

NORTHSTAR TECHNOLOGIES FLORIDA BUILDING CODE TEST REPORT

SCOPE OF WORK

AAMA 501, TAS 201, TAS 202 AND TAS 203 TESTING ON EXTERIOR WALL PANEL SYSTEM

REPORT NUMBER

L4423.01-450-44 RO

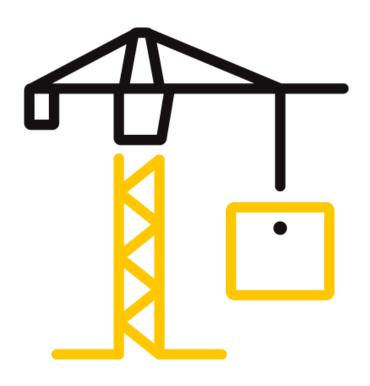
TEST DATES

10/16/20 - 10/28/20

ISSUE DATE

12/16/20

RECORD RETENTION END DATE


10/28/24

PAGES

33

DOCUMENT CONTROL NUMBER

ATI 00831 (01/30/18) RT-R-AMER-Test-2745 © 2017 INTERTEK

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

REPORT ISSUED TO

NORTHSTAR TECHNOLOGIES

365 Fifth Ave. S Naples, Florida 34102

PROJECT

NORTHSTAR EXTERIOR WALL PANEL SYSTEM

For INTERTEK B&C:

AWR/MMN

COMPLETED BY:	Melissa Nuttall	REVIEWED BY:	Vinu J. Abraham, P.E.
	Technician Team Leader -		
TITLE:	Products	TITLE:	Vice President - Products
SIGNATURE:		SIGNATURE:	
DATE:	12/16/20	DATE:	

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Version: 01/30/18 Page 2 of 33 RT-R-AMER-Test-2745

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by Northstar Technologies to perform TAS 201, TAS 202, and TAS 203 testing in accordance with Florida Building Code requirements on their Exterior Wall Panel System. Testing was conducted at the Intertek B&C test facility in West Palm Beach, Florida. Results obtained are tested values and were secured using the designated test methods. This report includes complete written and photographic documentation of all testing performed and a copy of "As-Built" mock-up drawings.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. This report and related test records that are retained such as "As-Built" mock-up drawings, datasheets, representative samples of test specimens, or other pertinent project documentation will be serviced by Intertek B&C for the entire test record retention period. At the end of this retention period, such materials shall be discarded without notice and the service life of this report by Intertek B&C will expire.

SECTION 2

TEST METHODS

Mock-up testing was performed in accordance with referenced test methods.

AAMA 501-15, Methods of Test for Exterior Walls

TAS 201-94, Impact Test Procedures

TAS 202-94, Criteria for Testing Impact & Non Impact Resistant Building Envelope Components Using Uniform Static Air Pressure

TAS 203-94, Criteria for Testing Products Subject to Cyclic Wind Pressure Loading

ASTM E283-04, Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Mock Up

ASTM E330-14, Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E331-00(2009), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E1886-13a, Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials

ASTM E1996-14a, Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborne Debris in Hurricanes

Version: 01/30/18 Page 3 of 33 RT-R-AMER-Test-2745

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

SECTION 3

LIST OF OFFICIAL OBSERVERS

NAME	COMPANY
Terry Roberts	Intertek B&C
Veron Wickham	Intertek B&C
Melissa Nuttall	Intertek B&C
Vinu Abraham, P.E.	Intertek B&C

SECTION 4

GENERAL MOCK-UP DESCRIPTION

Project Type

Exterior Wall Panel System

Mock-Up Size

Mock Ups 1, 2, 3: 8' wide by 12' high

Mock Ups 4, 5, 6: 14' 1-1/4" wide by 12' high

Material Source/Installation

The mock-up materials/components were supplied by Northstar Technologies. The installation of the mock-ups was completed by Intertek B&C.

Version: 01/30/18 Page 4 of 33 RT-R-AMER-Test-2745

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

SECTION 5

FINAL TEST RESULTS

Protocols TAS 202-94 and AAMA 501-15, Static Air Pressure

Test Date(s): 9/4/19 through 10/26/20

The temperature during testing was 81°F to 85°F. The results are tabulated as follows:

Mock Up #1: Preload per ASTM E330

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Preload			
@ +45psf			

Mock Up #1: Air Leakage per TAS 202/ASTM E283

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Air Leakage,			
Infiltration at 1.57 psf (25 mph)	<0.01 cfm/ft ²	Report	1
Air Leakage,			
Infiltration at 6.27 psf (50 mph)	<0.01 cfm/ft ²	0.06 cfm/ft ² max.	1

Note 1: Test Date 10/16/20 / Time: 10:38 AM (Air Note Only)

Mock Up #1: Water Penetration per TAS 202/ASTM E331

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Water Penetration,			
15% of Positive Design Pressure at 13.5 psf	Pass	No leakage	

Mock Up #1: Preload and Design Load per TAS 202/ASTM E330

LOAD	INDICATOR	DEFLECTION (in.)		DEFLECTION (in.) PERMANENT SI	
(psf)	LOCATION	MEASURED	ALLOWED	MEASURED	ALLOWED
+67.5	2	0.74	N/A	0.08	N/A
50% of Test Pressure	5	0.02	N/A	0.01	N/A
+90.0	2	0.94	1.20	0.10	N/A
Design Pressure	5	0.03	0.19	<0.01	N/A
-63.75	2	0.56	N/A	0.02	N/A
50% of Test Pressure	5	0.02	N/A	0.01	N/A
-85.0	2	0.78	1.20	0.04	N/A
Design Pressure	5	0.01	0.19	0.01	N/A

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #1: Repeat Air Leakage per TAS 202/ASTM E283

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Air Leakage,			
Infiltration at 1.57 psf (25 mph)	<0.01 cfm/ft ²	Report	2
Air Leakage,			
Infiltration at 6.27 psf (50 mph)	<0.01 cfm/ft ²	0.06 cfm/ft ² max.	2

Note 2: Test Date 11/16/20 / Time: 2:12 PM (Air Note Only)

Mock Up #1: Repeat Water Penetration per TAS 202/ASTM E331

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Water Penetration,			
15% of Positive Design Pressure at 13.5 psf	Pass	No leakage	

Mock Up #1: Structural Overload Load per TAS 202/ASTM E330

LOAD	INDICATOR DEFLECTION (in.) PERMANENT SE		DEFLECTION (in.)		SET (in.)
(psf)	LOCATION	MEASURED	ALLOWED	MEASURED	ALLOWED
+135.0	2	1.27	N/A	0.08	0.29
Test Pressure	5	0.04	N/A	<0.01	0.04
-127.5	2	1.19	N/A	0.09	0.29
Test Pressure	5	<0.01	N/A	<0.01	0.04

Note 3: See Sketch #1 for indicator locations.

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #4: Preload per ASTM E330

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Preload			
@ +45psf			

Mock Up #4: Air Leakage per TAS 202/ASTM E283

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Air Leakage,			
Infiltration at 1.57 psf (25 mph)	0.01 cfm/ft ²	Report	4
Air Leakage,			
Infiltration at 6.27 psf (50 mph)	0.01 cfm/ft ²	0.06 cfm/ft ² max.	4

Note 4: Test Date 10/22/20 (Air Note Only)

Mock Up #4: Water Penetration per TAS 202/ASTM E331

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Water Penetration,			
15% of Positive Design Pressure at 13.5 psf	Pass	No leakage	

Mock Up #4: Preload and Design Load per TAS 202/ASTM E330

LOAD	INDICATOR	DEFLECTION (in.)		PERMANENT SET (in.)	
(psf)	LOCATION	MEASURED	ALLOWED	MEASURED	ALLOWED
+67.5	2	0.69	N/A	0.06	N/A
50% of Test Pressure	5	0.81	N/A	<0.01	N/A
+90.0	2	0.69	1.20	<0.01	N/A
Design Pressure	5	0.89	1.20	<0.01	N/A
-63.75	2	0.78	N/A	0.05	N/A
50% of Test Pressure	5	0.82	N/A	0.15	N/A
-85.0	2	1.09	1.20	<0.01	N/A
Design Pressure	5	0.91	1.20	0.03	N/A

Mock Up #4: Repeat Air Leakage per TAS 202/ASTM E283

	,		
TITLE OF TEST	RESULTS	ALLOWED	NOTE
Air Leakage,			
Infiltration at 1.57 psf (25 mph)	<0.01 cfm/ft ²	Report	5
Air Leakage,			
Infiltration at 6.27 psf (50 mph)	<0.01 cfm/ft ²	0.06 cfm/ft ² max.	5

Note 5: Test Date 10/23/20 (Air Note Only)

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #4: Repeat Water Penetration per TAS 202/ASTM E331

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Water Penetration,			
15% of Positive Design Pressure at 13.5 psf	Pass	No leakage	

Mock Up #4: Structural Overload Load per TAS 202/ASTM E330

LOAD	INDICATOR	DEFLECTION (in.)		PERMANENT SET (in.)	
(psf)	LOCATION	MEASURED	ALLOWED	MEASURED	ALLOWED
+135.0	2	1.36	N/A	0.25	0.29
Test Pressure	5	1.63	N/A	0.12	0.29
-127.5	2	1.65	N/A	0.12	0.29
Test Pressure	5	1.28	N/A	0.14	0.29

Note 6: See Sketch #2 for indicator locations.

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Protocol TAS 201-94, Large Missile Impact Procedures

Test Dates: 10/18/20 through 10/28/20

The temperature during testing was 75°F to 85°F. The results are tabulated as follows:

Mock Up #1

IMPACT#	MISSILE WEIGHT (lbs.)	MISSILE LENGTH (in.)	MISSILE VELOCITY (ft./sec.)
1			49.5
2	9.0	96	50.1
3			50.1

Note 7: See Sketch #3 for impact locations.

Mock Up #2

	MISSILE WEIGHT	MISSILE LENGTH	MISSILE VELOCITY
IMPACT #	(lbs.)	(in.)	(ft./sec.)
1			49.7
2	9.0	96	49.8
3			49.6

Note 8: See Sketch #4 for impact locations.

Mock Up #3

IMPACT #	MISSILE WEIGHT (lbs.)	MISSILE LENGTH (in.)	MISSILE VELOCITY (ft./sec.)
1			51.3
2	9.0	96	49.5
3			49.4

Note 9: See Sketch #5 for impact locations.

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #4

IMPACT#	MISSILE WEIGHT (lbs.)	MISSILE LENGTH (in.)	MISSILE VELOCITY (ft./sec.)
1			51.2
2			51.4
3	9.0	96	49.9
4			49.3
5			51.8

Note 10: See Sketch #6 for impact locations.

Mock Up #5

IMPACT#	MISSILE WEIGHT (lbs.)	MISSILE LENGTH (in.)	MISSILE VELOCITY (ft./sec.)
1			51.1
2	9.0	96	49.8
3			50.3

Note 11: See Sketch #7 for impact locations.

Mock Up #6

IMPACT #	MISSILE WEIGHT (lbs.)	MISSILE LENGTH (in.)	MISSILE VELOCITY (ft./sec.)
1			50.1
2	9.0	96	49.5
3			51.1

Note 12: See Sketch #8 for impact locations.

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Dates: 10/18/20 through 10/28/20

The temperature during testing was 75°F to 85°F. The results are tabulated as follows:

Mock Up #1: Cyclic Test Spectrum and Average Cycle Time per TAS 203

DESIGN PRESSURE	STAGE		
+90.0 / -85.0 psf	1	2	3
POSITIVE PRESSURE RANGE (psf)	0 – 45.0	0 – 54.0	0 – 117.0
AVERAGE CYCLE TIME (sec.)	3.9	4.2	1.0
NUMBER OF CYCLES	600	70	1
	4	5	6
NEGATIVE PRESSURE RANGE (psf)	0 – 42.5	0 – 51.0	0 – 110.5
AVERAGE CYCLE TIME (sec.)	3.3	3.6	1.0
NUMBER OF CYCLES	600	70	1

Mock Up #1: Positive Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.31	<0.01	> 99	> 90

Mock Up #1: Negative Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT PERCENT RECOVERY		/ERY
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.19	0.01	95	> 90

Note 13: See Sketch #9 for indicator locations.

Mock Up #2: Cyclic Test Spectrum and Average Cycle Time per TAS 203

The state of the s			
DESIGN PRESSURE	STAGE		
+90.0 / -85.0 psf	1	2	3
POSITIVE PRESSURE RANGE (psf)	0 – 45.0	0 – 54.0	0 – 117.0
AVERAGE CYCLE TIME (sec.)	3.9	4.3	1.0
NUMBER OF CYCLES	600	70	1
	4	5	6
NEGATIVE PRESSURE RANGE (psf)	0 – 42.5	0 – 51.0	0 – 110.5
AVERAGE CYCLE TIME (sec.)	4.3	5.4	1.0
NUMBER OF CYCLES	600	70	1

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #2: Positive Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.21	0.02	> 90	> 90

Mock Up #2: Negative Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.14	<0.01	> 99	> 90

Note 14: See Sketch #9 for indicator locations.

Mock Up #3: Cyclic Test Spectrum and Average Cycle Time per TAS 203

DESIGN PRESSURE	STAGE		
+90.0 / -85.0 psf	1	2	3
POSITIVE PRESSURE RANGE (psf)	0 – 45.0	0 – 54.0	0 – 117.0
AVERAGE CYCLE TIME (sec.)	3.7	4.0	1.0
NUMBER OF CYCLES	600	70	1
	4	5	6
NEGATIVE PRESSURE RANGE (psf)	0 – 42.5	0 – 51.0	0 – 110.5
AVERAGE CYCLE TIME (sec.)	3.9	5.4	1.0
NUMBER OF CYCLES	600	70	1

Mock Up #3: Positive Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOV	/ERY
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.15	<0.01	> 99	> 90

Mock Up #3: Negative Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT PERCENT RECOVERY		/ERY
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.12	<0.01	> 99	> 90

Note 15: See Sketch #9 for indicator locations.

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #4: Cyclic Test Spectrum and Average Cycle Time per TAS 203

DESIGN PRESSURE	STAGE		
+90.0 / -85.0 psf	1	2	3
POSITIVE PRESSURE RANGE (psf)	0 – 45.0	0 – 54.0	0 – 117.0
AVERAGE CYCLE TIME (sec.)	5.7	5.1	1.0
NUMBER OF CYCLES	600	70	1
	4	5	6
NEGATIVE PRESSURE RANGE (psf)	0 – 42.5	0 – 51.0	0 – 110.5
AVERAGE CYCLE TIME (sec.)	4.5	5.0	1.0
NUMBER OF CYCLES	600	70	1

Mock Up #4: Positive Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.38	<0.01	> 99	> 90

Mock Up #4: Negative Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT PERCENT RECOVERY		/ERY
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.27	<0.01	> 99	> 90

Note 16: See Sketch #10 for indicator locations.

Mock Up #5: Cyclic Test Spectrum and Average Cycle Time per TAS 203

DESIGN PRESSURE	STAGE		
+90.0 / -85.0 psf	1	2	3
POSITIVE PRESSURE RANGE (psf)	0 – 45.0	0 – 54.0	0 – 117.0
AVERAGE CYCLE TIME (sec.)	4.3	4.9	1.0
NUMBER OF CYCLES	600	70	1
	4	5	6
NEGATIVE PRESSURE RANGE (psf)	0 – 42.5	0 – 51.0	0 – 110.5
AVERAGE CYCLE TIME (sec.)	4.0	4.6	1.0
NUMBER OF CYCLES	600	70	1

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

Mock Up #5: Positive Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.33	0.01	97	> 90

Mock Up #5: Negative Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.17	0.01	94	> 90

Note 17: See Sketch #11 for indicator locations.

Mock Up #6: Cyclic Test Spectrum and Average Cycle Time per TAS 203

DESIGN PRESSURE	STAGE		
+90.0 / -85.0 psf	1	2	3
POSITIVE PRESSURE RANGE (psf)	0 – 45.0	0 – 54.0	0 – 117.0
AVERAGE CYCLE TIME (sec.)	4.4	5.2	1.0
NUMBER OF CYCLES	600	70	1
	4	5	6
NEGATIVE PRESSURE RANGE (psf)	0 – 42.5	0 – 51.0	0 – 110.5
AVERAGE CYCLE TIME (sec.)	4.4	4.5	1.0
NUMBER OF CYCLES	600	70	1

Mock Up #6: Positive Cyclic Load per TAS 203

INDICATOR	MAXIMUM	PERMANENT	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)	SET (in.)	MEASURED %	ALLOWED %
2	0.37	0.01	97	> 90

Mock Up #6: Negative Cyclic Load per TAS 203

INDICATOR	MAXIMUM	1 21007, 002101	PERCENT RECOVERY	
LOCATION	DEFLECTION (in.)		MEASURED %	ALLOWED %
2	0.15	0.01	93	> 90

Note 18: See Sketch #11 for indicator locations.

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

SECTION 6

CONCLUSION

The mock-ups met the specified performance requirements.

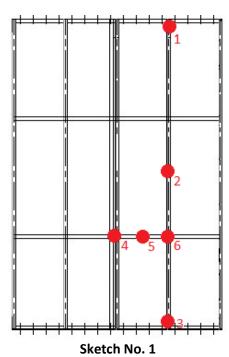
No signs of failure were observed in any area of the mock ups during the TAS 202 testing; as such, the mock ups satisfy the requirements of TAS 202. Upon completion of testing, mock ups tested for TAS 202-94 met the requirements of Section 1620 of the Florida Building Code, Building.

The large missiles impacted each intended target. Each impact location was carefully inspected. No signs of penetration, rupture, or opening after the large missile impact test were observed; as such, the mock ups satisfy the large missile requirements of TAS 201. Upon completion of testing, mock ups tested for TAS 201-94 met the requirements of Section 1626 of the Florida Building Code, Building.

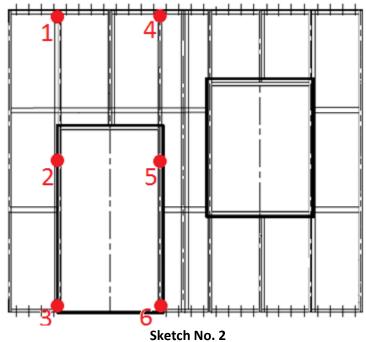
No signs of failure were observed in any area of the mock ups during the cyclic load test; as such, the mock ups satisfy the cyclic load requirements of TAS 203. Upon completion of testing, mock ups tested for TAS 203-94 met the requirements of Section 1625 of the Florida Building Code, Building.

Version: 01/30/18 Page 15 of 33 RT-R-AMER-Test-2745

Telephone: 561-881-0020 www.intertek.com/building


TEST REPORT FOR NORTHSTAR TECHNOLOGIES

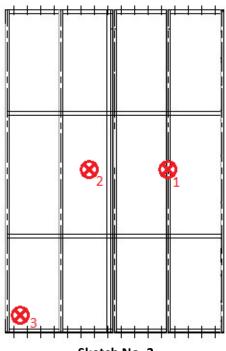
Report No.: L4423.01-450-44 RO

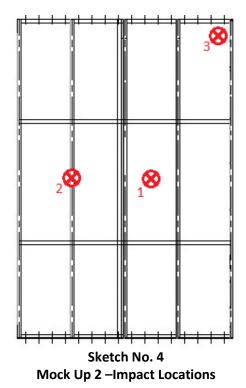

Date: 12/16/20

SECTION 7

SKETCHES

Mock Up 1 – Structural Loads Indicator Locations

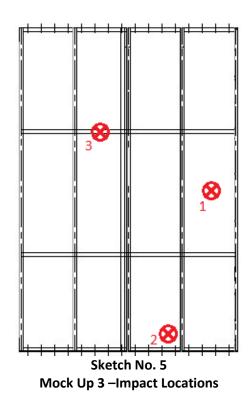

Mock Up 4 – Structural Loads Indicator Locations

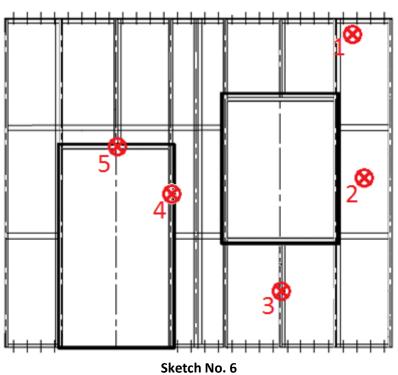

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 RO

Sketch No. 3
Mock Up 1 –Impact Locations

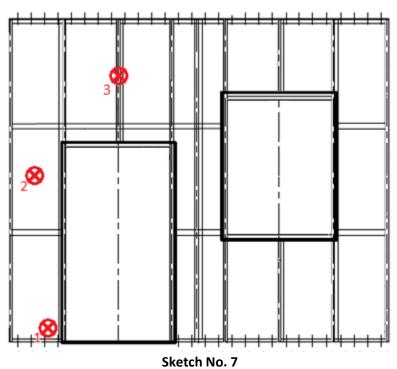


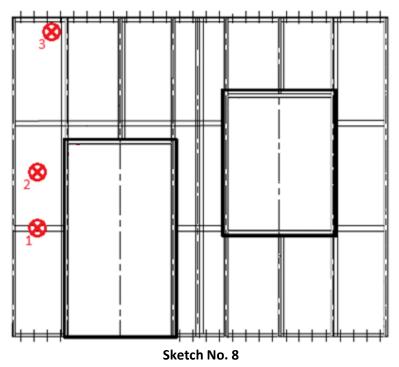


Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 RO

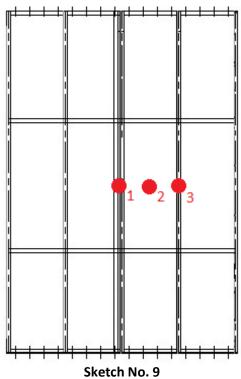

Mock Up 4 –Impact Locations

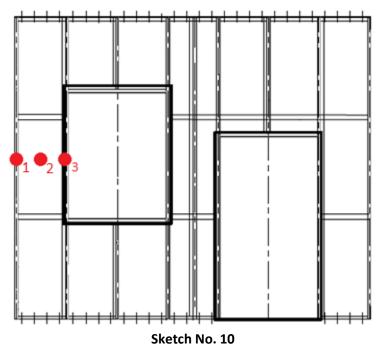

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 RO

Mock Up 5 –Impact Locations


Mock Up 6 –Impact Locations


Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Mock Ups 1, 2 & 3 - Cycling Indicator Location

Mock Up 4, 5 & 6 – Cycling Indicator Location

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 RO

Date: 12/16/20

SECTION 8

PHOTOGRAPHS

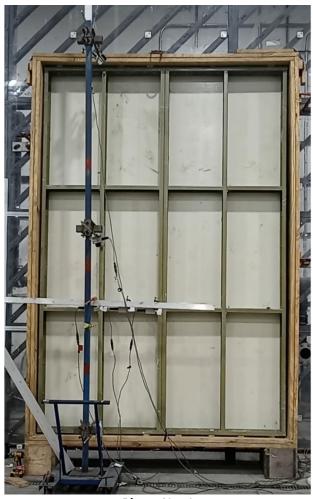


Photo No. 1 Specimen #1 Negative Structural Loads

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 RO

Photo No. 2
Specimen #4 Large Missile Impacts

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 R0

Date: 12/16/20

SECTION 9

DRAWINGS

The "As-Built" drawings have been reviewed by Intertek B&C and are representative of the project reported herein. Project construction was verified by Intertek B&C per the drawings included in this report. Any deviations are documented herein or on the drawings.

Version: 01/30/18 Page 23 of 33 RT-R-AMER-Test-2745

NORTHSTAR EXTERIOR WALL PANEL SYSTEM

A FIBER REINFORCED POLYMER EXTERIOR WALL PANEL WITH A 1/4" THICK FIBER REINFORCED POLYMER BALLISTIC ARMOR PLATE SHEATHING BONDED TO A 6" FIBER REINFORCED POLYMER FRAME ASSEMBLY

DESIGN PRESSURE: +90 / -85 PSF

MISSILE IMPACT: LEVEL D
DEFLECTION LIMIT: L/120

NORTHSTAR TECHNOLOGIES GROUP INC 365 FIFTH AVE S. NAPLES, FLORIDA 34102 239.850.6253

PINGLESE@NORTHSTARTGI.COM

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Pending)

ENGINE

Scott Wolters FL PE# 62354

Wolters Engineering (COA# 27194) 15211 97th Road N. West Palm Beach, FL 33412 561.225.1982

JOB NUMBER: 20201214

DATE:12.14.2020

DRAWN BY: P Inglese

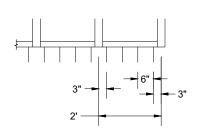
REVISIONS

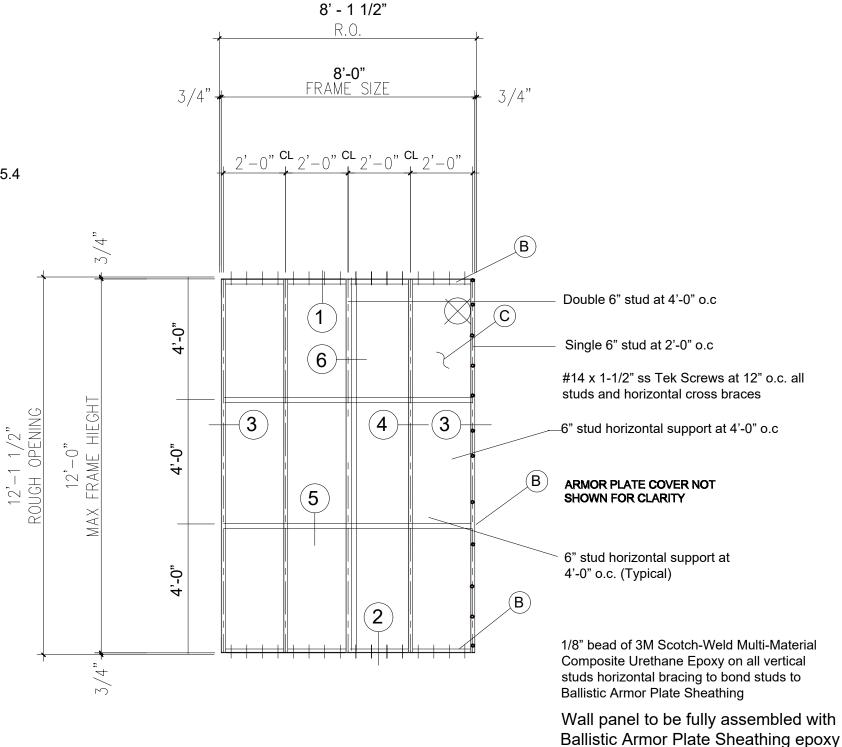
NO. DATE DRWN 1 12.14.20 PI CHKD

COVER PAGE

2"X4" 9.0 LB +0.25 / -0 +0 /-4 VELOCITY 50 FT/S LEVEL "D"

DESIGN PRESURE


DESIGN PRESSURE: +90 / - 85 PSF


CYCLIC PRESSURE: FATIGUE SEQUENCE LOADING TABLE 1625.4

ANCHORING TYPE

5/16" DIA x 3-1/4" ULRACON BY ELCO INTO SOUTHERN YELLOW PINE # 2 MIN. EDGE DISTANCE FROM ANY WOOD EDGE.

ANCHORING @ HEAD & SILL

ELEVATION 1 - LARGE MISSILE

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Pending)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

JOB NUMBER:

DATE: 09.23.2020

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN 1 09.23.20 PI

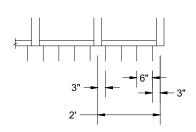
CHKD

1

and screwed into position in factory

2"X4" 9.0 LB +0.25 / -0 +0 /-4 VELOCITY 50 FT/S LEVEL "D"

DESIGN PRESURE


DESIGN PRESSURE: +90 / - 85 PSF

CYCLIC PRESSURE: FATIGUE SEQUENCE LOADING TABLE 1625.4

ANCHORING TYPE

5/16" DIA x 3-1/4" ULRACON BY ELCO INTO SOUTHERN YELLOW PINE # 2 MIN. EDGE DISTANCE FROM ANY WOOD EDGE.

ANCHORING @ HEAD & SILL

R.O. 8'-0" FRAME SIZE 3/4" 3/4" 2'-0" CL 2'-0" CL 2'-0" CL 2'-0" (B)Double 6" stud at 4'-0" o.c (C) 1 4'-0" Single 6" stud at 2'-0" o.c 6 #14 x 1-1/2" ss Tek Screws at 12" o.c. all studs and horizontal cross braces MAX FRAME HIEGHT 3 3 4 -6" stud horizontal support at 4'-0" o.c 4'-0" ARMOR PLATE COVER NOT (5) SHOWN FOR CLARITY 6" stud horizontal support at 4'-0" 4'-0" o.c. (Typical) 2 1/8" bead of 3M Scotch-Weld Multi-Material Composite Urethane Epoxy on all vertical studs horizontal bracing to bond studs to Ballistic Armor Plate Sheathing

8' - 1 1/2"

ELEVATION 2 - LARGE MISSILE

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Pendine)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

JOB NUMBER:

DATE: 09.23.2020

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN 1 09.23.20 PI CHKD

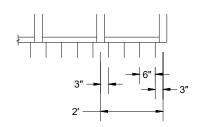
2

| Report #: L4423.01-450-18 |
| Date: 12/16/20 |
| Verified by: |

Wall panel to be fully assembled with Ballistic Armor Plate Sheathing epoxy and screwed into position in factory

2"X4" 9.0 LB +0.25 / -0 +0 /-4 VELOCITY 50 FT/S LEVEL "D"

DESIGN PRESURE


DESIGN PRESSURE: +90 / - 85 PSF

CYCLIC PRESSURE: FATIGUE SEQUENCE LOADING TABLE 1625.4

ANCHORING TYPE

5/16" DIA x 3-1/4" ULRACON BY ELCO INTO SOUTHERN YELLOW PINE # 2 MIN. EDGE DISTANCE FROM ANY WOOD EDGE.

ANCHORING @ HEAD & SILL

8' - 1 1/2" R.O. 8'-0" FRAME SIZE 3/4" 3/4" 2'-0" CL 2'-0" CL 2'-0" CL 2'-0" $\widehat{\mathsf{B}}$ Double 6" stud at 4'-0" o.c 4'-0" Single 6" stud at 2'-0" o.c 6 #14 x 1-1/2" ss Tek Screws at 12" o.c. all studs and horizontal cross braces FRAME HIEGHT 12'-1 1/2" ROUGH OPENING 3 3 4 6" stud horizontal support at 4'-0" o.c 4'-0" ARMOR PLATE COVER NOT 5 SHOWN FOR CLARITY 6" stud horizontal support at 4'-0" 4'-0" o.c. (Typical) 2 1/8" bead of 3M Scotch-Weld Multi-Material Composite Urethane Epoxy on all vertical studs horizontal bracing to bond studs to **Ballistic Armor Plate Sheathing** Wall panel to be fully assembled with

ELEVATION 3 - LARGE MISSILE

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Panding)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

JOB NUMBER:

DATE: 09.23.2020

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN 1 09.23.20 PI

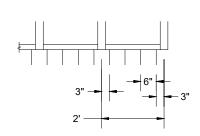
RWN CHKD PI

3

Ballistic Armor Plate Sheathing epoxy and screwed into position in factory

2"X4" 9.0 LB +0.25 / -0 +0 /-4 VELOCITY 50 FT/S LEVEL "D"

DESIGN PRESURE


DESIGN PRESSURE: +90 / - 85 PSF

CYCLIC PRESSURE: FATIGUE SEQUENCE LOADING TABLE 1625.4

ANCHORING TYPE

5/16" DIA x 3-1/4" ULRACON BY ELCO INTO SOUTHERN YELLOW PINE # 2 MIN. EDGE DISTANCE FROM ANY WOOD EDGE.

ANCHORING SPACING @ HEAD & SILL

14' 2-3/4" R.O. 14' 1-1/4" FRAME SIZE 3/4" 3/4" 3'-10 1/2" 2'-0" cl 2'-Double 6" stud Double 6" stud #14 x 1-1/2" ss tek screws 12" o.c. (typical) **B**) 6 4'-0" (B) 12'-0" FRAME HIEGHT 6" stud horizontal support at (3) (B) 4'-0" o.c. (Typical) -0 $\hat{\Omega}$ (B) OPENING 3 ARMOR PLATE COVER NOT **5** DOOR SHOWN FOR CLARITY 4'-0" (B)Double 6" stud 1/8" bead of 3M Scotch-Weld Multi-Material Composite Urethane Epoxy on all vertical studs and horizontal bracing to bond studs to Ballistic Armor Plate Sheathing

ELEVATION 4 - LARGE MISSILE

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Pending)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

JOB NUMBER:

DATE: 09.23.2020

DRAWN BY: P Inglese

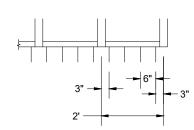
REVISIONS

NO. DATE DRWN CHKD 1 00.23.20 PI PI

Wall panel to be fully assembled with Ballistic Armor Plate Sheathing epoxy and screwed into position in factory

2"X4" 9.0 LB +0.25 / -0 +0 /-4 VELOCITY 50 FT/S LEVEL "D"

DESIGN PRESURE


DESIGN PRESSURE: +90 / - 85 PSF

CYCLIC PRESSURE: FATIGUE SEQUENCE LOADING TABLE 1625.4

ANCHORING TYPE

5/16" DIA x 3-1/4" ULRACON BY ELCO INTO SOUTHERN YELLOW PINE # 2 MIN. EDGE DISTANCE FROM ANY WOOD EDGE.

ANCHORING SPACING @ HEAD & SILL

14' 2-3/4" R.O. 14' 1-1/4" FRAME SIZE - 3/4" 3'-10 1/2" 2'-0" cl 2'-0" Double 6" stud Double 6" stud (E)#14 x 1-1/2" ss tek screws 12" o.c. (typical) (B) 6 4'-0" (B)12'-0" FRAME HIEGHT 12'-1 1/2" ROUGH OPENING 3 6" stud horizontal support at (B)4'-0" o.c. (Typical) .0 ģ 2 (B) 3 OPENING ARMOR PLATE COVER NOT **(5**) DOOR SHOWN FOR CLARITY 4'-0" Double 6" stud 1/8" bead of 3M Scotch-Weld Multi-Material Composite Urethane Epoxy on all vertical studs and horizontal bracing to bond studs to Ballistic Armor Plate Sheathing Wall panel to be fully assembled with

ELEVATION 5 - LARGE MISSILE

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Panding)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

JOB NUMBER:

DATE: 09.23.2020

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN CHKD 1 09.23.20 PI PI

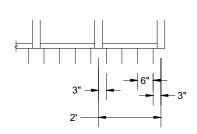
5

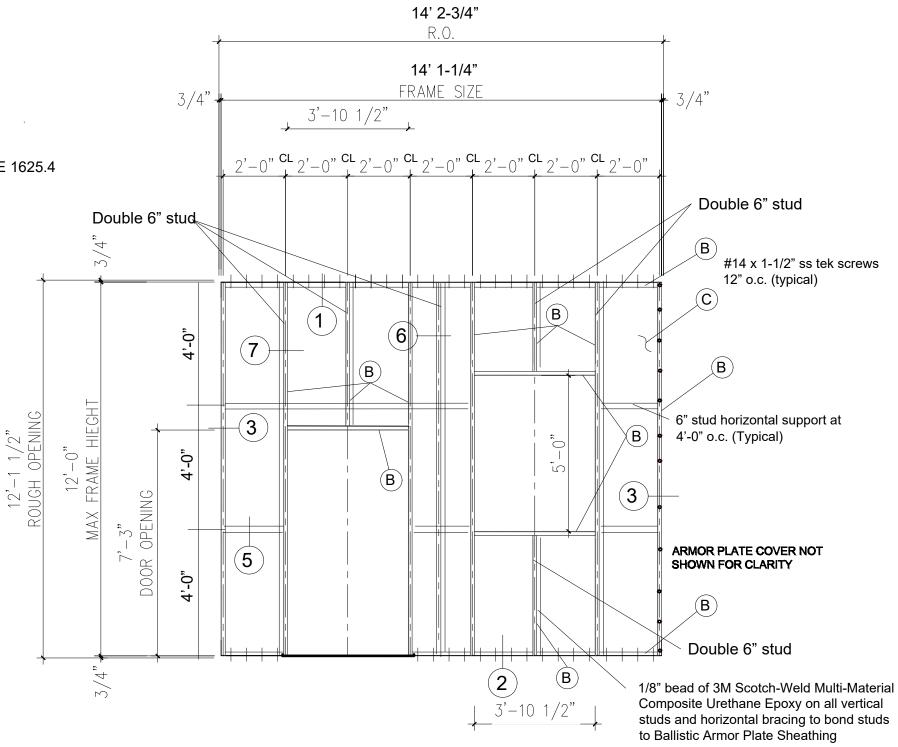
| Report #: L4423.01-450-18 | Date: | 12/16/20 | Verified by: |

Ballistic Armor Plate Sheathing epoxy and screwed into position in factory

2"X4" 9.0 LB +0.25 / -0 +0 /-4 VELOCITY 50 FT/S LEVEL "D"

DESIGN PRESURE


DESIGN PRESSURE: +90 / - 85 PSF


CYCLIC PRESSURE: FATIGUE SEQUENCE LOADING TABLE 1625.4

ANCHORING TYPE

5/16" DIA x 3-1/4" ULRACON BY ELCO INTO SOUTHERN YELLOW PINE # 2 MIN. EDGE DISTANCE FROM ANY WOOD EDGE.

ANCHORING SPACING @ HEAD & SILL

ELEVATION 6 - LARGE MISSILE

Wall panel to be fully assembled with Ballistic Armor Plate Sheathing epoxy and screwed into position in factory

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Panding)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

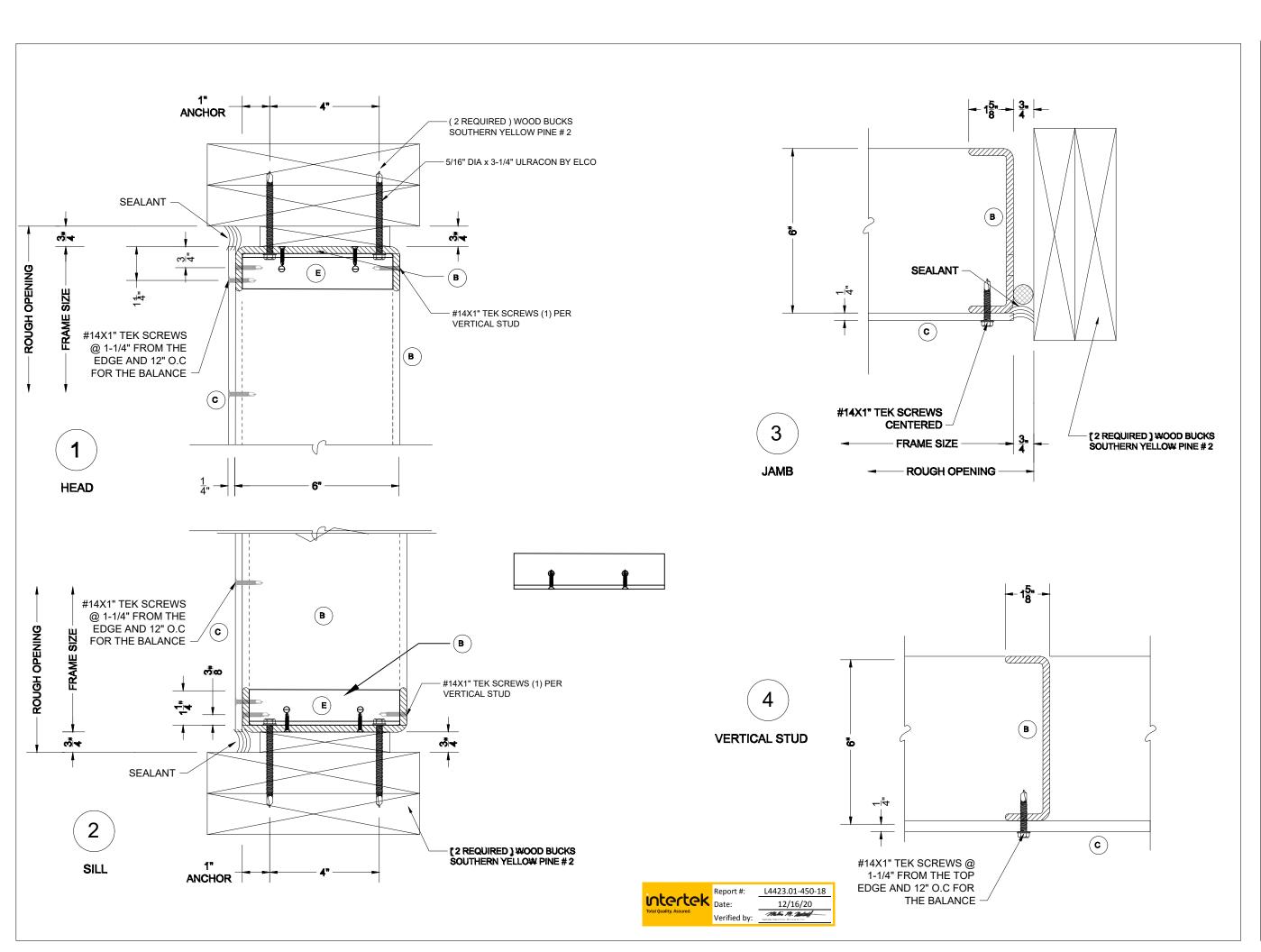
Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

365 Fifth Avenue S. Naples, Florida 34102

JOB NUMBER:


DATE: 09.23.2020

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN 1 09.23.20 PI

CHKD

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the invended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Pending)

CLIENT

Northstar Technologies Group

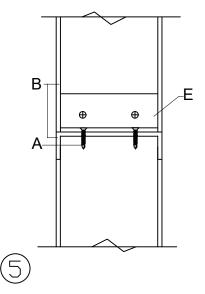
365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

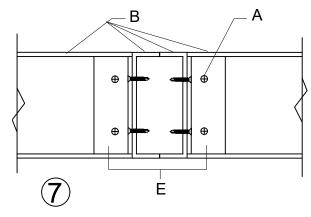
PROJECT

Northstar Exterior Wall Panel

365 Fifth Avenue S. Naples, Florida 34102

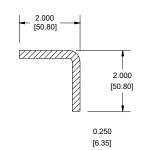

JOB NUMBER:

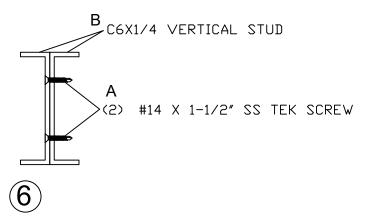
DATE: 09.23.2020

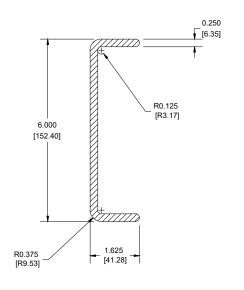

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN CHKD 1 09.23.20 PI PI


VERTICAL STUD TO HORIZONTAL STUD CONNECTION AT END OF PANELS


VERTICAL STUD TO HORIZONTAL ST AT MID-POINT STUDS


- A#14 x 1-1/2" Self-Drilling Tek Screw (stainless steel
- F 3M Scotch Weld Mult-Material Composite Urethane Epoxy

E L2 x 1/4" CLIP ANGLE BRACKET FIBERGLASS

DOUBLE STUD CONNECTION DETAIL

B C6 X 1-5/8 STUDS (FIBERGLASS)

C FIBERGLASS BALLISTIC ARMOR PLATE (COMPOSITE MATERIAL)

365 FIFTH AVE S. NAPLES, FLORIDA 34102

NORTHSTARTGI.COM

The information contained in this document is proprietary, confidential, privileged and only for the use of the intended recipients. No part of this document may be used, published, or redistributed in any manner without the prior written consent of Northstar Technologies Group Inc. All trademarks, service marks, trade names, product names, and logos appearing in this document are the property of Northstar Technologies Group Inc. (Patent Pending)

CLIENT

Northstar Technologies Group

365 Fifth Avenue S. Naples, Florida 34102

Phone # 239.850.6253 EMAIL pinglese@northstartgi.com

PROJECT

Northstar Exterior Wall Panel

365 Fifth Avenue S. Naples, Florida 34102

JOB NUMBER:

DATE: 09.23.2020

DRAWN BY: P Inglese

REVISIONS

NO. DATE DRWN CHKD 1 09.23.20 PI PI

Telephone: 561-881-0020 www.intertek.com/building

TEST REPORT FOR NORTHSTAR TECHNOLOGIES

Report No.: L4423.01-450-44 RO

Date: 12/16/20

SECTION 10

REVISION LOG

REVISION #	DATE	PAGES	REVISION
0	12/16/20	N/A	Original Report Issue