions which are interpretable, and that support specific business and patient care needs. 
The following guidelines will help improve the trustworthiness of an AI system in healthcare:

●	 Use exploratory data analysis before model building.

●	 Identify outliers in the data and generate a set of likely outcomes from the training data-
set to verify it with model outputs.

●	 Store data from each possible intermediate stage or layer of the machine learning pro-
cess, and utilize the model agnostic framework to explain local results in order to iden-
tify decision-making mechanisms by learning algorithms.

●	 Validate the quality of public datasets. Datasets should be shared, but there should also 
be a process to validate and vet the quality of the data.

●	 Evaluate key factors that may affect our judgment of trustworthiness. This includes: sup-
port industry standards (e.g., ISO, IEEE), accuracy, security, data privacy, ethical stan-
dards associated with AI, standardization on the outcome of an AI solution, etc.

●	 Communicating AI standards to society will play a key role in public trust of AI technolo-
gies. To that end, the High-Level Expert Group on AI (AI HLEG) published a set of Ethics 
Guidelines to promote Trustworthy AI solutions.47

●	 Society tends to be discriminatory of AI systems. If we are not careful, a lack of trust 
could perpetuate or increase that discrimination regardless of whether a solution deliv-
ers the expected outcome or not.48

45 ScienceDirect, Handling limited datasets with neural networks in medical applications: A small-data approach, https://www.
sciencedirect.com/science/article/pii/S0933365716301749

46 H1insights, Part 1: Predicting Healthcare Trends of 2019, https://learn.h1insights.com/blog/2018/11/15/part-1-healthcare-trends-
for-2019

47 European Commission, Ethics Guidelines for Trustworthy AI, https://ec.europa.eu/futurium/en/ai-alliance-consultation

48 The Conversation, The Montréal Declaration: Why we must develop AI responsibly, https://theconversation.com/the-montreal-declara-
tion-why-we-must-develop-ai-responsibly-108154



30

EXAMPLES OF INTELLIGENT AGENTS IN HEALTHCARE

A large and rapidly growing number of examples of Intelligent Agents are being used in 
healthcare. Below are selected use cases demonstrating how Intelligent Agents powered by 
ML techniques are already impacting Healthcare.

Real-Time Septic Shock Warning

Background

Sepsis, a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated 
response to infection, is a leading cause of death in the United States, with mortality highest 
among patients who develop septic shock. Septic shock is an extreme case of sepsis where 
a patient experiences dangerously low blood pressure and abnormalities in cellular metab-
olism. Morbidity, mortality, and length of stay are greatly reduced by early detection and 
treatment of septic shock.

Case-Study

Approach
Henry et al. at Johns Hopkins University developed a real-time early warning score (TREW-
Score) for septic shock.49 Using electronic health records (EMRs) from 13,014 sepsis patients 
(1,836 who developed septic shock and 11,178 who did not) a Cox proportional hazards 
model was used as a supervisory signal using time course data for 54 parameters, such as 
blood pressure and white blood cell count. The new model was trained with this signal to 
estimate the time to an adverse event.

Solution
A set of 3011 randomly selected patients (455 who developed septic shock and 2556 who 
did not) were held out as a validation set. For each patient in the validation set the time 
course data was played forward and the TREWScore was recomputed for each new time 
point. A patient was identified as at risk when his or her score crossed the specified risk 
threshold. In the validation set, the AUC obtained for the TREWScore was 0.83 (95% CI, 0.81 
to 0.85) (Figure 9).

49 Henry, Katharine, A targeted real-time early warning score (TREWScore) for septic shock, Science Translational Medicine, Aug 2015
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Figure 9: Receiver Operator Curve (ROC) for detection of septic shock before onset in the validation.

At a specificity of 0.67 [false-positive rate (FPR) of 0.33], TREWScore achieved a sensitivity 
of 0.85. Patients were identified at median of 28.2 hours (IQR, 10.6 to 94.2) before shock 
onset. This result was compared to a Modified Early Warning Score (MEWS) for clinical dete-
rioration, which is a simple, physiological score that allows improvement in the quality and 
safety of management provided to surgical ward patients.

Business Results
The expanded use of EMRs, as well as greater access to continuously captured vital mea-
surements, has created a valuable opportunity for real-time ML solutions. Earlier identifi-
cation and treatment of patients likely to experience septic shock can dramatically reduce 
morbidity and mortality, saving lives and reducing the amount of time in the hospital. With 
healthcare shifting its focus to outcomes-based reimbursement, preventing septic shock 
could have a major economic impact.

Skin Cancer Classification

Background

Skin cancer is the most common human malignancy and is diagnosed visually beginning with 
an initial clinical screening, typically followed by dermoscopic analysis, and if suspicious, a 
biopsy which results in histopathological examination. One in five Americans will be diag-
nosed with a cutaneous malignancy in their lifetime. Although melanomas represent fewer 
than 5% of all skin cancers in the United States, they account for approximately 75% of all 
skin-cancer-related deaths and are responsible for over 10,000 deaths annually in the US. 
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Dermatologists are not available in all regions of the USA and are costly so many patients 
may opt not to visit a dermatologist. Primary care providers may have limited skills in this 
area and may overlook cancers. As a result, being able to train a ML model to detect cutane-
ous lesions and classify as malignant or not would be the first step to diagnose skin cancer 
using a mobile device. This could lead to greater access to the visual screening component, 
potentially saving thousands of lives in the US alone.

Case-Study

Approach
Esteva et al. at Stanford implemented a skin cancer classification system using a deep con-
volutional neural network learning approach to solve the problem of automated cutaneous 
malignancy diagnosis based on images.50 The input training set consisted of 129,450 clinical 
images labelled with 2,032 different diseases. The CNN model that was developed was com-
pared to the opinion of experts on previously unseen images.

Solution
Data flows from left to right in Figure 10. An image of a skin lesion is sequentially warped 
into a probability distribution over clinical classes of skin disease using Google Inception 
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million images over 1,000 
generic object classes) and fine-tuned on the training set of 129,450 skin lesions comprising 
2,032 different diseases.

Figure 10: Neural network architecture including example input image and resulting classification.

Business Results
The accuracy of the trained CNN in detecting malignancies matched that of 21 trained der-
matologists. The CNN also matched the trained dermatologists in the ability to identify the 
lesion class. This enables fast detection and classification of skin cancer as it empowers 
primary care practitioners to perform initial screening. The model could even be used in 
non-medical settings when it is deployed on a mobile device.

50 Esteva, A. et al., Dermatologist-level classification of skin cancer with deep neural networks., Nature, 542 (7639), pp.115–118 (2017)
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Pharmacovigilance

Background

Pharmacovigilance (PV) is the study of adverse effects caused by pharmaceutical prod-
ucts. Almost all markets for pharmaceutical products have regulations around collecting 
and studying PV data, both pre- and post-approval. With the increase in human longevi-
ty, increased access to pharmaceuticals, and emergence of internet-connected monitoring 
devices, the amount of PV data being processed by companies related to their products is 
increasing rapidly.

Case-Study

Approach
Pfizer concluded that case processing activities (extracting data using Natural Language 
Processing from submitted documents) constitute up to two-thirds of the internal PV re-
sources. In order to improve the cost and efficiency of case-processing they compared PV AI 
solutions from three vendors and their internal AI Center of Excellence.51

Solution
In the pilot, the vendors’ AI systems were trained using a set of 50,000 correctly annotated 
documents. The systems were then tested on 5,000 unannotated test documents and then 
compared with the hand processed annotated version. In the second cycle, the amount of 
training data was doubled to establish if the systems would become more accurate as more 
training data was used (Figure 11).

Figure 11: Pilot system set-up.

51 Schmider, J. et al., Innovation in Pharmacovigilance: Use of Artificial Intelligence in Adverse Event Case Processing, Clin Pharm Thera, 
4 (Apr 2019)
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Business Results
The study found that two of the vendors had an accuracy rate of over 70% in extracting 
information from PV data test sets. The case-level accuracy showed that the same two ven-
dors were able to process 30% of cases with a greater than 80% accuracy and showed im-
provement in the second cycle.

Small Molecule Drug Discovery

Background

Small molecule drug discovery is a design-make-test process to find an optimal candidate 
molecule out of the 1060 theoretical small molecules. The resulting compound must satisfy 
a very large set of criteria including: potency against the primary protein target, efficacy 
in animals, ADMET (absorption, distribution, metabolism, elimination and (lack of) toxici-
ty). According to the Pharmaceutical Research and Manufacturers of America (PhRMA) this 
preclinical process can take 3-6 years and cost more than $25 million. Only one out of four 
programs makes it into clinical studies, and fewer than 12% of those candidates ultimate 
reach approval by the FDA. 

Case-Study

Approach
The drug discovery process searches for highly active compounds that also have acceptable 
biochemical and toxicity properties (ADMET). Traditionally, medicinal chemists study exist-
ing compounds and their associated activity and ADMET assay data, known as the Struc-
ture-Activity Relationship (SAR). From these data, patterns arise which lead to the discov-
ery of more active compounds. However, this process of finding more active compounds 
involves laborious synthesizing and testing large numbers of compounds as most of which 
are ultimately ineffective, as they do not lead to compounds with the required properties 
and criteria.

Solution
There are many machine learning solutions being applied to the problem of pattern recog-
nition within SAR data. In fact, this is one of the first areas in drug discovery where machine 
learning has been applied. The earliest techniques for building machine learning models 
used engineered feature sets:

●	 Calculated molecule properties, such as lipophilicity, polar surface area, etc.;

●	 2D molecular fingerprints based on the presence of particular sets of atoms or on par-
ticular atom-bond-atom pathways in the molecule;

●	 3D molecular fingerprints based on the presence of particular features and the 3D dis-
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tances between them for a given conformation of the molecule, also known as, phar-
macophores;

●	 Some combination of the above features.52

The machine learning techniques used with these engineered feature sets also varied with 
the favored algorithms being Random Forest or Deep Neural Networks. With the introduc-
tion of graph convolutional neural networks, the ability to build a model without selecting 
a specific set of engineered features was introduced. The only caveat being that generally a 
larger training set is required compared to methods using engineered features. Some prog-
ress has been shown since using transfer learning.53

Business Results
A typical high throughput screen (HTS) results in 0.1% hit-rate from a screening library from 
10,000 to one million compounds in size. With machine learning models, virtual spaces of 
over one billion synthetically accessible compounds (synthesizable in under four weeks for 
less than $100/molecule) can be performed. Hit rates for compounds selected from such 
libraries based on machine learning model predictions have been shown to be as high as 
30-50% while the hits remain diverse and unique related to the training set.

In the lead optimization phase of drug discovery—where large spaces of de novo compounds 
are being searched using multiple machine learning models of activity and ADMET—the use 
of such models can greatly increase the efficiency of the design-make-test cycle leading to 
an order of magnitude (OOM) fewer compounds synthesized and tested in a fraction of the 
time. Theoretically, a lower failure rate in the clinic should also be observed since an OOM 
more compounds were examined against an OOM more virtual assays than could be per-
formed traditionally in the pre-clinical phase.

De Novo Small Molecule Generation

Background

As stated above, small molecule drug discovery requires a vast search space and a large num-
ber of design-make-test cycles to find a single candidate molecule. Candidates must meet 
numerous stringent criteria for in vitro and in vivo characteristics and behavior. Producing, 
or “inventing,” molecules with optimal drug like properties instead of searching for one is 
exactly the idea being pursued by a number of groups using GANs. The first peer-reviewed 
publications on the application of GANs to generative chemistry utilized molecular finger-

52 Yang, K., et al., Are Learned Molecular Representations Ready for Prime Time? preprint: 10.26434/chemrxiv.7940594.v2 (Jul 2019)

53 Altae-Tran, H., et al., Low Data Drug Discovery with One-Shot Learning. ACS Cent Sci, 3 (4), pp. 283–293 (2017)
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print representation and an adversarial autoencoder (AAE) architecture54,55 and string-based 
representations using the variational autoencoders (VAE).56,57 Later versions combined GANs 
and reinforcement learning by introducing the Objective Reinforced Generative Adversarial 
Network (ORGAN) architecture for generation of novel molecules58, the approach further 
extended by introducing the adversarial threshold (AT)59 and differential neural computer 
(DNC)60 concepts. GANs have been shown capable of generation of novel molecules using 
the graph representation of the molecular structure61 and 3D representations.62

Case-Study

Approach
Zhavoronkov et al. developed a generative tensorial reinforcement learning (GENTRL) neu-
ral network for de novo lead-like molecules design with high potency against the protein 
of interest.63 They were able to discover potent inhibitors of discoidin domain receptor 1 
(DDR1), a kinase target implicated in fibrosis and other diseases, within 21 days.

Solution
Reinforcement learning, variational inference, and tensor decompositions approaches were 
combined into a generative two-step machine learning algorithm named GENTRL. The first 
step was to train an autoencoder-based model to learn a mapping from discrete molecular 
space to a continuous parametrized space. At this stage the network was trained on the 
general medicinal chemistry dataset together with kinase chemistry and patent data. MCE-
18, IC50 and medicinal chemistry filters were used to parametrize learned representation.64 

54 Kadurin, A. et al., The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in 
oncology. Oncotarget, 8 (7), pp. 3098-3104 (2016)

55 Kadurin, A. et al., druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with 
Desired Molecular Properties in Silico. Mol Pharm, 14 (9), pp. 10883-10890 (2017)

56 Gomez-Bombarelli, R. et al., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent Sci 
4 (2), pp. 268-276 (2018)

57 Lim, J. et al., Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Cheminform 
10 (1), pp. 31 (2018)

58 Benjamin, S.-L. et al., Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for 
Inverse-design Chemistry (ORGANIC). preprint: 10.26434/chemrxiv.5309668.v3 (2017)

59 Putin, E. et al., Adversarial Threshold Neural Computer for Molecular de Novo Design. Mol Pharm, 15 (10), pp. 4386-4397 (2018)

60 Putin, E. et al., Reinforced Adversarial Neural Computer for de Novo Molecular Design. J Chem Inf Model, 58 (6), 1194-1204 (2018)

61 De Cao, N. and Kipf, T., MolGAN: An implicit generative model for small molecular graphs. preprint: arXiv:1805.11973v1 (2018)

62 Kuzminykh, D. et al., 3D Molecular Representations Based on the Wave Transform for Convolutional Neural Networks. Mol Pharm, 15 
(10), pp 4378-4385 (Oct 2018)

63 Zhavoronkov, A. et al., Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37 (9), 
1038–1040 (2019)

64 Ivanenkov, Y. et al., Are We Opening the Door to a New Era of Medicinal Chemistry or Being Collapsed to a Chemical Singularity? J. Med. 
Chem., https://pubs.acs.org/doi/full/10.1021/acs.jmedchem.9b00004 (2019)
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Figure 12: Pictorial representation of the GANs + RL networks.

At the second stage the model was fine-tuned to expand the latent manifold towards dis-
covering novel inhibitors and preferentially generate DDR1 kinase inhibitors. Reinforcement 
learning was applied with reward functions based on self-organizing maps (SOM).

The trained GENTRL model generated 30,000 novel unique molecular structures which were 
filtered with the prioritization pipeline down to 40 molecules selected for synthesis and 
real-world experiments. Out of six remaining molecules, two had two-digit nanomolar IC50 
and high specificity against DDR1 protein. BRIEF COMMUNICATIONNATURE BIOTECHNOLOGY

automatically filtered to remove molecules bearing structural alerts 
or reactive groups, and the resulting chemical space was reduced by 
clustering and diversity sorting (Supplementary Table 2). We then 
evaluated structures using (1) the general and specific kinase SOMs, 
and (2) pharmacophore modeling on the basis of crystal structures of 
compounds in complex with DDR1 (Supplementary Figs. 2 and 3).  
On the basis of the values of molecular descriptors and root-mean-
square deviation (RMSD) calculated in two previous steps (steps 6 
and 7), we used Sammon mapping to assess the distribution of the 
remaining structures.

To narrow our focus to a smaller set of molecules for analy-
sis, we randomly selected 40 structures that smoothly covered 
the resulting chemical space and distribution of RMSD values 
(Supplementary Fig. 4 and Supplementary Table 3). Of the 40 
selected structures, 39 were likely to fall outside the scope of any 
published patents or applications (Supplementary Table 4). Six of 
these were chosen for experimental validation on the basis of syn-
thetic accessibility. Of note, our approach led to several examples 
of nontrivial potentially bioisosteric replacements and topological 
modifications (Fig. 1b).

By day 23 after target selection, we had identified six lead candi-
dates, and by day 35, these molecules had been successfully synthe-
sized (Fig. 1c). They were then tested for in vitro inhibitory activity 
in an enzymatic kinase assay (Supplementary Fig. 5). Compounds 
1 and 2 strongly inhibited DDR1 activity (half-maximum inhibi-
tory concentration (IC50) values of 10 and 21 nM, respectively), 
compounds 3 and 4 demonstrated moderate potency (IC50 values of 
1 μM and 278 nM, respectively), and compounds 5 and 6 were inac-
tive. Compounds 1 and 2 both exhibited selectivity towards DDR1 

over DDR2 (Fig. 1c). Furthermore, compound 1 exhibited a rela-
tively high selectivity index compared to those of 44 diverse kinases 
(Supplementary Fig. 6).

Next, we investigated the DDR1 inhibitory activity of com-
pound 1 and compound 2 as measured by autophosphorylation in 
U2OS cells. The compounds showed IC50 values of 10.3 and 5.8 nM, 
respectively (Supplementary Fig. 7). Both molecules inhibited the 
induction of fibrotic markers α-actin and CCN2 in MRC-5 lung 
fibroblasts (Supplementary Fig. 8). These molecules also inhibited 
the expression of collagen (a hallmark of fibrosis) in LX-2 hepatic 
stellate cells, with compound 1 showing potent activity at 13 nM 
(Supplementary Fig. 9).

We then performed in vitro microsomal stability studies to char-
acterize the metabolic stability of compounds 1 and 2 in human, 
rat, mouse, and dog liver microsomes. Compounds 1 and 2 had 
half-life and clearance values that were similar to or more favor-
able than those of routinely used control molecules (Supplementary 
Table 5). Compound 2 was also found to be very stable in buffer 
conditions (Supplementary Table 6). Neither compound strongly 
inhibited cytochrome P450, and both compounds showed favor-
able physiochemical properties, including satisfying Lipinski’s rules 
(Supplementary Tables 7 and 8).

Finally, we tested compound 1 in a rodent model. Compound 1  
was delivered to mice intravenously (i.v.) (10 mg kg–1) and orally 
(p.o., 15 mg kg–1). The two administrations resulted in similar 
half-lives, ~3.5 h (Fig. 2a and Supplementary Tables 9 and 10). I.v. 
administration conferred a peak plasma concentration of 2,357 ng 
ml–1 on initial delivery, whereas p.o. administration resulted in a 
lower maximum of 266 ng ml–1, which peaked 1 h after delivery.

IC50(DDR2) = 234 nM

IC50(DDR1) = 10 nM IC50(DDR1) = 21 nM

IC50(DDR1) = 278 nM

IC50(DDR2) = 162 nM

IC50(DDR2) = 76 nM

IC50(DDR1) = 1,000 nM

IC50(DDR1) > 104  nM IC50(DDR1) > 104  nM

IC50(DDR2) > 104  nMIC50(DDR2) > 104  nM

IC50(DDR2) = 649 nM
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Fig. 1 | GENTRL model design, workflow, and nanomolar hits. a, The general workflow and timeline for the design of lead candidates using GENTRL. IP, 
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Figure 13: Timeline and results of the DDR1 project.

Business Results
The generative network can now be used to generate compounds with desired physico-
chemical properties reducing the need for hand generation of combinatorial libraries of 
compounds. This approach has the potential to increase the efficiency of lead generation 
by one or more OOM, and to identify compounds to test against previously hard-to-drug 
targets across a range of disease areas.
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Modeling Side Effects Resulting from Drug Combinations  
(Polypharmacy)

Background

Many diseases and medical conditions are treated with combinations of drugs. In cancer, for 
example, combination therapies are being explored to find targeted therapies and biologics 
to pair with chemotherapy or with one another. Some drugs, for example checkpoint inhib-
itors (CPIs) like pembrolizumab, have attained blockbuster success, yet fail to improve out-
comes for the vast majority of patients. Thus, an entire cottage industry has grown in order 
to search for the right drugs to combine with CPIs to expand their effectiveness in patients 
still in need. Another example is the common scenario in which a patient takes multiple 
drugs as part of their daily regimen and polypharmacy increases the chance of deleterious 
side effects due to drug-drug interactions. 

Adverse events are a major concern in drug development. Every drug must pass stringent 
toxicity criteria for approval. Yet it would be impractical to test all possible drug pairs for drug-
drug induced adverse events. Further, many clinical trials are too small to detect rare but 
serious polypharmacy effects. Over 15% of the U.S. population is impacted by polypharmacy, 
and treating the unexpected consequences costs in the hundreds of billions of US dollars.

Case-Study

Approach
Marinka Zitnik and colleagues65 at Stanford developed a Graph Convolutional Network (GCN) 
approach to modeling drug-drug interactions, and to predict the specific side effects and 
complications associated with that interaction. Their model incorporates information from 
drug-protein (target) and protein-protein interactions, as these relationships were observed 
to be meaningful in the prevalence of multi-drug prescriptions. A key innovation of the mod-
el was not only to predict whether to expect a drug-drug interaction, or polypharmacy side 
effect, but specifically to identify the type of interaction to expect from among nearly 1,000 
defined adverse side effects. 

Solution
The authors present Decagon, the solution to a “multi-relational link prediction problem 
in a two-layer multimodal graph/network of two node types: drugs and proteins.” Data-
sets were assembled from published sources: various protein-protein interaction networks; 
STITCH database for drug-protein interactions; and SIDER, OFFSIDES and TWOSIDES data-
bases for drug-drug interactions. Once the authors harmonized vocabularies, the resulting 
network included 645 drug and 19,085 protein nodes, linked by 715,612 protein-protein, 
18,596 drug-protein and 4,651,131 drug-drug edges.

65 Zitnik, M., Agrawal, A., and Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34, pp 
i457-i466 (2018)
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2 Zitnik et al.

2012; Bansal et al., 2014). Furthermore, polypharmacy is recognized as
an increasingly serious problem in the health care system affecting nearly
15% of the U.S. population (Kantor et al., 2015), and costing more than
$177 billion a year in the U.S. in treating polypharmacy side effects (Ernst
and Grizzle, 2001).

In vitro experiments and clinical trials can be performed to identify
drug-drug interactions (Li et al., 2015; Ryall and Tan, 2015), but systematic
combinatorial screening of drug-drug interaction candidates remains
challenging and expensive (Bansal et al., 2014). Researchers have thus
attempted to collect drug-drug interactions from scientific literature and
electronic medical records (Percha et al., 2012; Vilar et al., 2017), and
also discovered them through network modeling, analysis of molecular
target signatures (Sun et al., 2015; Huang et al., 2014b; Lewis et al.,
2015; Chen et al., 2016a; Takeda et al., 2017), statistical association-
based models, and semi-supervised learning (Zhao et al., 2011; Huang
et al., 2014a; Chen et al., 2016b; Shi et al., 2017) (see related work in
Section 7). While these approaches can be useful to derive broad rules for
describing drug interaction at the cellular level, they cannot directly guide
strategies for drug combination treatments. In particular, these approaches
characterize drug-drug interactions through scores representing the overall
probability/strength of an interaction but cannot predict the exact type of
the side effect. More precisely, for drugs i and j these methods predict if
their combination produces any exaggerated responseSij over and beyond
the additive response expected under no interaction, regardless of the exact
type or the number of side effects. That is, their goal is to answer a question:

Sij
?
6= {}, where Sij is the set of all polypharmacy side effects attributed

specifically to a drug pair i, j but not to either drug alone. However, it
is much more important and useful to answer whether a pair of drugs i,

j will interact with a given side effect of type r, r
?
2 Sij . Even though

identification of precise polypharmacy side effects is critical for improved
patient care, it remains a challenging task that has not yet been studied
through predictive modeling.

Present work. Here, we develop Decagon, a method for predicting side
effects of drug pairs. We model the problem by constructing a large
two-layer multimodal graph of protein-protein interactions, drug-protein
interactions, and drug-drug interactions (i.e., side effects) (Figure 1). Each
drug-drug interaction is labeled by a different edge type, which signifies
the type of the side effect. We then develop a new multirelational edge
prediction model that uses the multimodal graph to predict drug-drug
interactions as well as their types. Our model is a convolutional graph
neural network that operates in a multirelational setting.

To motivate our model, we first perform exploratory analysis leading
to two important observations (Section 3). First, we find that co-prescribed
drugs (i.e., drug combinations) tend to have more target proteins in
common than random drug pairs, suggesting that drug-target protein
information contains valuable information for drug combination modeling.
Second, we find that it is important to consider a map of protein-protein
interactions in order to be able to model characteristics of drugs with
common side effects. These observations motivate the development of
Decagon to make predictions about which drug pairs will interact and
what will the exact type of the interaction/side effect be (Section 4).

Decagon develops a new graph auto-encoder approach (Hamilton
et al., 2017a), which allows us to develop an end-to-end trainable model
for link prediction on a multimodal graph. In contrast, previous graph-
based approaches for link prediction tasks in biology (e.g., Huang et al.
(2014b); Chen et al. (2016b); Zong et al. (2017)) employ a two-stage
pipeline, typically consisting of a graph feature extraction model and a link
prediction model, both of which are trained separately. Furthermore, the
crucial distinguishing characteristic of Decagon is the multirelational link
prediction ability allowing us to capture the interdependence of different
edge (side effect) types, and to identify which out of all possible edge types
exist between any two drug nodes in the graph. This is in sharp contrast

Drug Protein
r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interaction

Polypharmacy 
side effects

Ciprofloxacin

SimvastatinDoxycycline

Mupirocin

r2r2

r1

Node feature vector

D S

MC

Fig. 1. An example graph of polypharmacy side effects derived from genomic and patient
population data. A multimodal graph consists of protein-protein interactions, drug-protein
targets, and drug-drug interactions encoded by 964 different polypharmacy side effects
(i.e., edge types ri , i = 1, . . . , 964). Side information is integrated into the model in
the form of additional protein and drug feature vectors. Highlighted network neighbors
of Ciprofloxacin (node C) indicate this drug targets four proteins and interacts with three
other drugs. The graph encodes information that Ciprofloxacin (node C) taken together
with Doxycycline (node D) or with Simvastatin (node S) increases the risk of bradycardia
side effect (side effect type r2), and its combination with Mupirocin (M ) increases the
risk of gastrointestinal bleed side effect r1 . We use the graph representation to develop
Decagon, a graph convolutional neural model of polypharmacy side effects. Decagon
predicts associations between pairs of drugs and side effects (shown in red) with the goal
of identifying side effects, which cannot be attributed to either individual drug in the pair.

with approaches for simple link prediction (Trouillon et al., 2016), which
predict only existence of edges between node pairs, and is also critical for
modeling a large number of different edge/side effect types.

We contrast Decagon’s performance with that of state-of-the-art
approaches for multirelational tensor factorization (Nickel et al., 2011;
Papalexakis et al., 2017), approaches for representation learning on
graphs (Perozzi et al., 2014; Zong et al., 2017), and established
machine learning methods for link prediction, which we adapted for the
polypharmacy side effect prediction task. Decagon outperforms alternative
approaches by up to 69% and leads to a 20% average gain in predictive
performance, with larger gains achieved on side effect types that have a
strong molecular basis (Section 6). For several novel predictions we find
supporting evidence in the biomedical literature, suggesting that Decagon
performs especially well at identifying predictions that are highly likely
to be true positive. Taken together, this study shows, for the first time,
the ability to model side effects of drug combinations and opens up new
opportunities for development of combinatorial drug therapies.

2 Datasets
We formulate the polypharmacy side effect identification problem as
a multirelational link prediction problem in a two-layer multimodal
graph/network of two node types: drugs and proteins. We construct two-
layer multimodal network as follows (Figure 1). Protein-protein interaction
network describes relationships between proteins. Drug-drug interaction
network contains 964 different types of edges (one for each side effect
type) and describes which drug pairs lead to which side effects. Lastly,
drug-protein links describe the proteins targeted by a given drug.

We continue by describing the datasets used to construct the network.
Preprocessed versions of all datasets are available through this study’s
website: http://snap.stanford.edu/decagon.

Figure 14: Illustration of the nodes and edges comprising the protein and drug graph operated on by Decagon.

Decagon consists of an encoder and decoder. The encoder is a GCN that operates on the 
graph of protein/drug nodes and edges creating embeddings for the nodes. The decoder 
employs tensor factorization to translate the node embeddings into edges that predict the 
likelihood and type of polypharmacy events (drug-drug interactions). During training, model 
parameters are optimized by cross-entropy loss, with 80% of the data used for training and 
the rest removed for parameter selection and testing/validation. Decagon out-performed 
other tensor factorization and neural embedding approaches to polypharmacy prediction 
by a wide margin. Its average AUROC score across all 964 side effect types was 0.872, with 
the nearest comparator at 0.793. It performed especially well for side effects with strong 
molecular basis.

Business Results
Decagon could be used in the primary care setting as a decision support tool for physicians 
to guide prescriptions for patients taking several drugs. Alternatively, such a model could be 
helpful in designing drug combination clinical trials. Eventually, a model of this type might 
also serve a regulatory function such as contraindication labeling. 

THE PROMISE OF AI IN HEALTHCARE

ML models have the ability to take in and train on more data than any one person. ML mod-
els can operate at speeds and scales well beyond human capability. ML algorithms can build 
far more complex models than any human could. Finally, ML is data-driven, and the models 
can be applied to any narrow problem given proper training data. Due to the complexity of 
Biology, the rate at which new knowledge is being generated in healthcare, and the reac-
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tion speed needed in time critical decision making, ML is a tool that can enable scientists, 
clinicians, and all medical professionals along the spectrum of biomedical discovery, clinical 
development, patient care, and population health to make better decisions.

ML helps to reduce failure rates and lower drug development costs by increasing the num-
ber and quality of available targets, designing and testing fewer molecules that are more 
effective at treating disease with limited toxicity or adverse events, and selecting the right 
patients at the right time for the right treatment in clinical trials. In clinical care, ML drives 
efficiencies in the clinical workflow itself. Further, ML plays a significant role in aiding de-
cision-making among health practitioners along the continuum of prevention, diagnosis, 
treatment and patient follow-up. ML permits early, accurate diagnosis by aggregating dis-
parate pieces of information, extracting key patterns from datasets to help identify effective 
interventions early on when conditions are amenable to treatment.

CONCLUSION

Given the potential benefits of AI in healthcare, but also the real possibility to cause harm, 
we call for a concerted and collaborative effort to improve industry-wide understanding of 
the complexities of AI. Critically, the healthcare industry should work together with gov-
ernments and patients to advance the discussion of responsible AI use. We must work to 
develop standards that will ensure trustworthiness and transparency in decisions supported 
by AI as we promote the use of AI in all aspects of healthcare to ensure the best possible 
decisions are always made.

FUTURE WORK

The current work has just begun to scratch the surface of AI, its use in Healthcare, and the 
topics that surround it. Future planned papers include:

•	 A series of works on standards development for AI in healthcare

•	 Fairness and Trustworthiness as it relates to AI in healthcare

•	 What an AI enabled IND and NDA might look like

•	 How AI will change the healthcare industry

•	 Data and data collection standards
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Appendix:

DEEPER TECHNICAL DETAILS

Train / Test Assumption 
Machine learning is primarily concerned with accurate predictions, therefore, the objective 
is to build a model that performs the best on the test set. The way this is achieved is by hav-
ing the machine learning algorithm construct a mathematical function (which is the model) 
that minimizes the prediction error. The test set is often unknown, and thus the labels on 
the test set are unknown. The model is therefore generated by minimizing a loss function 
over a training set, requiring a key assumption. The assumption is that the training set and 
the test set are both derived from the same underlying statistical distribution. In other 
words, the patterns found in the training set are assumed to be the same patterns found in 
the test set. This seems obvious, but ignorance of, or disregard for, this assumption leads to 
the vast majority of the mistakes and misapplications of supervised machine learning mod-
els. Discord between the distribution of training and test set data is a major source of bias. 
Unfortunately, models will always contain some bias because a finite training set will never 
be completely representative of all other possible test sets. Significantly, models can still be 
applied when careful characterization, awareness, and reduction of the biases is performed. 
One example of bias is a model built to predict cancer risk using young people in a training 
set and applying the model to a much older population.

Model Performance
The specific metric to evaluate model performance depends on the model function, loss 
function, data balance, and the final intent of the model. While the term accuracy is often 
used interchangeably with the term performance, this is not always correct. For example, 
accuracy in the case of binary classification models refers to the proportion of correct pre-
dictions made by the model on the test sets. When discussing model performance, sticking 
to well-defined standard terms will help to reduce confusion.

In addition to using the proper term one must also be very specific as to what dataset the 
metric is referring. The best practice when testing supervised ML model performance is to 
use a labeled dataset that was not part of the training set: the holdout dataset. A holdout 
dataset is used to provide a better predictor of model performance on a prospective test 
dataset. How the holdout dataset is constructed relative to the training dataset is critical for 
getting a proper measure of prospective model performance. Generally, the more dissimilar 
the holdout dataset is to the training dataset the more the metric will provide a measure-
ment of the model’s generalizability (discussed in more detail below).

For binary classifications such as diagnostics, performance is generally described in terms of 
a confusion matrix (Table 1), which charts:
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•	 true positives (TP), number of correct positive predictions;

•	 true negatives (TN), number of correct negative predictions;

•	 false positives (FP), number of incorrect positive predictions;

•	 false negatives (FN), number of incorrect negative predictions.

Table 1: Confusion Matrix template

 Test Results Disease Present Disease Absent

Positive TP FP

Negative FN TN

From these values, additional metrics are defined to assist in interpreting performance. Sen-
sitivity, also known as recall, or true positive rate, represents the ratio of correctly identified 
positives over the entire dataset (TP / TP + FN). Meanwhile, specificity describes the ratio of 
correctly identified negatives over the entire dataset (TN / TN + FP). Most classification algo-
rithms can balance between model specificity and sensitivity through changing the discrim-
ination threshold. Coupled, these two metrics provide a human-interpretable evaluation of 
model performance, but can be problematic for model benchmarking if one has favorable 
sensitivity and the other has favorable specificity. Thus, model performance is typically com-
pared by plotting the relationship between true positive rates and false positives rates of 
different models, taken at varied discrimination thresholds. This relationship is known as 
receiver operating characteristic (ROC) curve, and often summarized with a single value, 
Area Under the Curve (AUC), which ranges from 0.5 (no predictive power) to 1 (perfect pre-
dictions). A variant known as Precision-Recall Area Under the Curve (PR-AUC), substitutes 
precision (TP / TP + FP) for false positive rate, which does not account for true negatives and 
can provide a better description of performance with highly imbalanced datasets. PR-AUCs 
are also appropriate for ranking tasks.

For regression tasks, performance evaluation generally involves some measure of distance 
between the predicted value and the true value for each data point in the test sets. The MSE 
is a common metric to summarize predictive performance across a set of testing examples. 
R-squared is another metric that is often used. R-squared relates the MSE of the model to 
the MSE of a null model. A null model is a model that always predicts the same value, name-
ly the average value of the training set labels.66

For ranking tasks, metrics that measure the relative ordering are used to evaluate model 
performance. The dominant metrics are Kendall’s tau (τ) and Spearman’s rank correlation 

66 Alexander, D. et al., Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. 
Model., 55 (7), pp. 1316-1322 (2015)
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coefficient (ρ). Kendell’s tau counts and compares concordant and discordant pairs in the 
sample, which directly relates to the underlying ranking. Because the metric is based purely 
on pair counts, the algorithm generating the pairs can account for dataset characteristics, 
such as noise. Spearman’s rank correlation coefficient measures the covariance of the sam-
ple. Unlike Kendell’s tau, Spearman’s rank correlation coefficient can be affected by noise in 
the data.

Applying these performance metrics to test and holdout sets provides a way to compare 
models generated by different algorithms or parameter sets. Ultimately however, evaluating 
the true performance of a supervised machine learning model requires repeat testing in a 
real-world setting. Ideally, real-world performance should reflect the performance in the 
model testing stages using a proper holdout set. A drop in real-world performance could be 
attributed to many factors, including overfitting, underfitting, non-representative training/
testing data, or testing data that are too similar to examples in the training set (memoriza-
tion). Models that demonstrate consistent performance across a large range of applications 
and inputs are said to be generalizable.

Overfitting and Bias
Supervised learning typically experiences a tradeoff between a model’s ability to identify 
relevant predictive relationships and generalizability (Figure 15). The use of too few data 
features or a simpler predictive function creates models with low complexity. This can com-
promise the identification of predictive relationships in a process known as underfitting. 
These models are said to have high bias. In contrast, overfitting stems from the predictive 
algorithm learning patterns from random noise, often by over-minimizing the loss function. 
This leads to the algorithm choosing a model function that is too complex and these models 
are said to have high variance. The ideal model development seeks to strike a balance be-
tween bias and variance to produce effective, generalizable models.

Figure 15: Optimal model complexity strikes a balance between variance and bias.

To further illustrate the concept of overfitting (Figure 16), training data were generated by 
adding Gaussian noise to random data points from a linear equation. Without knowing how 
the data were generated, one may intuit by looking at the plot that these data should be 
linear fit. However, naïvely a higher order polynomial would actually further minimize the 
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training set error. Ultimately, a polynomial where the number of parameters equals the 
number of data points results in training set error of zero, but also will result in a nonfunc-
tional model. In a more realistic higher dimensional case, it is generally not clear where the 
optimal balance lies.

Figure 16: Two models (linear and polynomial) fit to noisy data. The MSE training loss for the linear and polynomial 
model are 82.2 and 1.1 respectively.

A number of techniques may be employed to avoid overfitting. One way to avoid this issue 
is to use cross-fold validation—a set of models are built on multiple subsets of the training 
data, while evaluating the loss on the remaining training data (the validation set), and then 
selecting the model with the best performance on the validation data. Another way is by 
using a technique called regularization, which is often built into supervised machine learn-
ing algorithms. Regularization is an approach that pushes the machine learning algorithm to 
choose the simplest function to fit the data thereby helping to avoid overfitting.

To further illustrate the concept of underfitting and bias (Figure 17), data were generated 
by adding Gaussian noise to random points along a third order polynomial curve. If only the 
data between -5 and 5 were available, the model would be very biased and underfit outside 
of that range. This demonstrates the issue of applying a model outside of the domain of the 
training data. If the machine learning algorithm is unduly restricted to a linear function, the 
final model will also be underfit, but in this case the final loss should indicate a problem by 
being very high. Finally, a third order polynomial fit strikes the balance between bias and 
variance.

Figure 17: Two linear fits to different ranges of the data and one third order polynomial fit.
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